• Tidak ada hasil yang ditemukan

Set Datang di SMAN 8 Batam Fractal geometry

N/A
N/A
Protected

Academic year: 2017

Membagikan "Set Datang di SMAN 8 Batam Fractal geometry"

Copied!
15
0
0

Teks penuh

(1)

Fractal Geometry

Isa S. Jubran – [email protected] – http://web.cortland.edu/jubrani

A

Fractal

is a geometric object whose dimension is fractional. Most fractals are self

similar, that is when any small part of a fractal is magnified the result resembles

the original fractal. Examples of fractals are the Koch curve, the Seirpinski gasket,

and the Menger sponge.

Similarity Dimension:

Take a line segment of length one unit and divide it into N equal parts. let

S

=

old length

new length

, then

N

=

S

1

.

N = 3, S = 3

Take a square (dimension 2) of area one square unit and divide it into N

congruent parts. Then

S

=

N

and

N

=

S

2

.

N= 4, S= 2

Take a cube (dimension 3) of volume one cubic unit and divide it into

N

congruent parts. Then

S

=

N

13

and

N

=

S

3

.

...

... ...

... ... ...

... .

. . . . . . . . . . . . . . . . . .

... ... ... ... ... ... ... . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . ... .. .. .. .. .. .. .. .. .. .

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .

. ... ............... . . . . . . . . . . . . .

... ... ... ... ... ... ...

N = 8, S= 2

So given set of dimension

d

consisting of

N

parts congruent part then

N

=

S

d

,

where

S

=

new lengthold length

. Solving for

d

yields

(2)

Exercise 1:

T

= lim

n→∞

T

n

is called the

Seirpinski Triangle or Gasket

.

1.

What is the perimeter of

T

n

?

2.

What is the area of

T

n

?

3.

Compute the fractal dimension of

T

.

T0 T1 T2

Solution:

1.

P

n

= (

32

)

n

P0

.

2.

A

n

= (

34

)

n

A0

.

3.

N

= 3 and

S

= 2, hence

d

=

ln3

ln2

.

Exercise 2:

C

= lim

n→∞

C

n

is called the

Seirpinski Carpet

.

C0 C1 C2

1.

What is the perimeter of

C

n

?

2.

What is the area of

C

n

?

3.

Compute the fractal dimension of

C

∞.

Solution:

1.

P

n

=

P0

+

13

P0

+

382

P0

+

· · ·

+

8n

−1

3n

P0

.

2.

A

n

= (

89

)

n

A0

.

3.

N

= 8 and

S

= 3, hence

d

=

ln8
(3)

Exercise 3:

M

= lim

n→∞

M

n

is called the

Menger Sponge

.

M0 M1 M2

0 2

2

1.

What is the volume of

M

n

.

2.

What is the surface area of

M

n

?

3.

Compute the fractal dimension of

M

.

Solution:

1.

V0

= 2

3

= 8 and

V

n

= 20

·

(1

/

3)

3

·

(

V

n−1

).

2.

A0

= 6

·

2

2

= 24 and

A

n

= 20

·

(1

/

3)

2

·

(

A

n−1

)

24

·

(1

/

3)

2

·

(

A

tn1

)

·

2

= (20

/

9)

·

Area

(

C

n−1

)

(64

/

3)

·

(8

/

9)

n

1

where

Area

(

C

n−1

) is the area of

the

n

1 stage in the construction of the Sierpinski carpet. Hence

A

n

=

(8

/

9)

n

·

16 + (20

/

9)

n

·

8.

3.

N

= 20 and

S

= 3, hence

d

=

ln20

ln3

.

Exercise 4:

Draw a fractal with dimension

32

.

Solution:

... ... ... ... ... ..

... ... ... ... ... ..

✲ ✛

...

. . . . . . . . .

...

. . . . . . . . ... .. .. ..

. ...

. . . . . . . . ... .. .. ..

. ...

. . . . . . . . ... .. .. .. .

...

. . . . . . . . .

...

. . . . . . . . ... .. .. ..

. ...

. . . . . . . . ... .. .. ..

. ...

. . . . . . . . ... .. .. .. .

