• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
5
0
0

Teks penuh

(1)

Some Integral Inequalities

Algunas Desigualdades Integrales

Mohamed Akkouchi (

makkouchi@hotmail.com

)

Department of Mathematics. Faculty of Sciences-Semlalia University Cadi Ayyad

Av. Prince My Abdellah, BP. 2390, Marrakech, Morocco.

Abstract

In this note, we establish some integral inequalities by using elemen-tary methods for certain classes of functions defined on finite intervals of the real line. Our results have some relationships with certain inte-gral inequalities obtained by Feng Qi.

Key words and phrases: Integral inequalities.

Resumen

En esta nota se establecen algunas desigualdades integrales usando m´etodos elementales para ciertas clases de funciones definidas en inter-valos finitos de la recta real. Nuestros resultados tienen alguna relaci´on con ciertas desigualdades integrales obtenidas por Feng Qi.

Palabras y frases clave:Desigualdades integrales

1

Introduction and statement of the results

In this note, we establish some new integral inequalities by using analytic and elementary methods. These inequalities have some relationships with certain integral inequalities obtained by Feng Qi in [2]. We point out that one of Feng Qi’s result (see [2]) is the following

Theorem A. Let n≥1 be an integer and suppose that f has a continuous derivative of the n−th order on [a, b], f(i)(a) 0 and f(n)(x) n! where

0≤i≤n−1. Then

Z b

a

[f(x)]n+2dx≥ "

Z b

a

f(x)dx

#n+1

. (1)

(2)

Our results will provide some similar inequalities for certain classes of func-tionsf satisfying weaker conditions than required in the previous result. Be-fore stating the results, we need the following definition.

Definition 1.1. Let [a, b] be a finite interval of the real lineR. For each real number r, we denoteEr(a, b) the set of real continuous functions f on [a, b]

differentiable on ]a, b[, such thatf(a)≥0, andf′(x)rfor allx]a, b[.

Our first result is the following.

Theorem B. Let α >0, and let f ∈E2(a, b). Then for each integern≥1,

we have the following strict inequality:

Z b

As a consequence of this result, we obtain the following

Corollary 1.1. Let f ∈E2(a, b).Then for each integern≥0, we have

A consequence of the previous corollary is the following

Corollary 1.2. Let f ∈E2(a, b).Then for each integern≥2, we have

The strict inequality established in Theorem B and the second inequality in corollary 1.2 should be compared to those obtained in the paper [2]. But our results are obtained here under weaker assumptions than those used by Feng Qi (see [2]) to derive the inequality (1.1) (resp. (1.3)) stated in Proposition 1.1 (resp. Proposition 1.3). We point out that Proposition 1.3 of [2] is exactly Theorem A enunciated in this introduction. The proof of Theorem B will be

(3)

The paper is organized as follows. In the second section, we find the proofs of the results stated in the introduction. In the third section, we present a related inequality. The paper ends with some references. The references [1], [3], [4] and [5] are cited for the convenience of the reader who desires to have some acquaintance with the nice world of inequalities.

2

Proofs

A simple computation yields for allt∈]a, b[

F′(t) =h[f(t)]p+12Rt Therefore, the inequality (5) holds.

2.2 Now, by induction we shall prove Theorem B. Let α∈]0,∞[. For every integer n≥ 1, we set pn(α) = (α+ 1)2n−1. Then we have pn(α)>0 and

pn+1(α) = 2pn(α) + 1, for each integern≥1.We remark thatp1(α) = 2α+ 1.

Then a direct application of Proposition 1.1 shows that the inequalitiy (2) holds true for n= 1. Suppose that the inequality (2) holds for the integern and let us prove it forn+ 1.Sincepn+1(α) = 2pn(α) + 1 andpn(α)>0 then

we may apply Proposition 1.1 and obtain the following strict inequality:

Z b

By assumption we have

(4)

From (6) and (7) we deduce that the inequality (2) holds true forn+ 1. Thus our result is completely proved.

Remark. From (6) we get all the statements contained in the corollaries 1.1 and 1.2.

3

A related inequality

We end this paper by giving a related integral inequality. More precisely, we have

Simple computations yield for allt∈]a, b[

H′(t) =³[f(t)]p+1 p+1 0,which gives the desired inequality.

As a consequence, by replacingf(x) bypf(x) in (8), we have the following

(5)

Acknowledgement

The author wishes to thank the referee for many valuable comments and suggestions.

References

[1] Bechenbach, E. F., Inequalities, Springer, Berlin, 1983.

[2] Feng Qi, Several integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, vol 1, issue 2, Article 19, 2000.

[3] Hardy G. H., Littlewood J. E., Polya G., Inequalities, 2nd edition, Cam-bridge University Press, CamCam-bridge, 1952.

[4] Mitrinovi´c, D. S., Analytic Inequalities, Springer-Verlag, Berlin, 1970.

Referensi

Dokumen terkait

Selanjutnya bagi pihak-pihak yang merasa berkeberatan atas penetapan pemenang lelang diberi kesempatan untuk menyampaikan sanggahan kepada Pokja Konstruksi ULP

Setelah diumumkannya Pemenang pengadaan ini, maka kepada Peserta/Penyedia barang/jasa berkeberatan atas pengumuman ini dapat menyampaikan sanggahan secara elektronik

tembusan secara offline yang ditujukan kepada Pejabat Pembuat Komitmen, Kuasa Pengguna Anggaran Satuan Kerja Perhubungan Darat Provinsi Daerah Istimewa Yogyakarta

Jumlah Penyedia Barang/jasa yang mendaftar sebagai peserta lelang sampai pada tahap Penjelasan. Dokumen Lelang sebanyak

[r]

[r]

Advertising Association (OAA). Dengan dukungan yang kuat membuat organisasi ini tidak hanya disegani di masyarakat melainkan dapat bekerja dengan hingga mencapai tujuan

Dalam proses Pembuktian Kualifikasi tersebut, saudara diharapkan membawa dokumen asli beserta 2 (dua) rangkap salinannya di kertas A4 yang telah diinput dan dioupload