• Tidak ada hasil yang ditemukan

6. Apakah terdapat tuntutan dari perusahaan untuk menggunakan sistem informasi akuntansi berbasis komputer? YA - Faktor-faktor yang Mempengaruhi Minat Pemanfaatan dan Penggunaan Sistem Informasi Akuntansi Pada Perusahaan Dagang di Kota Semarang - Unika Re

N/A
N/A
Protected

Academic year: 2019

Membagikan "6. Apakah terdapat tuntutan dari perusahaan untuk menggunakan sistem informasi akuntansi berbasis komputer? YA - Faktor-faktor yang Mempengaruhi Minat Pemanfaatan dan Penggunaan Sistem Informasi Akuntansi Pada Perusahaan Dagang di Kota Semarang - Unika Re"

Copied!
33
0
0

Teks penuh

(1)

Sumber : Vankatesh et al (2003)

Berikut ini adalah sejumlah pertanyaan yang berkaitan dengan minat serta

penggunaan sistem informasi akuntansi berbasis komputer. Kami mohon Bapak/Ibu

memberikan tanda silang (X) pada masing-masing alternative jawaban di

kolom-kolom yang tersedia.

A. Data Demografi

1. Umur

: ……..tahun

2. Jenis kelamin

:

Pria

Wanita

3. Jabatan

: ……….

4. Pendidikan Terakhir

:

SMU/SMK

S1

S2 Lain-lain

5. Pengalaman menggunakan sistem informasi akuntansi berbasis komputer …..

tahun.

6. Apakah terdapat tuntutan dari perusahaan untuk menggunakan sistem informasi

akuntansi berbasis komputer? YA

TIDAK

No

.

(2)

1.

Penggunaan sistem informasi akuntansi (software akuntansi)

berguna untuk pekerjaan saya.

2.

Menggunakan sistem informasi akuntansi (software

akuntansi) membantu saya menyelesaikan pekerjaan lebih

cepat.

3.

Menggunakan sistem informasi akuntansi (software

akuntansi) meningkatkan produktivitas saya.

4.

Jika saya menggunakan sistem informasi akuntansi maka

akan meningkatkan peluang saya untuk naik jabatan

No

.

Ekspektasi Usaha

STS

TS

N

S

SS

1.

Interaksi antara saya dengan sistem informasi akuntansi

(software akuntansi) bersifat jelas dan dapat dimengerti

2.

Akan mudah bagi saya menjadi ahli dalam menggunakan

sistem informasi akuntansi (software akuntansi)

3.

Menurut saya, menggunakan sistem informasi akuntansi

(software akuntansi) itu mudah.

(3)

No

.

Faktor Sosial

STS

TS

N

S

SS

1.

Menurut rekan kerja saya, saya perlu menggunakan sistem

informasi akuntansi (software akuntansi)

2.

Menurut atasan saya, saya perlu menggunakan sistem

informasi akuntansi (software akuntansi)

3.

Atasan saya dan senior saya sangat membantu dalam

penggunaan sistem informasi akuntansi (software akuntansi)

4.

Perusahaan tempat saya bekerja mendukung penggunaan

sistem informasi akuntansi

No

.

Minat pemanfaatan SIA berbasis komputer

STS

TS

N

S

SS

1.

Saya memiliki keinginan untung menggunakan sistem

informasi akuntansi (software akuntansi) pada kurun waktu

12 bulan kedepan.

2.

Saya memprediksi bahwa saya akan menggunakan sistem

informasi akuntansi (software akuntansi) pada kurun waktu

12 bulan kedepan.

(4)

akuntansi (software akuntansi) pada kurun waktu 12 bulan

kedepan.

No

.

Kondisi yang memfasilitasi pemakai

STS

TS

N

S

SS

1.

Saya memiliki sumber daya (contoh: komputer, laptop,

software, internet) yang diperlukan dalam menggunakan

sistem informasi akuntansi

2.

Saya memiliki pengetahuan yang diperlukan untuk

menggunakan sistem informasi akuntansi (software

akuntansi) (contoh: mengerti cara menggunakan komputer

dll)

3.