Demonstrate the applet ”Fractal Dimension” at:

(4)

Box Dimension:

Box dimension is another way to measure fractal dimension, it is defined as follows:

If

X

is a bounded subset of the Euclidean space, and

ǫ

0. Let

N

(

X, ǫ

) be the

minimal number of boxes in the grid of side length

ǫ

which are required to cover

X

. We say that

X

has box dimension

D

if the following limit exists and has value

D

.

lim

ǫ→0+

ln(

N

(

X, ǫ

))

ln(

1ǫ

)

Consider for example the Seirpinski gasket:

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

... ...

... ... ... ...

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

...

0 1

1

ǫ

N

(

X, ǫ

)

1

1

1

2

3

1

4

9

...

...

1

2

n

3

n

Hence D

= lim

n→∞

ln(4

·

3

n

)

ln(2

n

)

=

ln 3

ln 2

Demonstrate the applet ”Box Counting Dimension” at:

(5)

Geometrically, if you plot the results on a graph with ln

N

(

X, ǫ

) on the vertical

axis and ln(1

) on the horizontal axis, then the slope of the best fit line of the

data will be an approximation of Box dimension of the fractal.

... ... ... ... ... ...

... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . .

✲ ✻

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.. .. .. .. .. .. .. .. .. .. .

.. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . .

(ln(1),ln(1))

(ln(4),ln(9))

(ln(2),ln(3))

Discuss computing the fractal dimension of a bunch of broccoli.

http://hypertextbook.com/facts/2002/broccoli.shtml

My Results:

Ball Size

N

1ǫ

ln(

1ǫ

)

ln(

N

)

6x5x2.5

10

1/4.5

-1.504

2.303

4x4x2.5

19

1/3.5

-1.253

2.94

3.5x3x2

28 1/2.83

-1.04

3.33

3x2.5x2

41

1/2.5

-.916

3.71

2.5x2.5x2 64 1/2.33

-.847

4.158

Use the linear regression applet at http://math.hws.edu/javamath/ryan/Regression.html

to plot the data points and find the slope of the best fit line.

Fractal dimension = slope = 2.62.

(6)

Divider Dimension:

A fractal curve has fractal (or divider) dimension

D

if its length

L

when measured

with rods of length

l

is given by

L

=

C

·

l

1−D

C

is a constant that is a certain measure of the apparent length, and the equation

above must be true for several different values of

l

. Consider the Koch curve:

K2

l

L

1

1

1 3

4 3 1 9

16 9

...

...

1 3n

(

4 3

)

n

It appears to have length

L

= (

4 3

)

n

when measured with rods of length

l

= (

1 3

)

n

.

Hence,

(

4

3

)

n

=

C

·

(

1

3

)

n(1−D)

This implies that

n

ln

4

3

= ln(

C

) +

n

(1

D

) ln

1 3

.

In order for the equation to be satisfied for all

n

, ln

C

must be zero, hence

C

= 1

and so

D

=

ln 4

ln 3

.

Geometrically, if you graph ln(

L

) versus ln(

l

) the

D

= 1

Slope of line

.

Exercise:

The west coast of Britain when measured with rods of length 10

km

is

3020

km

. But when measured with rods of length 100

km

it is 1700

km

. What is

the fractal dimension of the west coast of Britain?

Demonstrate the applet ”Coastline of Hong Kong” at:

(7)

Affine transformations:

An affine transformation is of the form

f

(

Ã

x

y

!

) =

Ã

a b

c d

!

·

Ã

x

y

!

+

Ã

e

f

!

or

f

(

Ã

x

y

!

) =

Ã

r

cos(

θ

)

s

sin(

φ

)

r

sin(

θ

)

s

cos(

φ

)

!

·

Ã

x

y

!

+

Ã

e

f

!

Where

r

and

s

are the scaling factors in the

x

and

y

directions respectively.

θ

and

φ

measure rotation of horizontal and vertical lines resp.

e

and

f

measure horizontal

and vertical translations resp.

It can be easily shown that

r

2

=

a

2

+

c

2

,

s

2

=

b

2

+

d

2

,

θ

= arctan(

c/a

) and

φ

= arctan(

b/d

).

✲ ✛

❄ θ

c

a ✛ ✲

❄ b

d φ

.... .... .... .... ....

...

A′ .... .... .... .... ....

... ... ... ... ... ... ...

