• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:INTEGERS:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:INTEGERS:"

Copied!
11
0
0

Teks penuh

(1)

NEW SEQUENCES THAT CONVERGE TO A GENERALIZATION OF EULER’S CONSTANT

Alina Sˆınt˘am˘arian

Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

[email protected]

Received: 7/31/10, Revised: 10/28/10, Accepted: 12/24/10, Published: 1/31/11

Abstract

The purpose of the paper is to give some sequences that converge quickly to a generalization of Euler’s constant, i.e., the limit of the sequence

1

a+ 1

a+ 1 +· · ·+ 1

a+n−1−ln

a+n−1 a

n∈N ,

wherea∈(0,+∞).

1. Introduction

Euler’s constant, being one of the most important constants in mathematics, was investigated by many mathematicians. Usually denoted by γ, this constant is the limit of the sequence (Dn)n∈N defined by Dn = 1 + 12 +· · ·+ 1n −lnn, for each n∈N. It is well-known that lim

n→∞n(Dn−γ) = 1

2 (see [1], [2], [3], [5, pp. 73–75], [7], [13, Problem 18, pp. 38, 197], [14], [21], [23], [24], [25], [26]).

In order to increase the slow rate of convergence of the sequence (Dn)n∈N toγ, D. W. DeTemple considered in [4] the sequence (Rn)n∈N defined byRn= 1 +12 +

· · ·+1n−ln�

n+12

, for eachn∈N, and he proved that 1

24(n+1)2 < Rn−γ< 1 24n2, for eachn∈N.

L. T´oth used in [22] the sequence (Tn)n∈N defined by Tn = 1 + 12 +· · ·+n1 − ln�

n+1 2+

1 24n

, for each n ∈ N, and T. Negoi proved in [12] that 1

48(n+1)3 < γ−Tn< 48n13, for eachn∈N.

Leta∈(0,+∞). We consider the sequence (yn(a))n∈Ndefined by yn(a) = 1

a+ 1

a+ 1+· · ·+ 1

a+n−1−ln

a+n−1

a ,

(2)

its limit, denoted byγ(a), is a generalization of Euler’s constant. Clearly,γ(1) =γ. Numerous results regarding the generalization of Euler’s constant γ(a) we have obtained in [15], [16], [17], [18], [19] and [20].

We mention the following representation ofγ(a) ([19, Theorem 2.2.4, p. 78]):

γ(a) =yn− 1

2(a+n−1)+ m

k=1

B2k

2k(a+n−1)2k−(2m+1)!

� ∞

n

P2m+1(x) (a+x−1)2m+2dx,

for each n ∈N, any m ∈ N, whereB2k is the Bernoulli number of index 2k and

P2m+1(x) = (−1)m−1 �∞

k=1

2 sin(2kπx)

(2kπ)2m+1, obtained by applying the Euler-Maclaurin

sum-mation formula ([6, p. 524], [5, p. 86]). If we take a= 1 in the above-mentioned representation, then we obtain a result presented, for example, in [6, pp. 527, 528], [5, pp. 88, 89].

Recent results regarding Euler’s constant have been obtained by C. Mortici in [9], [10], [11].

Also, we remind the following lemma (C. Mortici [8, Lemma]), which is a conse-quence of the the Stolz-Cesaro Theorem, the case 00.

Lemma 1. Let(xn)n∈Nbe a convergent sequence of real numbers andx∗= lim n→∞xn.

We suppose that there exists α∈R,α>1, such that

lim n→∞n

α

(xn−xn+1) =l∈R.

Then there exists the limit

lim n→∞n

α−1

(xn−x∗) = l α−1.

In Section 2 we present classes of sequences with the argument of the logarithmic term modified and that converge quickly toγ(a).

2. Sequences That Converge to γ(a)

Theorem 2. Let a∈ (0,+∞). We specify that γ(a) is the limit of the sequence

(yn(a))n∈N from Introduction.

