• Tidak ada hasil yang ditemukan

KLASIFIKASI PNEUMONIA PADA ANAK DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. Laporan Tugas Akhir

N/A
N/A
Protected

Academic year: 2022

Membagikan "KLASIFIKASI PNEUMONIA PADA ANAK DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. Laporan Tugas Akhir"

Copied!
15
0
0

Teks penuh

(1)

KLASIFIKASI PNEUMONIA PADA ANAK DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

Laporan Tugas Akhir

Diajukan Untuk Memenuhi Persyaratan Guna Meraih Gelar Sarjana Informatika Universitas Muhammadiyah Malang

Feranandah Firdausi 201710370311052

Data Science

PROGRAM STUDI INFORMATIKA FAKULTAS TEKNIK

UNIVERSITAS MUHAMMADIYAH MALANG 2021

(2)
(3)
(4)
(5)

viii

KATA PENGANTAR

Dengan memanjatkan puji syukur kehadirat Allah SWT. Atas limpahan rahmat dan hidayah-NYA sehingga peneliti dapat menyelesaikan tugas akhir yang berjudul:

“KLASIFIKASI PNEUMONIA PADA ANAK DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK”

Di dalam tulisan ini disajikan pokok – pokok bahasan yang meliputi latar belakang, metode penelitian, dan hasil dan pembahasan yang telah didapat dari penelitian ini dan telah disimpulkan berdasarkan hasil yang telah didapat oleh peneliti.

Peneliti menyadari sepenuhnya bahwa dalam penulisan tugas akhir ini masih banyak kekurangan dan keterbatasan. Oleh karena itu peneliti mengharapkan saran yang membangun agar tulisan ini bermanfaat bagi perkembangan ilmu pengetahuan.

Malang, 25 Juni 2021

Penulis

(6)

ix DAFTAR ISI

LEMBAR PERSETUJUAN ... i

LEMBAR PENGESAHAN ... ii

LEMBAR PERNYATAAN ... iii

ABSTRAK ... iv

ABSTRACT ... v

LEMBAR PERSEMBAHAN ... vi

KATA PENGANTAR ... viii

DAFTAR ISI ... ix

DAFTAR GAMBAR ... xii

DAFTAR TABEL ... xiv

BAB I ... 1

1.1 Latar Belakang ... 1

1.2 Rumusan Masalah ... 3

1.3 Tujuan Penelitian ... 3

1.4 Batasan Masalah ... 3

BAB II ... 4

2.1 Studi Literatur ... 4

2.2 Pneumonia ... 4

2.3 Convolutional Neural Network ... 5

2.3.1 Convolutional Layer ... 5

2.3.2 Pooling Layer ... 5

2.3.3 Batch Normalization ... 6

2.3.4 Dropout Layer ... 6

2.3.5 Fully Connected Layer ... 7

2.4 Uji Klasifikasi ... 7

(7)

x

2.5 Arsitektur CNN pada Penelitian Sebelumnya ... 8

Arsitektur CNN Model 1 – Jain et al ... 8

Arsitektur CNN Model 2 – Jain et al ... 9

Arsitektur CNN – Raheel Siddiqi ... 10

BAB III ... 12

3.1 Identifikasi Masalah ... 13

3.2 Dataset ... 13

3.3 Implementasi dan Pengujian CNN ... 14

Data Preprocessing ... 15

Build Model ... 16

Pengujian ... 21

3.4 Evaluasi Model ... 21

BAB IV ... 22

4.1 Implementasi ... 22

4.2 Load Dataset ... 22

4.3 Data Augmentasi ... 23

4.4 Perancangan Model CNN ... 24

4.5 Pelatihan Model CNN ... 25

4.6 Grafik dan Performa Model CNN ... 25

4.7 Evaluasi Model ... 26

4.8 Skenario Pengujian ... 26

4.8.1 Skenario Pengujian 1 ... 27

4.8.2 Skenario Pengujian 2 ... 29

4.8.3 Skenario Pengujian 3 ... 32

4.8.4 Skenario Pengujian 4 ... 35

4.9 Perbandingan Performa Model CNN ... 38

4.10 Perbandingan Performa Model dengan Penelitian Rujukan ... 40

(8)

xi

4.11 Analisa Output ... 44

BAB V ... 46

5.1 Kesimpulan ... 46

5.2 Saran ... 46

DAFTAR PUSTAKA ... 47

(9)

xii

DAFTAR GAMBAR

Gambar 1. Convolutional Layer ... 5

Gambar 2. Max-pooling Layer ... 6

Gambar 3. (a) Proses training tanpa dropout layer dan (b) Proses training dengan dropout layer ... 7

