• Tidak ada hasil yang ditemukan

jurnal fermentasi

N/A
N/A
Protected

Academic year: 2021

Membagikan "jurnal fermentasi"

Copied!
9
0
0

Teks penuh

(1)

PROSES FERMENTASI HIDROLISAT JERAMI PADI

PROSES FERMENTASI HIDROLISAT JERAMI PADI

UNTUK MENGHASILKAN BIOETANOL

UNTUK MENGHASILKAN BIOETANOL

Asyeni Miftahul Jannah

Asyeni Miftahul Jannah

Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya

Jurusan Teknik Kimia Fakultas Teknik Universitas Sriwijaya

 ABSTRA  ABSTRAKK

 Jerami

 Jerami Padi Padi merupakan merupakan limbah limbah pertanian pertanian yang yang selama selama ini ini masih masih belum belum banyak banyak dimanfaatkandimanfaatkan menjadi produk yang mempunyai nilai tambah. Jerami Padi yang termasuk biomassa mengandung menjadi produk yang mempunyai nilai tambah. Jerami Padi yang termasuk biomassa mengandung lignoselulosa sangat dimungkinkan untuk dimanfaatkan menjadi sumber energi alternatif seperti bioetanol. lignoselulosa sangat dimungkinkan untuk dimanfaatkan menjadi sumber energi alternatif seperti bioetanol.  Jerami padi

 Jerami padi mengandung bahan mengandung bahan polisakarida (lebih kurang 39% polisakarida (lebih kurang 39% selulosa dan 27,5% selulosa dan 27,5% hemiselulosa), setelahhemiselulosa), setelah  jerami

 jerami padi padi dihidrolisis dihidrolisis menggunakan menggunakan H H 22SOSO44 ,  , hidrolisat hidrolisat jerami jerami padi padi tersebut tersebut difermentasi. difermentasi. FermentasiFermentasi

merupakan kegiatan mikrobia pada bahan pangan sehingga dihasilkan produk yang dikehendaki

merupakan kegiatan mikrobia pada bahan pangan sehingga dihasilkan produk yang dikehendaki..  Mikroba Mikroba  yang

 yang umum umum digunakan digunakan adalah adalah ragi ragi roti roti (yeast).(yeast). Selain ragi, faktor yang mempengaruhi proses fermentasiSelain ragi, faktor yang mempengaruhi proses fermentasi  jerami padi menjadi bioetanol a

 jerami padi menjadi bioetanol antara lain : suhu, pH, ketersediaan oksigentara lain : suhu, pH, ketersediaan oksigen dan kadar gula.n dan kadar gula. Kata kunci: hidrolisis, fermentasi, ragi roti, ragi tape,

Kata kunci: hidrolisis, fermentasi, ragi roti, ragi tape, bioetanolbioetanol I.

I. PENDAHULUANPENDAHULUAN

Sebelumnya etanol dibuat dari gula, lalu Sebelumnya etanol dibuat dari gula, lalu  beralih

 beralih ke ke pati-patian. Tetapi pati-patian. Tetapi karena karena berkopetensiberkopetensi dengan pangan dan pakan, maka etanol dari gula dengan pangan dan pakan, maka etanol dari gula dan pati rasanya tidak memungkinkan lagi karena dan pati rasanya tidak memungkinkan lagi karena kebutuhan pangan dan pakan lebih penting. kebutuhan pangan dan pakan lebih penting. Banyak dugaan, terutama dari Eropa

Banyak dugaan, terutama dari Eropa dan Amerika,dan Amerika, menyebutkan bahwa konversi bahan pangan/pakan menyebutkan bahwa konversi bahan pangan/pakan menjadi etanol menjadi salah satu penyebab menjadi etanol menjadi salah satu penyebab naiknya harga-harga pangan dan pakan.

naiknya harga-harga pangan dan pakan.