Sistem informasi akuntansi (software akuntansi) kompatibel

dengan sistem lain yang saya gunakan (contoh: SIA yang

digunakan bisa diakses melalui laptop anda)

4.

Terdapat tenaga ahli yang tersedia untuk membantu

masalah-masalah saya dalam penggunaan sistem informasi

akuntansi (software akuntansi)

No.

Penggunaan Sistem Informasi Akuntansi

(5)

dalam satu hari (berhubungan dengan pekerjaan Bpk/Ibu)

a) Kurang dari 15 menit

b) 30-40 menit

c) 60-75 menit

d) 90-105 menit

e) Lebih dari 120 menit

2.

Frekuensi dalam penggunaan sistem informasi akuntansi.

a) Sekali atau dua kali dalam sebulan

b) Sekali atau dua kali dalam ½ bulan

c) Sekali atau dua kali dalam seminggu

d) Sekali dalam satu hari

e)

Beberapa kali dalam satu hari

3.

Seberapa sering anda menggunakan SIA atau software akuntansi?

a)

Sangat jarang sekali

b)

Jarang sekali

c)

Netral

d)

Sering sekali

e)

Sangat sering sekali

UJI KUALITAS DATA

VALIDITAS

(6)

Corre la tions

1 .505** .418** .056 .712**

.000 .000 .594 .000

93 93 93 93 93

.505** 1 .460** .243* .783**

.000 .000 .019 .000

93 93 93 93 93

.418** .460** 1 .190 .730**

.000 .000 .069 .000

93 93 93 93 93

.056 .243* .190 1 .556**

.594 .019 .069 .000

93 93 93 93 93

.712** .783** .730** .556** 1

.000 .000 .000 .000

93 93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

PE1 PE2 PE3 PE4 PEtot

Correlation is significant at the 0.01 level (2-tailed). **.

Correlation is significant at the 0.05 level (2-tailed). *.

Correlations

Correlations

1 .558** .243* .186 .646**

.000 .019 .075 .000

93 93 93 93 93

.558** 1 .243* .287** .684**

.000 .019 .005 .000

93 93 93 93 93

.243* .243* 1 .454** .754**

.019 .019 .000 .000

93 93 93 93 93

.186 .287** .454** 1 .717**

.075 .005 .000 .000

93 93 93 93 93

.646** .684** .754** .717** 1

.000 .000 .000 .000

93 93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

EE1 EE2 EE3 EE4 EEtot

Correlation is significant at the 0.01 level (2-tailed). **.

Correlation is significant at the 0.05 level (2-tailed). *.

(7)

Correlations

1 .797** .479** .524** .845** .000 .000 .000 .000

93 93 93 93 93

.797** 1 .566** .593** .903**

.000 .000 .000 .000

93 93 93 93 93

.479** .566** 1 .601** .784**

.000 .000 .000 .000

93 93 93 93 93

.524** .593** .601** 1 .799**

.000 .000 .000 .000

93 93 93 93 93

.845** .903** .784** .799** 1 .000 .000 .000 .000

93 93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

SI1 SI2 SI3 SI4 SItot

Correlation is significant at the 0.01 level (2-tailed). **.

Correlations

Correla tions

1 .984** .984** .996** .000 .000 .000

93 93 93 93

.984** 1 .968** .991**

.000 .000 .000

93 93 93 93

.984** .968** 1 .991**

.000 .000 .000

93 93 93 93

.996** .991** .991** 1 .000 .000 .000

93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

BI1

BI2

BI3

BItot

BI1 BI2 BI3 BItot

Correlation is significant at the 0.01 level (2-tailed). **.

(8)

Corre lations

1 .475** .107 .307** .661** .000 .307 .003 .000

93 93 93 93 93

.475** 1 .367** .203 .674**

.000 .000 .051 .000

93 93 93 93 93

.107 .367** 1 .313** .645**

.307 .000 .002 .000

93 93 93 93 93

.307** .203 .313** 1 .746**

.003 .051 .002 .000

93 93 93 93 93

.661** .674** .645** .746** 1 .000 .000 .000 .000

93 93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

FC1 FC2 FC3 FC4 FCtot

Correlation is significant at the 0.01 level (2-tailed). **.