(i) We consider the sequence(αn,2(a))n∈N defined by

αn,2(a) = 1 a+

1

a+ 1 +· · ·+ 1 a+n−1−

1

2(a+n−1)+

1 12(a+n−1)2 −ln

a+n−1

a +

1 120a(a+n−1)3

(3)

for eachn∈N. Then

lim n→∞n

6(γ(a)

−αn,2(a)) = 1 252. (ii) We consider the sequence(βn,2(a))n∈N defined by

βn,2(a) =αn,2(a) + 1

252(a+n−1)6,

for eachn∈N. Then

lim n→∞n

8(βn,2(a)γ(a)) = 121 28800.

Proof. (i) We have αn+1,2(a)−αn,2(a)

= 1

2(a+n)+ 1

2(a+n−1) + 1 12(a+n)2 −

1 12(a+n−1)2 −ln

a+n+ 1

120(a+n)3

+ ln

a+n−1 + 1 120(a+n−1)3

= 1

2(a+n)+

1 2(a+n)�1−a+n1

�+

1 12(a+n)2 −

1 12(a+n)2�1 1

a+n

�2

−ln

1 + 1

120(a+n)4

+ ln

 1−

1 a+n+

1 120(a+n)4�1 1

a+n

�3 

 ,

for eachn∈N. Setεn:= a+n1 , for eachn∈N. Sinceεn∈(−1,1), 1201 ε4

n ∈(−1,1] and −εn+1201 · ε4

n

(1−εn)3 ∈(−1,1], for eachn∈N\ {1}, using the series expansion

([6, pp. 171–179, p. 209]) we obtain αn+1,2(a)−αn,2(a)

= 1 2εn+

1 2·

εn 1−εn +

1 12ε 2 n− 1 12· ε2 n (1−εn)2 −ln

1 + 1 120ε 4 n � + ln �

1−εn+ 1 120·

ε4 n (1−εn)3

� = 1 42ε 7 n+ 1 12ε 8 n+ 679 3600ε 9 n+ 279 800ε 10 n +O(ε

11 n), for eachn∈N\ {1}. It follows that

lim n→∞n

7(αn+1,2(a)

(4)

Now, according to Lemma 1, we get

lim n→∞n

6(γ(a)

−αn,2(a)) = 1 252. (ii) We are able to write that

βn,2(a)−βn+1,2(a)

=αn,2(a)−αn+1,2(a) + 1

252(a+n−1)6 − 1 252(a+n)6

=αn,2(a)−αn+1,2(a) + 1

252(a+n)6�1 1 a+n

�6−

1 252(a+n)6

=αn,2(a)−αn+1,2(a) + 1 252·

ε6n (1−εn)6 −

1 252ε

6 n

= 121 3600ε

9 n+

121 800ε

10 n +O(ε

11 n ), for eachn∈N\ {1}. It follows that

lim n→∞n

9(βn,2(a)βn+1,2(a)) = 121 3600. Now, according to Lemma 1, we get

lim n→∞n

8(βn,2(a)

−γ(a)) = 121 28800.

In the same manner as in the proof of Theorem 2, considering the sequence in each of the following parts, we get the indicated limit:

δn,2(a) =βn,2(a)−28800(a+n−1)121 8, for eachn∈N, lim

n→∞n

10(γ(a)δn,2(a)) = 1 132; ηn,2(a) =δn,2(a) +132(a+n−1)1 10, for eachn∈N,

lim n→∞n

12(ηn,2(a)γ(a)) = 9950309 471744000; θn,2(a) =ηn,2(a)−471744000(a+n−1)9950309 12, for eachn∈N,

lim n→∞n

14(γ(a)θn,2(a)) = 1 12; λn,2(a) =θn,2(a) +12(a+n−1)1 14, for eachn∈N,

lim n→∞n

16(λn,2(a)γ(a)) = 6250176017 14100480000; µn,2(a) =λn,2(a)−14100480000(a+n−1)6250176017 16, for eachn∈N,

lim n→∞n

(5)