Maka dari itu dicari sumber bahan baku Maka dari itu dicari sumber bahan baku alternatif dan yang paling potensial adalah alternatif dan yang paling potensial adalah  biomassa

 biomassa lignoselulosa. lignoselulosa. Lignoselulosa Lignoselulosa dipilihdipilih karena tidak berkopetensi dengan pangan maupun karena tidak berkopetensi dengan pangan maupun  pakan, tersedia

 pakan, tersedia melimpah, mmelimpah, murah dan terbarukan.urah dan terbarukan. Sejak awal abad ke 18 penelitian tentang Sejak awal abad ke 18 penelitian tentang  biokonversi

 biokonversi lignoselulosa mulai lignoselulosa mulai dilakukan. dilakukan. MulaiMulai aktif di tahun 70-an, dan semakin intens di abad aktif di tahun 70-an, dan semakin intens di abad 21 ini. Sebagai sumber daya alam yang 21 ini. Sebagai sumber daya alam yang terbarukan, akhir-akhir ini biomassa mendapatkan terbarukan, akhir-akhir ini biomassa mendapatkan  perhatian yang cukup seri

 perhatian yang cukup serius untuk dijadikan bahanus untuk dijadikan bahan  bakar

 bakar alternatif alternatif pengganti pengganti bahan bahan bakar bakar fosil.fosil. (isroi.wordpress.com)

(isroi.wordpress.com)

Kim and Dale (2004) menyebutkan Kim and Dale (2004) menyebutkan  bahwa rasio

 bahwa rasio jerami/panen adalah 1.4 jerami/panen adalah 1.4 (berdasarkan(berdasarkan  pada berat

 pada berat kering massa). kering massa). Artinya setiap Artinya setiap produksiproduksi 1 ton akan menghasilkan jerami 1.4 ton. Misal 1 ton akan menghasilkan jerami 1.4 ton. Misal  produksi rata-rata bera

 produksi rata-rata beras di Jawa Barat adalah 6 tons di Jawa Barat adalah 6 ton maka jeraminya kurang lebih sebanyak 8.4 ton maka jeraminya kurang lebih sebanyak 8.4 ton

(berat kering). Moiorella (1985) menyebutkan (berat kering). Moiorella (1985) menyebutkan  bahwa setiap kg

 bahwa setiap kg panen dapat panen dapat menghasilkan antaramenghasilkan antara 1-1.5 kg jerami padi. Data dari Moiorella rasanya 1-1.5 kg jerami padi. Data dari Moiorella rasanya lebih akurat.

lebih akurat. (isroi.wordpres(isroi.wordpress.com)s.com)

Data dari BPS menyebutkan bahwa Data dari BPS menyebutkan bahwa  produksi

 produksi beras beras nasional nasional pada pada tahun tahun 2006 2006 kurangkurang lebih sebanyak 54.7 juta ton dari 11.9 juta ha lebih sebanyak 54.7 juta ton dari 11.9 juta ha sawah. Berdasarkan data dari Moiorella maka sawah. Berdasarkan data dari Moiorella maka  jumlah jerami diperkirakan mencapai

 jumlah jerami diperkirakan mencapai 54.7 sampai54.7 sampai 82.05 juta ton (OD) jumlah yang sangat besar. 82.05 juta ton (OD) jumlah yang sangat besar. (isroi.wordpress.com)

(isroi.wordpress.com)

Potensi etanol dari jerami padi menurut Potensi etanol dari jerami padi menurut Kim and Dale (2004) adalah sebesar 0.28 L/kg Kim and Dale (2004) adalah sebesar 0.28 L/kg  jerami.

 jerami. Sedangkan Sedangkan kalau kalau dihitung dihitung dengan dengan caracara Badger (2002) adalah sebesar 0.20L/kg jerami. Badger (2002) adalah sebesar 0.20L/kg jerami. Dari data ini bisa diperkirakan berapa potensi Dari data ini bisa diperkirakan berapa potensi etanol dari jerami padi di Indonesia, yaitu: etanol dari jerami padi di Indonesia, yaitu:  berdasarkan

 berdasarkan perhitungan perhitungan menurut menurut Kim Kim and and DaleDale (2004) dengan menggunakan bahan baku jerami (2004) dengan menggunakan bahan baku jerami  padi

 padi sebanyak sebanyak 54,70 54,70 juta juta ton ton dapat dapat menghasilkanmenghasilkan etanol sebanyak 15,316 juta liter dan bahan baku etanol sebanyak 15,316 juta liter dan bahan baku  jerami

 jerami padi padi sebanyak sebanyak 82,05 82,05 juta juta ton ton dapatdapat menghasilkan etanol sebanyak 22,974 juta liter. menghasilkan etanol sebanyak 22,974 juta liter. Sedangkan perhitungan menurut Badger (2002) Sedangkan perhitungan menurut Badger (2002) dengan menggunakan bahan baku jerami padi dengan menggunakan bahan baku jerami padi sebanyak 54,316 juta ton dapat menghasilkan sebanyak 54,316 juta ton dapat menghasilkan etanol sebanyak 10,940 juta liter dan bahan baku etanol sebanyak 10,940 juta liter dan bahan baku  jerami

 jerami padi padi sebanyak sebanyak 82,05 82,05 juta juta ton ton dapatdapat menghasilkan etanol sebanyak 16,410 juta

