• Tidak ada hasil yang ditemukan

GEOFISIKA ( 18 Files )

N/A
N/A
Protected

Academic year: 2017

Membagikan "GEOFISIKA ( 18 Files )"

Copied!
9
0
0

Teks penuh

(1)

Identifikasi Reservoar Hidrokarbon Dengan Menggunakan

Dekomposisi Spektral, S-Transform

VERNANDOMORENA1), SUPRIYANTO2,*), JUNITATRIVIANTY2), ZAENALABIDIN3), HUMBANGPURBA4)

1) Department of Physics, University of Indonesia, Depok, Jawa Barat, 16424, Indonesia 3) PPPTMGB LEMIGAS , JL. Cileduk Raya Kav.109, Cipulir, Kebayoran Lama, Jakarta Selatan

12230, Indonesia *) PENULISKORESPONDEN

TEL: 081293688028

ABSTRAK:Sinyal seismik yang didapatkan di lapangan seringkali bersifat non-stationer. Sinyal non-stationer ini tidak dapat dilihat secara langsung dalam domain waktu. Oleh karena itu diperlukan analisis spektral untuk melihat sinyal seismik dalam domain frekuensi dengan menggunakan Spectral Decomposition. Salah satu metode Spectral Decomposition yang sering digunakan adalah Fourier Transform. Namun penggunaan Fourier Transform ini memiliki keterbatasan dalam menampilkan low frequency shadow. Untuk melihat low frequency shadow yang lebih baik maka dalam penelitian ini penulis menggunakan Spectral Decomposition berbasis S-Transform. Dalam penelitian ini penulis menggunakan data dari lapangan Eldo di provinsi Jambi. Pada penelitian ini Spectral Decomposition berbasis S-Transform mampu memperlihatkan zona low frequency shadows dan persebarannya.

Kata Kunci: Spectral Decomposition, S-Transform, low frequency shadows.

PENDAHULUAN

Keberadaan resevoar hidrokarbon biasanya dilihat dari perubahan nilai amplitudo yang berada dalam domain waktu. Interpretasi secara konvensional ini ideal dilakukan pada sinyal seismik yang bersifat stationer. Seringkali sinyal seismik yang didapatkan di lapangan bersifat non-stationer (sinyal yang kandungan frekuensinya bervariasi terhadap waktu). Sinyal non-stationer ini tidak dapat dilihat secara langsung dalam domain waktu. Berdasarkan hal tersebut maka diperlukan sebuah metode analisis yang dapat memberikan informasi spektral yang tersembunyi pada data seismik.

Analisis spektral dengan menggunakan Fourier Transform adalah hal yang umum dilakukan pada sinyal seismik. Akan tetapi Fourier Transform hanya menghasilkan spektrum rata-rata disepanjang waktu, sehingga kelemahan utama dari Fourier Transform terletak pada ketidakmampuannya memberikan informasi secara temporal (vertikal). Fourier Transform sangat ideal bila diterapkan pada sinyal stationer, dimana karakteristik sinyal stationer tidak berubah di sepanjang waktu. Karena keterbatasan inilah maka kemudian dikembangkan beberapa metode analisis time-frequency atau dekomposisi spektral. Salah satu metode dekomposisi spektral tersebut adalah S-Transform. Konsep S-Transform diperkenalkan pertama kali oleh Stockwell, Mansinha dan Lowe (1996) sebagai salah satu metode untuk melokalisasi spektrum yang kompleks.

(2)

ISBN 978-602-71279-1-9 FG-85 Gambar 1. Diagram alir penelitian dekomposisi spektral berbasis S-Transform.

Langkah awal pengerjaan penelitian adalah membuat gambar tiga dimensi dari data seismik (Gambar 2).

Gambar 2. Data seismik dalam tiga dimensi.

Langkah berikutnya adalah memilih line seismik yang akan dianalisis, pada penelitian ini digunakan line 1148 (Gambar 3).