We point out the pattern in forming the sequences from Theorem 2 and those mentioned above. For example, the general term of the sequence (µn,2(a))n∈N can be written in the form

µn,2(a) = 1 a+

1

a+ 1 +· · ·+ 1 a+n−1−

1

2(a+n−1)+ B2

2 · 1 (a+n−1)2

−ln

a+n−1

a −

B4 4 ·

1 a(a+n−1)3

+ 8

k=3

ck,2 (a+n−1)2k, with

ck,2=

  

  

B2k

2k , ifk= 2p+ 1, p∈N, B2k

2k − 2 k

B4 4

�k2

, ifk= 2p+ 2, p∈N,

where B2k is the Bernoulli number of index 2k. Related to this remark, see also [16, Remark 3.4], [19, p. 71, Remark 2.1.3; pp. 100, 101, Remark 3.1.6].

For Euler’s constantγ= 0.5772156649. . .we obtain, for example: α2,2(1) = 0.5771654550. . .; α3,2(1) = 0.5772107618. . .;

β2,2(1) = 0.5772274589. . .; β3,2(1) = 0.5772162053. . .; δ2,2(1) = 0.5772110473. . .; δ3,2(1) = 0.5772155649. . .; η2,2(1) = 0.5772184455. . .; η3,2(1) = 0.5772156932. . .; θ2,2(1) = 0.5772132959. . .; θ3,2(1) = 0.5772156535. . .; λ2,2(1) = 0.5772183822. . .; λ3,2(1) = 0.5772156709. . .; µ2,2(1) = 0.5772116186. . .; µ3,2(1) = 0.5772156606. . ..

As can be seen,µ3,2(1) is accurate to eight decimal places in approximatingγ.

Theorem 3. Let a∈ (0,+∞). We specify that γ(a) is the limit of the sequence

(yn(a))n∈N from Introduction.

(i) We consider the sequence(αn,3(a))n≥2 defined by

αn,3(a) = 1 a+

1

a+ 1 +· · ·+ 1 a+n−1−

1 2(a+n−1)

+ 1

12(a+n−1)2 −

1 120(a+n−1)4 −ln

a+n−1

a −

1 252a(a+n−1)5

,

for eachn∈N\ {1}. Then

lim n→∞n

(6)

(ii) We consider the sequence(βn,3(a))n≥2 defined by

βn,3(a) =αn,3(a)− 1

240(a+n−1)8,

for eachn∈N\ {1}. Then

lim n→∞n

10(γ(a)

−βn,3(a)) = 1 132. (iii) We consider the sequence(δn,3(a))n≥2 defined by

δn,3(a) =βn,3(a) + 1

132(a+n−1)10,

for eachn∈N\ {1}. Then

lim n→∞n

12(δn,3(a)

−γ(a)) = 174197 8255520.

Proof. (i) We have αn,3(a)−αn+1,3(a)

= − 1

2(a+n−1)− 1 2(a+n)+

1

12(a+n−1)2− 1 12(a+n)2

− 1

120(a+n−1)4 + 1 120(a+n)4 −ln

a+n−1− 1 252(a+n−1)5

+ ln

a+n− 1

252(a+n)5

= − 1

2(a+n)�1−a+n1

�−

1 2(a+n)+

1 12(a+n)2�1 1

a+n

�2 −

1 12(a+n)2

− 1

120(a+n)4�1 1 a+n

�4 +

1 120(a+n)4

−ln

 1−

1 a+n−

1 252(a+n)6�1 1

a+n

�5 

 + ln

1− 1

252(a+n)6

,

for each n ∈ N\ {1}. Set εn := 1

a+n, for each n ∈ N\ {1}. Since εn ∈ (−1,1), −εn−2521 · ε6

n

(1−εn)5 ∈(−1,1] and−

1 252ε

6

(7)

series expansion ([6, pp. 171–179, p. 209]) we obtain αn,3(a)−αn+1,3(a)