(2)

 Jurnal Teknik Kimia, No. 1, Vol. 17, Januari 2010 45 (isroi.wordpress.com/2008/04/28)

II. PROSES BIOETHANOL

Bioetanol (C2H5OH) adalah cairan

 biokimia dari proses fermentasi gula dari sumber karbohidrat menggunakan bantuan mikroorganisme. Etanol atau  Etil Alcohol (lebih dikenal dengan alkohol, dengan rumus kimia C2H5OH) adalah cairan tak berwarna dengan

karakteristik antara lain mudah menguap, mudah terbakar, larut dalam air, tidak karsinogenik, dan  jika terjadi pencemaran tidak memberikan dampak lingkungan yang signifikan. Penggunaan etanol sebagai bahan bakar bernilai oktan tinggi atau aditif peningkat bilangan oktan pada bahan bakar sebenarnya sudah dilakukan sejak abad 19. Mula-mula etanol digunakan untuk bahan bakar lampu  pada masa sebelum perang saudara di Amerika Serikat. Kemudian pada tahun 1860 Nikolous Otto menggunakan bahan bakar etanol dalam mengembangkan mesin kendaraan dengan siklus Otto.

Etanol dan air membentuk larutan azeotrop. Karena itu pemurnian etanol yang mengadung air dengan cara penyulingan bisa hanya mampu menghasilkan etanol dengan kemurnian 96%. Etanol murni (absolute) dihasilkan pertama kali pada tahun 1796 oleh Johan Tobias Lowitz yaitu dengan cara menyaring alkohol hasil distilasi melalui arang.

Pada tahun 1985 Brazil mengeluarkan  program pencampuran 20% bioetanol dengan  bensin untuk menghemat 40% konsumsi bensin.

Kelebihan-kelebihan bioetanol dibandingkan  bensin:

1. Bioetanol aman digunakan sebagai bahan  bakar, titik nyala etanol tiga kali lebih tinggi

dibandingkan bensin.

2. Emisi hidrokarbon lebih sedikit.

Kekurangan-kekurangan bioetanol dibandingkan  bensin:

1. Mesin dingin lebih sulit melakukan starter. 2. Bioetanol bereaksi dengan logam seperti

magnesium dan aluminium.

Sebagai alternatif digunakan campuran bioetanol dengan bensin. Sebelum dicampur, bioetanol harus dimurnikan hingga 100%. Campuran ini dikenal dengan sebutan gasohol. (http://skadrongautama.blogspot.com)

Etanol dapat dibuat dengan beberapa cara sebagai  berikut :

1. Etanol untuk konsumsi umumnya dihasilkan dengan proses fermentasi atau  peragian bahan makanan yang mengandung  pati atau karbohidrat, seperti beras dan

umbi. Alkohol yang dihasilkan dari proses fermentasi biasanya berkadar rendah. Untuk mendapatkan alkohol dengan kadar yang lebih tinggi diperlukan proses pemurnian melalui penyulingan atau distilasi. Etanol untuk keperluan industri dalam skala lebih  besar dihasilkan dari fermentasi tetes, yaitu hasil samping dalam industri gula tebu atau gula bit.

2. Melalui sintesa kimia melalui reaksi gas etilen dan uap air dengan asam sebagai katalis. Katalis yang dipakai misanya asam fosfat. Asam sulfat dapat juga dipakai sebagai katalis, namun dewasa ini sudah  jarang dipakai.