Correlations

Correlations

1 .307** .392** .810**

.003 .000 .000

93 93 93 93

.307** 1 .388** .678**

.003 .000 .000

93 93 93 93

.392** .388** 1 .772**

.000 .000 .000

93 93 93 93

.810** .678** .772** 1

.000 .000 .000

93 93 93 93

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

Pearson Correlation Sig. (2-tailed) N

UB1

UB2

UB3

UBtot

UB1 UB2 UB3 UBtot

Correlation is significant at the 0.01 level (2-tailed). **.

(9)

Reliability

W arnings

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

Listwise deletion based on all variables in the procedure. a.

Reliability Statistics

.634 .644 4

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

Items N of Items

Item Statistics

4.35 .545 93

4.34 .500 93

4.11 .499 93

3.71 .563 93

PE1 PE2 PE3 PE4

Mean Std. Deviation N

Inter-Item Correlation Matrix

1.000 .505 .418 .056

.505 1.000 .460 .243

.418 .460 1.000 .190

.056 .243 .190 1.000

PE1 PE2 PE3 PE4

PE1 PE2 PE3 PE4

(10)

Item-Total Statistics

12.16 1.289 .434 .306 .550

12.17 1.231 .578 .358 .449

12.41 1.309 .493 .267 .511

12.81 1.527 .200 .077 .719

PE1 PE2 PE3 PE4

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Item-Total Correlation

Squared Multiple Correlation

Cronbach's Alpha if Item

Deleted

Scale Statistics

16.52 2.122 1.457 4

Mean Variance Std. Deviation N of Items

Reliability

W arnings

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

Listwise deletion based on all variables in the procedure. a.

Reliability Statistics

.648 .662 4

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

(11)

Item Statistics

3.96 .415 93

3.96 .415 93

3.65 .602 93

3.67 .518 93

EE1 EE2 EE3 EE4

Mean Std. Deviation N

Inter-Item Correlation Matrix

1.000 .558 .243 .186

.558 1.000 .243 .287

.243 .243 1.000 .454

.186 .287 .454 1.000

EE1 EE2 EE3 EE4

EE1 EE2 EE3 EE4

The covariance matrix is calculated and used in the analysis.

Item-Total Statistics

11.27 1.329 .411 .324 .595

11.27 1.286 .464 .347 .564

11.58 1.007 .435 .233 .588

11.56 1.140 .439 .239 .572

EE1 EE2 EE3 EE4

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Item-Total Correlation

Squared Multiple Correlation

Cronbach's Alpha if Item

Deleted

Scale Statistics

15.23 1.894 1.376 4

Mean Variance Std. Deviation N of Items

Reliability

W arnings

(12)

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

Listwise deletion based on all variables in the procedure. a.

Reliability Statistics

.852 .854 4

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

Items N of Items

Item Statistics

3.98 .329 93

Mean Std. Deviation N

Inter-Item Correlation Matrix

1.000 .797 .479 .524

.797 1.000 .566 .593

.479 .566 1.000 .601

.524 .593 .601 1.000

SI1 SI2 SI3 SI4

SI1 SI2 SI3 SI4

The covariance matrix is calculated and used in the analysis.

Item-Total Statistics

11.89 .814 .724 .639 .800

11.85 .651 .786 .694 .774

11.97 .858 .626 .429 .838

11.90 .871 .663 .460 .825

SI1 SI2 SI3 SI4

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Alpha if Item

(13)

Scale Statistics

15.87 1.353 1.163 4

Mean Variance Std. Deviation N of Items

Reliability

W arnings

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

Listwise deletion based on all variables in the procedure. a.

Reliability Statistics

.993 .993 3

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

Items N of Items

Item Statistics

4.13 .575 93

4.12 .587 93

4.12 .587 93

BI1 BI2 BI3

Mean Std. Deviation N

Inter-Item Correlation Matrix

1.000 .984 .984

.984 1.000 .968

.984 .968 1.000

BI1 BI2 BI3

BI1 BI2 BI3

(14)

Item-Total Statistics

8.24 1.356 .992 .984 .984

8.25 1.340 .980 .969 .992

8.25 1.340 .980 .969 .992

BI1 BI2 BI3

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Alpha if Item

Deleted

Scale Statistics

12.37 3.017 1.737 3

Mean Variance Std. Deviation N of Items

Reliability

W arnings

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

Listwise deletion based on all variables in the procedure. a.