=−1 2·

εn 1−εn −

1 2εn+

1 12·

ε2n (1−εn)2 −

1 12ε

2 n−

1 120·

ε4n (1−εn)4 +

1 120ε

4 n

−ln

1−εn− 1 252·

ε6 n (1−εn)5

+ ln

1− 1 252ε

6 n

= 1 30ε

9 n+

3 20ε

10 n +

14 33ε

11 n +

23 24ε

12 n +

259573 137592ε

13 n +

357653 105840ε

14

n +O(ε15n), for eachn∈N\ {1}. It follows that

lim n→∞n

9(αn,3(a)αn+1,3(a)) = 1 30. Now, according to Lemma 1, we get

lim n→∞n

8(αn,3(a)γ(a)) = 1 240. (ii) We are able to write that

βn+1,3(a)−βn,3(a)

=αn+1,3(a)−αn,3(a)− 1

240(a+n)8 +

1 240(a+n−1)8

=αn+1,3(a)−αn,3(a)− 1

240(a+n)8 +

1 240(a+n)8�1 1

a+n

�8

=αn+1,3(a)−αn,3(a)− 1 240ε

8 n+

1 240·

ε8 n (1−εn)8 = 5

66ε 11 n +

5 12ε

12 n +

972403 687960ε

13 n +

399103 105840ε

14

n +O(ε15n ), for eachn∈N\ {1}. It follows that

lim n→∞n

11(βn+1,3(a)βn,3(a)) = 5 66. Now, according to Lemma 1, we get

lim n→∞n

(8)

(iii) We have

δn,3(a)−δn+1,3(a)

=βn,3(a)−βn+1,3(a) + 1

132(a+n−1)10 − 1 132(a+n)10

=βn,3(a)−βn+1,3(a) + 1

132(a+n)10�1 1 a+n

�10−

1 132(a+n)10

=βn,3(a)−βn+1,3(a) + 1 132·

ε10n (1−εn)10 −

1 132ε

10 n

= 174197 687960ε

13 n +

174197 105840ε

14 n +O(ε

15 n ), for eachn∈N\ {1}. It follows that

lim n→∞n

13(δn,3(a)

−δn+1,3(a)) = 174197 687960. Now, according to Lemma 1, we get

lim n→∞n

12(δn,3(a)

−γ(a)) = 174197 8255520.

In the same manner as in the proof of Theorem 3, considering the sequence in each of the following parts, we get the indicated limit:

ηn,3(a) =δn,3(a)−8255520(a+n−1)174197 12, for eachn∈N\ {1}, lim

n→∞n

14(γ(a)ηn,3(a)) = 1 12; θn,3(a) =ηn,3(a) +12(a+n−1)1 14, for eachn∈N\ {1},

lim n→∞n

16(θn,3(a)γ(a)) = 3617 8160; λn,3(a) =θn,3(a)−8160(a+n−1)3617 16, for eachn∈N\ {1},

lim n→∞n

18(γ(a)λn,3(a)) = 2785729949 912171456; µn,3(a) =λn,3(a) + 2785729949

912171456(a+n−1)18, for eachn∈N\ {1}, lim

n→∞n

20(µn,3(a)γ(a)) = 174611 6600 .

(9)

be written in the form

µn,3(a) = 1 a+

1

a+ 1 +· · ·+ 1 a+n−1−

1 2(a+n−1) +B2

2 · 1

(a+n−1)2 + B4

4 · 1 (a+n−1)4

−ln

a+n−1

a −

B6 6 ·

1 a(a+n−1)5

+ 9

k=4

ck,3 (a+n−1)2k,

with

ck,3=

        

       

B2k

2k , ifk= 3p+ 1, p∈N, B2k

2k , ifk= 3p+ 2, p∈N, B2k

2k − 3 k

B6 6

�k3

, ifk= 3p+ 3, p∈N,

where B2k is the Bernoulli number of index 2k. Related to this remark, see also [16, Remark 3.4], [19, p. 71, Remark 2.1.3; pp. 100, 101, Remark 3.1.6].