Seperti kita ketahui, etanol dikategorikan dalam 2 kelompok utama : (Rama Prihandana, dkk, 2007)

a Etanol 95 – 96 % v/v, disebut etanol  berhidrasi yang dibagi dalam :

1. Technical / raw spirit grade, digunakan untuk bahan bakar spiritus, desinfektan dan pelarut 2.  Industrial grade, digunakan untuk

 bahan baku industri dan pelarut. 3. Pot able grade, untuk minuman

 berkualitas tinggi.

 b Etanol > 99,5% v/v, digunakan untuk  bahan bakar. Jika dimurnikan lebih lanjut dapat digunakan untuk keperluan farmasi dan pelarut di laboratorium analisis. Etanol ini disebut Fuel Grade Ethanol (FGE) atau anhidrous ethanol  (etanol anhidrat) atau etanol kering, yakni ethanol yang bebas air atau hanya mengandung air minimal.

Standar Nasional Indonesia (SNI) Bioetanol Terdenaturasi yang disahkan dengan  Nomor SNI DT 27-0001-2006, tanggal 27 desember 2006.Penyusunan SNI Bioetanol terdenaturasi untuk gasohol dilakukan untuk memperhatikan standar sejenis yang telah berlaku di negara-negara lain yang pemakaian  bioetanolnya sudah luas dan mencapai tahap komersial. Dimana sfesifikasi nya dapat dilihat  pada tabel.1 dibawah ini:

Tabel. 1

Sfesifikasi Standar Bioetanol Terdenaturasi untuk Gasohol  No Sifat Unit,

Min/Maks Sfesifikasi’) 1 Kadar etanol %-v, min 99,4 (sebelum denaturan)”) 94,0 (setelah denaturan)

(3)

2 Kadar metanol

Mg/l, maks

300 3 Kadar air %-v, maks 1 4 Kadar denaturan %-v, min %-v, maks 2 5 5 Kadar tembaga Mg/kg, maks 0,1 6 Keasaman sebagai CH3COOH Mg/l, maks 30

7 Tampakan Jernih dan

terang, tidak ada endapan dan kotoran 8 Kadar ion klorida Mg/l, maks 40 9 Kandungan  belerang Mg/l, maks 50 10 Kadar getah (gum), dicuci Mg/100 ml, maks 5,0 11 pH 6,5-9,0 2.1. PRETREATMENT

Pretreatment biomassa lignoselulosa harus dilakukan untuk mendapatkan hasil yang tinggi dimana penting untuk pengembangan teknologi biokonversi dalam skala komersial (Mosier, et al., 2005). Pretreatment merupakan tahapan yang banyak memakan biaya dan  berpengaruh besar terhadap biaya keseluruhan  proses. Sebagai contoh pretreatment yang baik dapat mengurangi jumlah enzim yang digunakan dalam proses hidrolisis (Wyman, Dale, Elander, Holtzapple, Ladisch, & Lee, Coordinated development of leading biomass pretreatment technologies, 2005) (Wyman, Dale, Elander, Holtzapple, Ladisch, & Lee, Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover, 2005). Pretreatment dapat meningkatkan hasil gula yang diperoleh. Gula yang diperoleh tanpa  pretreatment kurang dari 20%, sedangkan dengan  pretreatment dapat meningkat menjadi 90% dari hasil teoritis (Hamelinck, Hooijdonk, & Faaij, 2005). Tujuan dari pretreatment adalah untuk membuka struktur lignoselulosa agar selulosa menjadi lebih mudah diakses oleh enzim yang memecah polymer polisakarida menjadi monomer gula. Tujuan pretreatment secara skematis ditunjukkan pada Gambar 1 di bawah ini.

Gambar 1. Skema Tujuan Pretreatment Biomassa Lignoselulosa (Mosier, et al., 2005). 2.2. HIDROLISIS

Setelah melewati pretreatment, kemudian  jerami padi dihidrolisis selama 30 menit. Hidrolisis meliputi proses pemecahan polisakarida di dalam biomassa lignoselulosa, yaitu selulosa dan hemiselulosa menjadi monomer gula  penyusunnya. Hidrolisis sempurna selulosa menghasilkan glukosa, sedangkan hemiselulosa menghasilkan beberapa monomer gula pentose (C5) dan heksosa (C6). Hidrolisis dapat dilakukan secara kimia (asam) atau enzimatik.