Reliability Statistics

.603 .626 4

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

Items N of Items

Item Statistics

4.02 .329 93

(15)

Inter-Item Correlation Matrix

1.000 .475 .107 .307

.475 1.000 .367 .203

.107 .367 1.000 .313

.307 .203 .313 1.000

FC1 FC2 FC3 FC4

FC1 FC2 FC3 FC4

The covariance matrix is calculated and used in the analysis.

Item-Total Statistics

11.87 .614 .390 .289 .529

11.86 .643 .466 .328 .496

11.95 .617 .354 .214 .554

12.00 .478 .381 .175 .559

FC1 FC2 FC3 FC4

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Alpha if Item

Deleted

Scale Statistics

15.89 .923 .961 4

Mean Variance Std. Deviation N of Items

Reliability

W arnings

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

93 100.0

0 .0

93 100.0

Valid Excludeda Total Cases

N %

(16)

Reliability Statistics

.614 .630 3

Cronbach's Alpha

Cronbach's Alpha Based

on Standardized

Items N of Items

Item Statistics

4.53 .701 93

4.80 .456 93

4.16 .557 93

UB1 UB2 UB3

Mean Std. Deviation N

Inter-Item Correlation Matrix

1.000 .307 .392

.307 1.000 .388

.392 .388 1.000

UB1 UB2 UB3

UB1 UB2 UB3

The covariance matrix is calculated and used in the analysis.

Item-Total Statistics

8.96 .716 .424 .182 .551

8.69 1.108 .409 .179 .553

9.32 .895 .477 .233 .438

UB1 UB2 UB3

Scale Mean if Item Deleted

Scale Variance if Item Deleted

Corrected Item-Total Correlation

Squared Multiple Correlation

Cronbach's Alpha if Item

Deleted

Scale Statistics

13.48 1.709 1.307 3

(17)

Uji Statistik Deskriptif

Descriptives

Descriptive Statistics

93 3.25 5.00 4.1290 .36418

93 2.75 4.75 3.8065 .34407

93 3.00 4.50 3.9677 .29077

93 3.00 5.00 4.1219 .57893

93 3.25 5.00 3.9731 .24019

93 3.00 5.00 4.4949 .43659

93 PE

EE SI BI FC UB

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Descriptives

Descriptive Statistics

93 3 5 4.35 .545

93 3 5 4.34 .500

93 3 5 4.11 .499

93 3 5 3.71 .563

93 PE1

PE2 PE3 PE4

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Descriptives

Descriptive Statistics

93 3 5 3.96 .415

93 3 5 3.96 .415

93 2 5 3.65 .602

93 2 5 3.67 .518

93 EE1

EE2 EE3 EE4

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

(18)

Descriptive Statistics

93 3 5 3.98 .329

93 3 5 4.02 .416

93 3 5 3.90 .332

93 3 5 3.97 .311

93 SI1

SI2 SI3 SI4

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Descriptives

Descriptive Statistics

93 3 5 4.13 .575

93 3 5 4.12 .587

93 3 5 4.12 .587

93 BI1

BI2 BI3

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Descriptives

Descriptive Statistics

93 3 5 4.02 .329

93 3 5 4.03 .274

93 3 5 3.95 .342

93 2 5 3.89 .454

93 FC1

FC2 FC3 FC4

Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

Descriptives

Descriptive Statistics

93 3 5 4.53 .701

93 3 5 4.80 .456

93 3 5 4.16 .557

93 UB1

UB2 UB3

Valid N (listwise)

(19)

Hasil Uji Asumsi Klasik Berdasarkan Minat Pemanfaatan SIA

Uji Normalitas

One-Sample Kolmogorov-Smirnov Test

93

Std. Deviation Normal Parametersa,b

Absolute Positive Negative Most Extreme

Differences

Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)

Standardized Residual

Test distribution is Normal. a.

Calculated from data. b.