.... .... .... .... .... .

y′= 1 2y

. . . . . . . . . . . . . . . . . . . . .

B′ ...... ... ... ... ... ...

C

✲ ✻

A C′

x′= 1 2x Similarity

B

.... .... .... .... .... .

A B C

D A′

B′

C′.... .... .... .... ....

... ...

... ... ... ... ... ... ....

.... .... .... .... .

Af f inity

. . . . . . . . . . . . . . . . . . . .

. ...

✲ ✻

D

x′= 3 4x y′= 1

2y

A reflection about the y-axis would be given by

x

=

x

and

y

=

y

− − − − − − −

matrix f orm

Ã

1 0

0 1

!

A reflection about the x-axis would be given by

x

=

x

and

y

=

y

− − − − − − −

matrix f orm

Ã

1

0

0

1

(8)

Rotation is represented as follows:

B

B′

φ= 45

C′

y′= 1

2y

C

.. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

θ= 0

.. .. .. .. .. .. .. .. .. .. .. .. .. ..

...

A

B

A′

y′ = 1

2x+y

C

B′

... ...

... ...

...

θ= 45 ...

... ...

... ......

... ... ... ... ... ... ... .

A

φ= 0 ...

... ... ... ... ...

... ...

... ... ... ... ... ...

✲ ✻

... ... ... ... ... ...

...

D

... ...

... ... ... ... ... ...

x′ = 1

2x

D

x′ =x 1

2y

M atrixf orm

:

Ã

cos(

θ

)

sin(

φ

)

sin(

θ

)

cos(

φ

)

!

=

Ã

a b

c d

!

... ...

... ...

...

.. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. ...

.. .. .. .. .. .. .. .. .. .. .. ..

... ...

... ...

...B′

A A′

B

φ= 45

C′

y′= 1

2x+√12y

C

θ= 45

.. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. ... ... ... ... ... ...

... ✲ D

x′= 1

2x−√12y

(9)

Shears are represented as follows:

... ... ... ... ... ...

... ✲ ✻

... ... ... ... ... ...

... .. .. .. .. .. ..

.. ...

... ... ... ... ... ... ...

... ... ... ... ...

...

... .

. . . . . . . . . . . . . . . . . . .

. ...

... ... ... ... ...

... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . .

✲ ✻

... ... ... ... ... ...

... .. .. .. .. .. .. .. ...

... ... ... ... ...

... . . . . . . . . . . . . . . . . . . . .

. ...

... ... ... ... ...

... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . .

A B C

D

B′

A′

x′=x

y′ = 2x+y

Shear in the y direction

A B C

D

B′

C′

x′=x+ 2y

y′=y

(10)

Iterated Function Systems:

An

Iterated Function System

in

R

2

is a collection

{

F1

, F2, . . . , F

n

}

of contraction

mappings on

R

2

. (

F

i

is a contraction mapping if given

x, y

then

d

(

F

i

(

x

)

, F

i

(

y

))

sd

(

x, y

)

where

0

s <

1)

The Collage Theorem

says that there is a unique nonempty compact subset

A

R

2

called the attractor such that

A

=

F

1

(

A

)

F

2

(

A

)

. . .

F

n

(

A

)

Sketch of Proof:

Given a complete metric space

X

, let

H

(

X

) be the collection of nonempty compact

subsets of

X

. Given

A

and

B

in

H

(

X

) define

d

(

A, B

) to be the smallest number

r

such that each point of in

A

is within

r

of some point in

B

and vice versa. If

X

is complete so is

H

(

X

).

Given an IFS on

X

, define

G

:

H

(

X

)

H

(

X

) by

G

(

K

) =

F1

(

K

)

. . .

F

n

(

K

). If

each

F

i

is a contraction then so is

G

. The contraction mapping theorem says that

a contraction mapping on a complete space has a unique fixed point. Hence there

is

A

H

(

X

) such that

G

(

A

) =

A

=

F

1

(

A

)

F

2

(

A

)

. . .

F

n

(

A

).

Given

K0

R

2

, let

K

n

=

G

n

(

K0

). Then

d

(

A, K

i

)

s

i

d

(

K0

, G

(

K0

))

1

s

Hence

K

i

is a very good approximation of

A

for large enough

i

.

Deterministic Algorithm:

(Slow!)