S-Transform

Selected Volume of Interest

Time/Horizon Slices and Section (for a defined frequency)

Low Frequency Shadows as DHI Analysis and Interpretation

(3)

Gambar 3. Data Seismik dalam dua dimensi, Inline 1148.

Setelah memilih data seismik 2 dimensi yang akan di analisa, berikutnya dilakukan processing data seismik dengan menggunakan metode dekomposisi spektral, S-Transform.

S-Transform

Menentukan frekuensi yang akan digunakan, yakni berdasarkan spektrum frekuensi pada sinyal seismik. Adapun frekuensi yang digunakan 15 Hz(low frequency), 30 Hz(mid frequency), dan 45 Hz(high frequency)(Gambar 4).

Gambar 4. Spektrum frekuensi pada sinyal seismik

(4)

ISBN 978-602-71279-1-9 FG-87 30, dan 45 Hz.

HASIL DAN PEMBAHASAN

Berikut ini hasil interpretasi dekomposisi spektral S-Transform pada sinyal seismik akan dibandingkan satu sama lain. Selain itu untuk membantu menganalisa hasil penelitian akan di sertakan data well logging dan data mud logging. Analisa ini akan dilakukan pada tiap sumur.

Sumur LMG01

mud logging LMG01 (Gambar 6.) memperlihatkan bahwa sumur LMG01 mengandung reservoar gas pada kedalaman1380-1386 m, dan masuk dalam kategori baik (fair). Adapun batuan reservoarnya berupa batuan pasir (sandstone), yang mengelompok (blocky). Diatasnya dilapisi oleh selang-seling : siltstone-shale-siltstone-claystone, sedangkan dibawahnya dilapisi selang-seling : claystone-shale-sandstone-siltstone. Lapisan reservoar ini sangat tipis hanya mempunyai ketebalan ± 6 m (Gambar 6).

Gambar 6. Datamud loggingLMG01.

(5)

Gambar 7. Datawell loggingLMG01.

Berdasarkan hasil spektral dekomposisiS-Transformdengan frekuensi 15 Hz (frekuensi rendah) dan frekuensi 30 Hz (frekuensi tengah) pada sinyal seismik, Gambar 8 dan 9. Dari gambar tersebut tidak menunjukkan adanya anomali tertentu. Namun baik lapisan M maupun lapisan N masih termasuk batuan sandstone dengan nilai intesitas amplitudonya berwarna biru muda.

Gambar 8. HasilS-Transformdengan frekuensi 15 Hz padaInline1148.

Gambar 9. HasilS-Transformdengan frekuensi 30 Hz padaInline1148.

(6)

ISBN 978-602-71279-1-9 FG-89 Gambar 10. HasilS-Transformdengan frekuensi 45 Hz padaInline1148.

Sumur LMG02

Pada data mud logging LMG02 (Gambar 11.) memperlihatkan bahwa sumur LMG02 mengandung reservoar gas pada kedalaman : 1380-1390 m, 1430-1450m, dan 1470-1480 m. Adapun batuan reservoarnya berupa batuan pasir (sandstone), yang mengelompok (blocky) diselingi shale dan siltstone, serta ada sedikit limestone. Lapisan reservoar ini sangat tipis hanya mempunyai ketebalan ± 10 m.

Gambar 11. Datamud loggingLMG02.

(7)

Gambar 12. Datawell loggingLMG02.

Berdasarkan hasil spektral dekomposisi S-Transform dengan frekuensi 15 Hz (frekuensi rendah) pada sinyal seismik, Gambar 13. Dari gambar tersebut tidak menunjukkan adanya anomali tertentu. Namun baik lapisan M maupun lapisan N masih termasuk batuan sandstone dengan nilai intesitas amplitudonya berwarna biru muda.

Gambar 13. HasilS-Transformdengan frekuensi 15 Hz padaInline1148.

(8)

ISBN 978-602-71279-1-9 FG-91 Gambar 14. HasilS-Transformdengan frekuensi 30 Hz padaInline1148.