Uji Multikolinearitas

Regression

Variables Entered/Removedb

SI, EE, PEa . Enter

Removed Method

All requested variables entered. a.

Dependent Variable: BI b.

Model Summary

.485a .235 .209 .51478

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

(20)

ANOVAb

7.250 3 2.417 9.120 .000a

23.585 89 .265

30.835 92

Regression

Squares df Mean Square F Sig.

Predictors: (Constant), SI, EE, PE a.

Dependent Variable: BI b.

Coefficientsa

-.763 .947 -.806 .423

.370 .160 .232 2.315 .023 .853 1.173

.354 .164 .210 2.150 .034 .900 1.111

.507 .191 .255 2.659 .009 .936 1.068

(Constant)

B Std. Error Unstandardized

Coefficients

Beta Standardized

Coefficients

t Sig. Tolerance VIF

Collinearity Statistics

Dependent Variable: BI a.

Coefficient Correlationsa

1.000 -.030 -.231

-.030 1.000 -.300

-.231 -.300 1.000

.036 -.001 -.007

-.001 .027 -.008

-.007 -.008 .025

SI

Dependent Variable: BI a.

Collinearity Diagnosticsa

3.987 1.000 .00 .00 .00 .00

Index (Constant) PE EE SI

Variance Proportions

(21)

Uji Heteroskedastisitas

Regression

Variables Entered/Removedb

SI, EE, PEa . Enter

Removed Method

All requested variables entered. a.

Dependent Variable: abs_res b.

Model Summaryb

.268a .072 .040 .31101

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

Predictors: (Constant), SI, EE, PE a.

Dependent Variable: abs_res b.

ANOVAb

.664 3 .221 2.290 .084a

8.609 89 .097

9.273 92

Regression

Squares df Mean Square F Sig.

Predictors: (Constant), SI, EE, PE a.

Dependent Variable: abs_res b.

Coefficientsa

.264 .572 .461 .646

.242 .096 .277 2.507 .014

-.144 .099 -.156 -1.453 .150

-.081 .115 -.074 -.700 .486

(Constant)

B Std. Error Unstandardized

(22)

Residuals Statisticsa

.2096 .5958 .3923 .08499 93

-.38500 .93498 .00000 .30590 93

-2.149 2.395 .000 1.000 93

-1.238 3.006 .000 .984 93

Predicted Value Residual

Std. Predicted Value Std. Residual

Minimum Maximum Mean Std. Deviation N

Dependent Variable: abs_res a.

HASIL UJI REGRESI BERGANDA I

Regression

Variables Entered/Removedb

SI, EE, PEa . Enter

Removed Method

All requested variables entered. a.

Dependent Variable: BI b.

Model Summary

.485a .235 .209 .51478

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

Predictors: (Constant), SI, EE, PE a.

ANOVAb

7.250 3 2.417 9.120 .000a

23.585 89 .265

30.835 92

Regression

Squares df Mean Square F Sig.

Predictors: (Constant), SI, EE, PE a.

(23)

Coefficientsa

-.763 .947 -.806 .423

.370 .160 .232 2.315 .023

.354 .164 .210 2.150 .034

.507 .191 .255 2.659 .009

(Constant) PE EE SI Model 1

B Std. Error Unstandardized

Coefficients

Beta Standardized

Coefficients

t Sig.

Dependent Variable: BI a.

Hasil Uji Asumsi Klasik Berdasarkan Penggunaan SIA

Uji Normalitas

NPar Tests

One-Sample Kolmogorov-Smirnov Test

93 .0000000 .98907071 .136 .080 -.136 1.315 .063 N

Mean

Std. Deviation Normal Parametersa,b

Absolute Positive Negative Most Extreme

Differences

Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)

Standardized Residual

Test distribution is Normal. a.

(24)

Uji Multikolinearitas

Regression

Variables Entered/Removedb

FC, BIa . Enter

Removed Method

All requested variables entered. a.

Dependent Variable: UB b.

Model Summary

.300a .090 .070 .42114

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

Predictors: (Constant), FC, BI a.

ANOVAb

1.574 2 .787 4.438 .015a

15.962 90 .177

17.536 92

Regression

Squares df Mean Square F Sig.