Gambar 4. Tahap Penelitian ... 12

Gambar 5. Sampel X-ray Pneumonia ... 13

Gambar 6. Sampel X-ray Normal ... 14

Gambar 7. Perbedaan kondisi pulmonary pada pneumonia dan normal ... 14

Gambar 8. Arsitektur Sistem ... 15

Gambar 9. Source code untuk mendefinisikan path dan membuat array ... 22

Gambar 10. Source code untuk memuat dataset ... 23

Gambar 11. Hasil load dataset ... 23

Gambar 12. Source code augmentasi data pada data train ... 24

Gambar 13. Perancangan model awal ... 24

Gambar 14. Source code pelatihan model CNN ... 25

Gambar 15. Source code akurasi dan loss model ... 26

Gambar 16. Source code confusion matrix ... 26

Gambar 17. Proposed Model 1 ... 27

Gambar 18. Grafik Akurasi Model 1 ... 28

Gambar 19. Grafik Loss Model 1 ... 28

Gambar 20. Confusion Matrix Model 1 ... 29

Gambar 21. Proposed Model 2 ... 30

Gambar 22. Akurasi Model 2 ... 30

Gambar 23. Loss Model 2 ... 31

Gambar 24. Confusion Matrix Model 2 ... 32

Gambar 25. Proposed Model 3 ... 33

Gambar 26. Akurasi Model 3 ... 33

Gambar 27. Loss Model 3 ... 34

Gambar 28. Confusion Matrix Model 3 ... 35

Gambar 29. Proposed Model 4 ... 36

Gambar 30. Akurasi Model 4 ... 37

(10)

xiii

Gambar 31. Loss Model 4 ... 37 Gambar 32. Confusion Matrix Model 4 ... 38

(11)

xiv

DAFTAR TABEL

Tabel 1. Confusion Matrix ... 7

Tabel 2. Arsitektur CNN model 1 – Jain et al ... 9

Tabel 3. Arsitektur CNN Model 2 – Jain et al ... 9

Tabel 4. Arsitektur CNN model 2 – Raheel Siddiqi ... 10

Tabel 5. Augmentasi data yang digunakan ... 16

Tabel 6. Arsitektur model 1 yang diusulkan ... 17

Tabel 7. Arsitektur model 2 yang diusulkan ... 17

Tabel 8. Arsitektur model 3 yang diusulkan ... 18

Tabel 9. Arsitektur model 4 yang diusulkan ... 19

Tabel 10. Ringkasan perbedaan arsitektur model yang diusulkan ... 21

Tabel 11. Perbandingan Performa Model CNN ... 39

Tabel 12. Perbandingan Hasil Penelitian dengan Jain et al antara model 1 dengan proposed model 1 dan proposed model 2... 41

Tabel 13. Perbandingan Hasil Penelitian dengan Jain et al antara model 2 dengan proposed model 3 ... 41

Tabel 14. Perbandingan Hasil Penelitian dengan Jain et al ... 42

Tabel 15. Perbandingan Hasil Penelitian dengan Raheel Siddiqi ... 43

Tabel 16. Perbandingan Performa Model dengan Penelitian Rujukan ... 43

(12)

47

DAFTAR PUSTAKA

[1] E. Ayan and H. M. Ünver, “Diagnosis of pneumonia from chest X-ray images using deep learning,” 2019 Sci. Meet. Electr. Biomed. Eng. Comput.

Sci. EBBT 2019, pp. 0–4, 2019.

[2] L. Liu et al., “Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals,” Lancet, vol. 388, no. 10063, pp. 3027–

3035, 2016.

[3] UNICEF DATA, “Pneumonia In Childern Statistics - UNICEF DATA,”

2020. [Online]. Available: https://data.unicef.org/topic/child- health/pneumonia/. [Accessed: 25-Nov-2020].

[4] D. M. Le Roux, L. Myer, M. P. Nicol, and H. J. Zar, “Incidence and severity of childhood pneumonia in the first year of life in a South African birth cohort: The Drakenstein Child Health Study,” Lancet Glob. Heal., vol. 3, no.

2, pp. e95–e103, 2015.

[5] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX- ray8: Hospital-scale chest X-ray database and benchmarks on weakly- supervised classification and localization of common thorax diseases,” Proc.

- 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017- Janua, pp. 3462–3471, 2017.

[6] M. Haloi, R. K. Rajalakshmi, and P. Walia, “Towards radiologist-level accurate deep learning system for pulmonary screening,” arXiv, 2018.