Pada hasil spektral dekomposisiS-Transformdengan frekuensi 45 Hz (frekuensi tinggi) pada sinyal seismik, Gambar 15. Baik lapisan M dan lapisan N termasuk ke dalam golongan clay.

Gambar 15. HasilS-Transformdengan frekuensi 45 Hz padaInline1148.

KESIMPULAN

1. Penggunaan spektral dekomposisi, S-Transform pada sinyal seismik dapat memperlihatkan informasi geologi dalam domain waktu dan frekuensi. Serta memperlihatkan zona low frequency shadow dan persebarannya.

2. Pada umumnya penggunaan frekuensi yang lebih rendah pada spektral dekomposisi S-Transform memperlihatkan pembacaan sinyal seismik dan low frequency shadow yang lebih baik dibandingkan frekuensi yang lebih tinggi. Terkecuali pada sumur LMG02, dimana penggunaan frekuensi 30 Hz lebih baik dibandingkan frekuensi 15 Hz.

UCAPAN TERIMA KASIH

(9)

DAFTAR RUJUKAN

Yilmaz, OZ., 1987,Seismic Data Analysis. Geophysics, 1801-1807.

Widess, M. B., 1973,How thin is a thin bed. Geophysics, Vol 38, no. 6, 1176 1180. Suprajitno Munadi, Humbang Purba, and Rosie A.S.,Differenciating Oil, Gas and Water

in Seismic Section Using Spectral Decomposition. Scientific Contributions Oil & Gas, Vol. 35. No. 2, August 2012: 83 - 90.

Stockwell, R. G., Why use S-Transform. Field Institute Communication, vol. 00, American Mathematical Society.

Castagna, J.P., S.Sun and R.W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. The Leading Edge,

22, 120.

Satinder Chopra, John Castagna and Oleg Portniaguine, 2006, Seismic Resolution and Thin-Bed Reflectivity Inversion. CSEG Recorder Article.

Mitchell, J. T., Derzhi, N., and Lickman, E. (1997). Low frequency shadows: The rule, or the exception?. 67th Ann. Internat. Mtg. Soc. Expl. Geophysics,

Gambar

Gambar 1. Diagram alir penelitian dekomposisi spektral berbasis S-Transform.
Gambar 3. Data Seismik dalam dua dimensi, Inline 1148.
Gambar 5. Hasil dekomposisi spektral S-Transform di Inline 1148 dengan frekuensi 15,30, dan 45 Hz.
Gambar 7. Data well logging LMG01.
+4

Referensi

Dokumen terkait

Berdasarkan hasil analisis yang telah dilakukan dapat disimpulkan bahwa dalam novel Surga Yang Tak Dirindukan karya Asma Nadia, didalamnya terkandung pesan moral yang

Sedangkan faktor intern bank yang dapat menyebabkan kredit bermasalah adalah kelemahan dari sistem dan prosedur penyaluran kredit, seperti survey terhadap calon

komunitas yaitu cerminan dan kesadaran kritis, membangun identitas komunitas, tindakan representasi dan politis, praktek yang berhubungan dengan budaya, asosiasi

Atmosfer dari planet merkurius terdiri dari gas natrium dan kalium yang sangat tipis sehingga kadang-kadang dikatakan bahwa planet ini tidak memiliki atmosfer.. Jarak

Selain ruam ini, timbul gejala-gejala lainnya, seperti demam, pembesaran kelenjar getah bening, sakit tenggorokan, sakit kepala, kehilangan berat badan, nyeri otot, dan perlu

Otot lurik, atau yang dikenal juga dengan nama otot rangka tak lain adalah jaringan yang menempel pada bagian rangka tubuh hewan atau manusia dimana

Tujuan dari penulisan ini adalah mengkaji tentang keterkaitan antara matematika dan budaya khususnya rumah adat Palembang yaitu rumah Limas dimana

Pada luka insisi operasi dilakukan infiltrasi anestesi local levobupivakain pada sekitar luka karena sekresi IL-10 akan tetap dipertahankan dibandingkan tanpa