For Euler’s constantγ= 0.5772156649. . .we obtain, for example: α2,3(1) = 0.5772273253. . .; α3,3(1) = 0.5772162000. . .;

β2,3(1) = 0.5772110492. . .; β3,3(1) = 0.5772155649. . .; δ2,3(1) = 0.5772184474. . .; δ3,3(1) = 0.5772156932. . .; η2,3(1) = 0.5772132959. . .; η3,3(1) = 0.5772156535. . .; θ2,3(1) = 0.5772183822. . .; θ3,3(1) = 0.5772156709. . .; λ2,3(1) = 0.5772116186. . .; λ3,3(1) = 0.5772156606. . .; µ2,3(1) = 0.5772232685. . .; µ3,3(1) = 0.5772156685. . ..

As can be seen, λ3,3(1) and µ3,3(1) are accurate to eight decimal places in ap-proximatingγ.

Concluding, the following remark can be made. Let a ∈ (0,+∞) and q ∈ N\ {1}. Let n0 = min

n∈N � � � �

a+n−1−B2q

2q · 1

(a+n−1)2q−1 >0

. We consider the sequence (αn,q(a))n≥n0 defined by

αn,q(a) = 1 a+

1

a+ 1 +· · ·+ 1 a+n−1−

1

2(a+n−1) + q−1

k=1 B2k

2k ·

1 (a+n−1)2k

−ln

a+n−1

a −

B2q 2q ·

1 a(a+n−1)2q−1

(10)

for each n ∈ N, n ≥ n0. Clearly, lim

n→∞αn,q(a) = γ(a). Based on the sequence (αn,q(a))n≥n0, a class of sequences convergent toγ(a) can be considered, namely

{(αn,q,r(a))n≥n0|r∈N, r≥q+ 1}, where

αn,q,r(a) =αn,q(a) + r

k=q+1

ck,q (a+n−1)2k, for eachn∈N,n≥n0, with

ck,q=

   

  

B2k

2k , ifk∈{qp+ 1, qp+ 2, . . . , qp+q−1}, p∈N, B2k

2k − q k

B2q 2q

�kq

, ifk=qp+q, p∈N.

In this section we have obtained that the sequence (αn,2(a))n∈Nconverges toγ(a) with order 6 and that the sequence (αn,3(a))n≥2converges toγ(a) with order 8. We have also obtained that the sequence (αn,2,r(a))n∈N converges to γ(a) with order 2(r+ 1), forr∈{3,4,5,6,7,8}, and that the sequence (αn,3,r(a))n≥2 converges to γ(a) with order 2(r+ 1), forr∈{4,5,6,7,8,9}.

References

[1] H. Alzer,Inequalities for the gamma and polygamma functions, Abh. Math. Semin. Univ. Hamb. 68, 1998, 363–372.

[2] R. P. Boas,Estimating remainders, Math. Mag. 51 (2), 1978, 83–89.

[3] C.-P. Chen, F. Qi,The best lower and upper bounds of harmonic sequence, RGMIA 6 (2), 2003, 303–308.

[4] D. W. DeTemple,A quicker convergence to Euler’s constant, Amer. Math. Monthly 100 (5), 1993, 468–470.

[5] J. Havil,Gamma. Exploring Euler’s Constant, Princeton University Press, Princeton and Oxford, 2003.

[6] K. Knopp,Theory and Application of Infinite Series, Blackie & Son Limited, London and Glasgow, 1951.

[7] S. K. Lakshmana Rao,On the sequence for Euler’s constant, Amer. Math. Monthly 63 (8), 1956, 572–573.

[8] C. Mortici,New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett. 23 (1), 2010, 97–100.