Given

K0

, let

K

n

=

G

n

(

K0

). Now

K

n

A

.

Random Algorithm:

(Fast!)

Choose

P0

K0

and let

P

i+1

=

F

j

(

P

i

) where

F

j

is chosen at random from all of

the

F

i

. Clearly

P

i

K

i

and for sufficiently large

i

,

P

i

is arbitrarily close to some

(11)

Finding IFS Rules from Images of Points

Given three non-collinear initial points

p

1 = (

x1, y1

)

, p2

= (

x2, y2

)

, p3

= (

x3, y3

)

and three image points

q1

= (

u1, v1

)

, q2

= (

u2, v2

)

, q3

= (

u3, v3

) respectively. Find

an affine transformation

T

defined by

T

(

Ã

x

y

!

) =

Ã

a b

c d

!

·

Ã

x

y

!

+

Ã

e

f

!

such

that

T

(

p1

) =

q1, T

(

p2

) =

q2,

and

T

(

P3

) =

q3

.

This gives the following six equations in six unknowns:

ax1

+

by1

+

e

=

u1

cx

1

+

dy

1

+

f

=

v

1

ax2

+

by2

+

e

=

u2

cx2

+

dy2

+

f

=

v2

ax3

+

by3

+

e

=

u3

cx3

+

dy3

+

f

=

v3

...... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ... ... ... ... ... ... ... ... .. .. .. .. .. .. ..

.5,0,0, .5,0,0

.5,0,0, .5, .5,0 .5,0,0, .5,0, .5

The IFS for the Seirpinski triangle is

{

T1, T2, T2

}

where

T1

(

Ã

x

y

!

) =

Ã

.

5

0

0

.

5

!

·

Ã

x

y

!

+

Ã

0

0

!

T2

(

Ã

x

y

!

) =

Ã

.

5

0

0

.

5

!

·

Ã

x

y

!

+

Ã

.

5

0

!

T3

(

Ã

x

y

!

) =

Ã

.

5

0

0

.

5

(12)

Example:

... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... .. .. .. .. .. .. ... . . . . . . . . . . . . . . . . . . . . ✲ ✻

I II III

IV V

V I V II V III

0 0 1 1 2 3 1 3 2 3 1 3

The IFS for the Seirpinski carpet is

{

T1, T2, T3, T4, T5, T6, T7, T8

}

where

T1

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

0

0

!

T2

(

Ã

x

y

!

) =

Ã

..

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

.

333

0

!

T3

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

.

666

0

!

T

4

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

0

.

333

!

T5

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

.

666

.

333

!

T6

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

0

.

666

!

T7

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

!

·

Ã

x

y

!

+

Ã

.

333

.

666

!

T8

(

Ã

x

y

!

) =

Ã

.

333

0

0

.

333

(13)

Example:

.5,−.5,5, .5, .5,5 .5, .5,5,−.5, .5,15

−10< x <30 0< y <40

(20,15)

T runk 0,0,10,0, .333,0 (15,20) (5,20)

(0,5) (5,15) (15,15)

(10,0) (10,10)

. . . . . . . . . . . ... ... ... .. .. .. .. .. . ... ... ... .. ... .. .. .. .. .. . .. .. .. .. .. . ... ... ... .. . . . . . . . . . . ... .. .. .. .. . .... .. .. .. . ... ... ... .... . . . . . . . . . ... .. .. .. . .. .. .. .. .. . .. ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . .. . . . . . . . . . . . ... ... ... .. .. .. .. .. . ... ... ... .. ... .. .. .. .. .. . .. .. .. .. .. . ... ... ... .. . . . . . . . . . . ... .. .. .. .. . .... .. .. .. . ... ... ... .... . . . . . . . . . ... .. .. .. . .. .. .. .. .. . .. ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . .. . . . . . . . . . . . ... ... ... .. .. .. .. .. . ... ... ... .. ... .. .. .. .. .. . .. .. .. .. .. . ... ... ... .. . . . . . . . . . . ... .. .. .. .. . .... .. .. .. . ... ... ... .... . . . . . . . . . ... .. .. .. . .. .. .. .. .. . .. ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . .. . . . . . . . . . . . ... ... ... .. .. .. .. .. . ... ... ... .. ... .. .. .. .. .. . .. .. .. .. .. . ... ... ... .. . . . . . . . . . . ... .. .. .. .. . .... .. .. .. . ... ... ... .... . . . . . . . . . ... .. .. .. . .. .. .. .. .. . .. ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . ... . ... ... .. .. .. .. .. . ... ... ... ... .. .. .. .. . . . . . . . . . . ... .. .. .. .. . ... ... ... .... . . . . . . . . . .... .. .. .. . .. ✲ ✻

The IFS for the tree is

{

T1, T2, T2

}

where

T1

(

Ã

x

y

!