[7] M. A. Al-masni et al., “Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system,” Comput. Methods Programs Biomed., vol. 157, pp. 85–94, 2018.

[8] G. Liang and L. Zheng, “A transfer learning method with deep residual network for pediatric pneumonia diagnosis,” Comput. Methods Programs Biomed., vol. 187, 2020.

[9] M. Suyuti and E. Setyati, “Pneumonia Classification of Thorax Images using Convolutional Neural Networks,” J. Inf., vol. 5, no. 2, p. 62, 2020.

(13)

48

[10] S. Albawi, T. A. M. Mohammed, and S. Alzawi, “Understanding of a Convolutional Neural Network,” Ieee, 2017.

[11] D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,”

PeerJ, vol. 2019, no. 1, pp. 1–23, 2019.

[12] H. H. SULTAN, M. S. NANCY, and W. AL-ATABANY, “Multi- Classification of Brain Tumor Images Using Deep Neural Network,” Proc.

Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, pp. 865–870, 2020.

[13] A. Rezvantalab, H. Safigholi, and S. Karimijeshni, “Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural networks algorithms,” arXiv, 2018.

[14] D. Varshni, K. Thakral, L. Agarwal, R. Nijhawan, and A. Mittal,

“Pneumonia Detection Using CNN based Feature Extraction,” Proc. 2019 3rd IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT 2019, 2019.

[15] T. Rahmat, A. Ismail, and S. Aliman, “Chest X-Ray Image Classification Using Faster R-Cnn,” Malaysian J. Comput., vol. 4, no. 1, pp. 225–236, 2019.

[16] R. Siddiqi, “Automated pneumonia diagnosis using a customized sequential convolutional neural network,” ACM Int. Conf. Proceeding Ser., pp. 64–70, 2019.

[17] R. Jain, P. Nagrath, G. Kataria, V. Sirish Kaushik, and D. Jude Hemanth,

“Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning,” Meas. J. Int. Meas. Confed., vol. 165, p.

108046, 2020.

[18] S. Rajaraman, S. Candemir, I. Kim, G. Thoma, and S. Antani, “Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs,” Appl. Sci., vol. 8, no. 10, 2018.

[19] S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi

(14)

49

Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.

[20] I. Namatēvs, “Deep Convolutional Neural Networks: Structure, Feature Extraction and Training,” Inf. Technol. Manag. Sci., vol. 20, no. 1, pp. 40–

47, 2018.

[21] M. B. Bejiga, A. Zeggada, A. Nouffidj, and F. Melgani, “A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery,” Remote Sens., vol. 9, no. 2, 2017.

[22] P. Kamencay, M. Benco, T. Mizdos, and R. Radil, “A new method for face recognition using convolutional neural network,” Adv. Electr. Electron.

Eng., vol. 15, no. 4 Special Issue, pp. 663–672, 2017.

[23] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger, “Understanding Batch Normalization,” no. NeurIPS, 2018.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J.

Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[25] W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016.

[26] D. S. Kermany et al., “Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning,” Cell, vol. 172, no. 5, pp. 1122- 1131.e9, 2018.

[27] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”

3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

(15)

Referensi

Dokumen terkait

“IMPLEMENTASI ALGORITMA NEURAL NETWORK DENGAN METODE PRUNE UNTUK KLASIFIKASI PENENTUAN DOSEN PEMBIMBING TUGAS AKHIR” beserta seluruh isinya adalah karya

Metode Convolutional Neural Network yang dikembangkan dalam penelitian ini, telah berhasil mencapai akurasi klasifikasi kelas Hate Speech dan Abusive Language

Menyatakan bahwa Tugas Akhir yang berjudul “Implementasi Deep Learning pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural

Salah satu metode klasifikasi terhadap citra adalah Convolutional Neural Network (CNN), metode ini mendeteksi fitur gambar dengan cara mengambil feature map yang ada

Implementasi Deep Learning Menggunakan Metode Convolutional Neural Network Dalam Klasifikasi Gambar Warna Bola Pelampung.. Jurusan Teknik

Pada penelitian ini metode Convolutional Neural Netwok dan Improved Feature Pyramid Network dengan backbone ResNet50 akan digunakan untuk melakukan klasifikasi citra bibit tanaman, di

Metode Convolutional Neural Network dapat diterapkan untuk klasifikasi multilabel toxic comment pada sosial media twitter dengan menggunakan Word2Vec sebagai pembobotan kata 2.. Nilai

Penelitian terdahulu, seperti Klasifikasi Penyakit Daun Jagung menggunakan metode Convolutional Neural Network arsitektur ResNet-50 dengan optimizer Adam, Nadam, dan SGD yang