(11)

[10] C. Mortici,On new sequences converging towards the Euler-Mascheroni constant, Comput. Math. Appl. 59 (8), 2010, 2610–2614.

[11] C. Mortici,On some Euler-Mascheroni type sequences, Comput. Math. Appl. 60 (7), 2010, 2009–2014.

[12] T. Negoi, O convergent¸˘a mai rapid˘a c˘atre constanta lui Euler (A quicker convergence to Euler’s constant), Gaz. Mat. Seria A 15 (94) (2), 1997, 111–113.

[13] G. P´olya, G. Szeg¨o,Aufgaben und Lehrs¨atze aus der Analysis(Theorems and Problems in Analysis), Verlag von Julius Springer, Berlin, 1925.

[14] P. J. Rippon,Convergence with pictures, Amer. Math. Monthly 93 (6), 1986, 476–478.

[15] A. Sˆınt˘am˘arian,About a generalization of Euler’s constant, Automat. Comput. Appl. Math. 16 (1), 2007, 153–163.

[16] A. Sˆınt˘am˘arian,A generalization of Euler’s constant, Numer. Algorithms 46 (2), 2007, 141– 151.

[17] A. Sˆınt˘am˘arian,Some inequalities regarding a generalization of Euler’s constant, J. Inequal. Pure Appl. Math. 9 (2), 2008, 7 pp., Article 46.

[18] A. Sˆınt˘am˘arian,A representation and a sequence transformation regarding a generalization of Euler’s constant, Automat. Comput. Appl. Math. 17 (2), 2008, 335–344.

[19] A. Sˆınt˘am˘arian,A Generalization of Euler’s Constant, Editura Mediamira, Cluj-Napoca, 2008.

[20] A. Sˆınt˘am˘arian,Approximations for a generalization of Euler’s constant, Gaz. Mat. Seria A 27 (106) (4), 2009, 301–313.

[21] S. R. Tims, J. A. Tyrrell,Approximate evaluation of Euler’s constant, Math. Gaz. 55 (391), 1971, 65–67.

[22] L. T´oth,Asupra problemei C: 608 (On problem C: 608), Gaz. Mat. Seria B 94 (8), 1989, 277–279.

[23] L. T´oth,ProblemE 3432, Amer. Math. Monthly 98 (3), 1991, 264.

[24] L. T´oth,ProblemE 3432 (Solution), Amer. Math. Monthly 99 (7), 1992, 684–685.

[25] A. Vernescu, Ordinul de convergent¸˘a al ¸sirului de definit¸ie al constantei lui Euler (The convergence order of the definition sequence of Euler’s constant), Gaz. Mat. Seria B 88 (10-11), 1983, 380–381.

Referensi

Dokumen terkait

Bagi peserta yang sanggahan secara tertulis k Jalan Dinas Pekerjaan Um September 2011 s/d 20 Septe.

Dharma Praja No.1 Gunung Tinggi Kode Pos 72171 Kabupaten Tanah Bumbu - Kalimantan Selatan..

peserta penyedia barang/jasa yang memasukkan dokumen penawaran kurang dari 3.. (tiga)

Demikian pengumuman pemenang ini dibuat dengan penuh rasa tanggung jawab untuk dipergunakan sebagaimana mestinya. Bekasi, 15

[r]

Dengan kata lain kluster ini (komplek indus- ri) terjadi karena perusahaan-perusaaan ingin meminimalkan biaya transaksi spasial (biaya transportasi dan komunikasi) dan

PENGADAAN PERALATAN SOFT SKILL TARUNA BPPTD PALEMBANG dinyatakan GAGAL. tidak ada peserta lelang yang memenuhi persyaratan kualifikasi.Tindaklanjut PELELANGAN GAGAL ini

Rekayasa material kayu yang dilakukan untuk meningkatkan ketahanan dan kekuatan material kayu salah satunya dengan melakukan teknik laminasi beberapa jenis kayu