) =

Ã

.

5

.

5

.

5

.

5

!

·

Ã

x

y

!

+

Ã

5

15

!

T2

(

Ã

x

y

!

) =

Ã

.

5

.

5

.

5

.

5

!

·

Ã

x

y

!

+

Ã

5

5

!

T3

(

Ã

x

y

!

) =

Ã

0

0

0

.

333

!

·

Ã

x

y

!

+

Ã

10

0

!

Download and experiment with the freeware ”IFS Construction Kit” which can be

used to design and draw fractals based on iterated function systems.

You can find it at:

http://ecademy.agnesscott.edu/

lriddle/ifskit/

Discuss the IFS for the Fern.

Discuss the IFS for the Tree.

Discuss the IFS for the mountain range.

(14)

Mandelbrot and Julia Sets:

Consider the complex function

F

c

(

z

) =

z

2

+

c

. Given an initial point

z0

define its

orbit under

F

c

to be

z0, z1, z2, . . .

where

z

n+1

=

z

n2

+

c

.

Define the escape set,

E

c

, and the prisoner set,

P

c

, for for the parameter

c

to be:

E

c

=

{

z0

:

|

z

n

| → ∞

as n

→ ∞}

,

and

E

c

=

{

z

0

|

z

0

/

E

c

}

Now the Julia set for the parameter

c

,

J

c

, is the boundary of the escape set

E

c

.

For example, if

c

= 0 then

F

c

(

z

) =

z

2

. Now if

z

=

re

then

F

(

z

) =

r

2

e

2iθ

.

|

z

0

|

θ

|

z

0

|

θ

|

z

0

|

θ

z

.8

15

1

15

1.5

15

z

2

.64

30

1

30

2.25

30

z

4

.4096

60

1

60

5.0625

60

z

8

.1678 120

1

120

25.629

120

z

1

6

.0281 240

1

240

656.84

240

z

32

.0008 120

1

120

431439.88 120

✲ ✻

✛ ✲

❄ ✛

z0 z1 z2

z3 z4

|z0|<1 |z0|= 1

z0 z1 z2 z3

z4

(15)

The Julia set is either connected (one piece) or totally disconnected(dust).

Now we define the Mandelbrot set to be

M

=

{

c

C

:

J

c

is connected

}

Experiment

with

the

Java

applet

”Mandelbrot

and

Julia

Sets”

at:

http://classes.yale.edu/fractals/

Download ”winfeed” at the address below and use it to plot the Julia sets for the

constants

c

=

.

5 +

.

5

i

,

c

=

.

7454285 + 0

.

1130089

i

, and others.

Referensi

Dokumen terkait

Rotasi (perputaran) adalah suatu transformasi yang memindahkan suatu titik pada bangun geometri dengan memutar titik tersebut terhadap titik pusatnya.. Untuk mudahnya,

So course satisfaction does not seem to be related to gender but urban students were more satisfied with the courses than were rural students. What does

We can now show that an analytic (i.e., continuously complex differentiable) function has a power series expansion around each point in its domain.. (And we already know the converse

However, if we have a complex data set, containing many MS/MS spectra which match to peptides from a number of different proteins, trying to report which proteins have been

Represent and analyze quadratic, polynomial and rational functions, using technology as appropriate. (RF) 2.1 Determine the following characteristics

Differentiation of elementary functions, of sums, products and quotients of functions, of composite, inverse and implicit functions.. Knowledge of the Mean Value

To prepare yourself well for MU123 it is recommended that you work through some of the free and open educational resources from the OU’s OpenLearn website

The Standards describe what is essential for Victorian students to achieve from Prep to Year 10 in 16 domains within three overarching strands (Physical, Personal and Social