Predictors: (Constant), FC, BI a.

Dependent Variable: UB b.

Coefficientsa

2.458 .729 3.374 .001

.095 .082 .126 1.160 .249 .854 1.171

.414 .198 .228 2.093 .039 .854 1.171

(Constant) BI FC Model 1

B Std. Error Unstandardized

Coefficients

Beta Standardized

Coefficients

t Sig. Tolerance VIF

Collinearity Statistics

(25)

Coefficient Correlationsa

1.000 -.382

-.382 1.000

.039 -.006

-.006 .007

FC

Dependent Variable: UB a.

Collinearity Diagnosticsa

2.987 1.000 .00 .00 .00

Index (Constant) BI FC

Variance Proportions

Dependent Variable: UB a.

Uji Heterokedastisitas

Regression

Variables Entered/Removedb

FC, BIa . Enter

Removed Method

All requested variables entered. a.

Dependent Variable: abs_res b.

Model Summaryb

.227a .052 .031 .26311

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

Predictors: (Constant), FC, BI a.

(26)

ANOVAb

.339 2 .170 2.449 .092a

6.230 90 .069

6.569 92

Regression

Squares df Mean Square F Sig.

Predictors: (Constant), FC, BI a.

Dependent Variable: abs_res b.

Coefficientsa

1.287 .455 2.828 .006

.024 .051 .053 .476 .635

-.269 .124 -.242 -2.179 .032

(Constant) BI

FC Model 1

B Std. Error Unstandardized

Dependent Variable: abs_res a.

Residuals Statisticsa

.0627 .5095 .3178 .06070 93

-.31627 1.25766 .00000 .26023 93

-4.202 3.159 .000 1.000 93

-1.202 4.780 .000 .989 93

Predicted Value Residual

Std. Predicted Value Std. Residual

Minimum Maximum Mean Std. Deviation N

Dependent Variable: abs_res a.

HASIL UJI REGRESI BERGANDA II

Regression

Variables Entered/Removedb

FC, BIa . Enter

Removed Method

All requested variables entered. a.

(27)

Model Summary

.300a .090 .070 .42114

Model 1

R R Square

Adjusted R Square

Std. Error of the Estimate

Predictors: (Constant), FC, BI a.

ANOVAb

1.574 2 .787 4.438 .015a

15.962 90 .177

17.536 92

Regression Residual Total Model 1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), FC, BI a.

Dependent Variable: UB b.

Coefficientsa

2.458 .729 3.374 .001

.095 .082 .126 1.160 .249

.414 .198 .228 2.093 .039

(Constant) BI

FC Model 1

B Std. Error Unstandardized

Coefficients

Beta Standardized

Coefficients

t Sig.

(28)

HASIL UJI KORELASI PARSIAL

Partial Corr

Corre la tions

1.000 .363 -.070 . .000 .507

0 91 91

.363 1.000 -.227

.000 . .029

91 0 91

-.070 -.227 1.000

.507 .029 .

91 91 0

1.000 .357 . .000

0 90

.357 1.000

.000 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

JNS_KLMN

PE BI JNS_KLMN

Cells contain zero-order (Pearson) correlations. a.

Partial Corr

Correla tions

1.000 .363 .234

. .000 .024

0 91 91

.363 1.000 -.030

.000 . .774

91 0 91

.234 -.030 1.000

.024 .774 .

91 91 0

1.000 .381 . .000

0 90

.381 1.000

.000 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

USIA

PE BI USIA

(29)

Partial Corr

Corre la tions

1.000 .311 -.227 . .002 .029

0 91 91

.311 1.000 -.078

.002 . .456

91 0 91

-.227 -.078 1.000

.029 .456 .

91 91 0

1.000 .302 . .003

0 90

.302 1.000

.003 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

JNS_KLMN

BI EE JNS_KLMN

Cells contain zero-order (Pearson) correlations. a.

Partial Corr

Correlations

1.000 .311 -.030

. .002 .774

0 91 91

.311 1.000 .187

.002 . .073

91 0 91

-.030 .187 1.000

.774 .073 .

91 91 0

1.000 .322

. .002

0 90

.322 1.000

.002 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

USIA

BI EE USIA

(30)

Partial Corr

Correlations

1.000 .311 .058 . .002 .579

0 91 91

.311 1.000 .172

.002 . .099

91 0 91

.058 .172 1.000

.579 .099 .

91 91 0

1.000 .306 . .003

0 90

.306 1.000

.003 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

PENGALAMAN

BI EE

PENGALA MAN

Cells contain zero-order (Pearson) correlations. a.

Partial Corr

Correlations

1.000 .336 -.227

. .001 .029

0 91 91

.336 1.000 -.078

.001 . .456

91 0 91

-.227 -.078 1.000

.029 .456 .

91 91 0

1.000 .327

. .001

0 90

.327 1.000

.001 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

JNS_KLMN

BI SI JNS_KLMN

(31)

Partial Corr

Correla tions

1.000 .336 -.030

. .001 .774

0 91 91

.336 1.000 -.145

.001 . .166

91 0 91

-.030 -.145 1.000

.774 .166 .

91 91 0

1.000 .335

. .001

0 90

.335 1.000

.001 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

USIA

BI SI USIA

Cells contain zero-order (Pearson) correlations. a.

Partial Corr

Corre la tions

1.000 .336 .058 . .001 .579

0 91 91

.336 1.000 .038

.001 . .719

91 0 91

.058 .038 1.000

.579 .719 .

91 91 0

1.000 .334 . .001

0 90

.334 1.000

.001 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

PENGALAMAN

BI SI

(32)

Partial Corr

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

KESUKARELAAN

BI SI

KESUKA RELAAN

Cells contain zero-order (Pearson) correlations. a.

Partial Corr

Corre la tions

1.000 .276 .042 . .007 .692

0 91 91

.276 1.000 .094

.007 . .371

91 0 91

.042 .094 1.000

.692 .371 .

91 91 0

1.000 .273 . .008

0 90

.273 1.000

.008 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df Control Variables -none-a

USIA

FC UB USIA

(33)

Partial Corr

Correlations

1.000 .276 .120

. .007 .251

0 91 91

.276 1.000 .139

.007 . .184

91 0 91

.120 .139 1.000

.251 .184 .

91 91 0

1.000 .264

. .011

0 90

.264 1.000

.011 .

90 0

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

Correlation

Significance (2-tailed) df

FC

UB

PENGALAMAN

FC

UB Control Variables -none-a

PENGALAMAN

FC UB

PENGALA MAN

Referensi

Dokumen terkait

•• Biaya Personal Biaya Personal meliputi biaya pendidikan yang harus dikeluarkan oleh peserta didik untuk bisa mengikuti proses pembelajaran secara teratur dan berkelanjutan.

Serta mengetahui proses belajar mengajar pendidikan jasmani khususnya pembelajaran permainan hockey, dan mengetahui efektivitas permainan hockey yang diajarkan kepada

Pejabat Pengadaan Barang / Jasa Bidang Sumber Daya Air Dinas Pekerjaan Umum dan ESDM Kabupaten

Analisa Rugi-Rugi daya Listrik pada Sistem Distribusi Primer di Gardu Induk Bukit Siguntang Palembang dengan Bantuan Software ETAP.. ETAP menggabungkan konsep-konsep baru

Sebenarnya metode yang memiliki akurasi yang paling tinggi yang dikembangkan saat ini adalah metode korelasi eddy, akan tetapi karena kurang ekonomisnya metode

215.558.810,- (Dua Ratus Lima Belas Juta Lima Ratus Lima Puluh Delapan Ribu Delapan Ratus Sepuluh Rupiah) Demikian pengumunan ini dibuat untuk dijadikan dasar

Profil pasien HIV di Klinik VCT RSUD Dr.TC Hillers Maumere, Kabupaten Sikka pada tahun 2014 sebagai berikut: rute transmisi terbanyak adalah hubungan seksual heteroseksual

Cakupan Kunjungan Neonatus (KN) adalah pelayanan kesehatan kepada bayi umur 0-28 hari sesuai dengan standar oleh Bidan desa yang memiliki kompetensi klinis