Di dalam metode hidrolisis asam,  biomassa lignoselulosa dipaparkan dengan asam  pada suhu dan tekanan tertentu selama waktu tertentu, dan menghasilkan monomer gula dari  polimer selulosa dan hemiselulosa. Beberapa asam yang umum digunakan untuk hidrolisis asam antara lain adalah asam sulfat (H2SO4), asam

 perklorat, dan HCl. Asam sulfat merupakan asam yang paling banyak diteliti dan dimanfaatkan untuk hidrolisis asam. Hidrolisis asam dapat dikelompokkan menjadi: hidrolisis asam pekat dan hidrolisis asam encer (Taherzadeh & Karimi, 2007). Hidrolisis asam pekat merupakan teknik yang sudah dikembangkan cukup lama. Braconnot di tahun 1819 pertama menemukan bahwa selulosa bisa dikonversi menjadi gula yang dapat difermentasi dengan menggunakan asam pekat (Sherrad and Kressman 1945 in (Taherzadeh & Karimi, 2007).

Hidrolisis asam pekat menghasilkan gula yang tinggi (90% dari hasil teoritik) dibandingkan dengan hidrolisis asam encer, dan dengan demikian akan menghasilkan ethanol yang lebih tinggi (Hamelinck, Hooijdonk, & Faaij, 2005). Hidrolisis asam encer dapat dilakukan pada suhu rendah. Namun demikian, konsentrasi asam yang digunakan sangat tinggi (30 – 70%).

2.3. FERMENTASI

Fermentasi berasal dari bahasa latin “Ferfere”  yang berarti mendidihkan (Muljono

(4)

 Jurnal Teknik Kimia, No. 1, Vol. 17, Januari 2010 47 Judoamidjojo, Teknologi Fermentasi). Seiring

 perkembangan teknologi, definisi fermentasi meluas menjadi semua proses yang melibatkan mikroorganisme untuk menghasilkan suatu produk yang disebut metabolit primer dan sekunder dalam suatu lingkungan yang dikendalikan. Pada mulanya istilah fermentasi digunakan untuk menunjukan proses pengubahan glukosa menjadi etanol yang berlangsung secara anaerob. Namun, kemudian istilah fermentasi berkembang lagi menjadi seluruh perombakan senyawa organik yang dilakukan mikroorganisme.

Ahli Kimia Perancis, Louis Pasteur adalah seorang  zymologist  pertama ketika di tahun 1857 mengkaitkan ragi dengan fermentasi. Ia mendefinisikan fermentasi sebagai "respirasi (pernafasan) tanpa udara".

Pasteur melakukan penelitian secara hati-hati dan menyimpulkan, "Saya berpendapat bahwa fermentasi alkohol tidak terjadi tanpa adanya organisasi, pertumbuhan dan multiplikasi sel-sel secara simultan... Jika ditanya, bagaimana proses kimia hingga mengakibatkan dekomposisi dari gula tersebut... Saya benar-benar tidak tahu" .

Ahli kimia Jerman, Eduard Buchner,  pemenang Nobel Kimia tahun 1907, berhasil menjelaskan bahwa fermentasi sebenarnya diakibatkan oleh sekeresi dari ragi yang ia sebut sebagai zymase.

Penelitian yang dilakukan ilmuan Carlsberg (sebuah perusahaan bir) di Denmark semakin meningkatkan pengetahuan tentang ragi dan brewing  (cara pembuatan bir). Ilmuan Carlsberg tersebut dianggap sebagai pendorong dari  berkembangnya biologi molekular.

Dari beberapa peneliti didapat angka-angka yang menunjukan bahwa proses fermentasi tunduk kepada hukum konservasi zat seperti pada reaksi-reaksi kimia biasa. Oleh J. L. Gay-Lussac (1810), (Encycl. Brit. Vol .9 1960) penelitian dilanjutkan dan disimpulkan bahwa persamaan fermentasi pembuatan Alkohol adalah:

C6H12O6    → 2CO2 + 2C2H6O

Fermentasi merupakan kegiatan mikrobia  pada bahan pangan sehingga dihasilkan produk yang dikehendaki. Mikrobia yang umumnya terlibat dalam fermentasi adalah bakteri, khamir, dan kapang. Contoh bakteri yang digunakan dalam fermentasi adalah  Acetobacter Xuylinm  pada  pembuatan nata decoco, Acetobacter Aceti pada  pembuatan asam asetat. Contoh khamir dalam fermentasi adalah Saccharomyces Cerevisiae dalam pembuatan alkohol sedangkan contoh

kapang adalah  Rhizopus sp  pada pembuatan tempe,  Monascus Purpureus  pada pembuatan anggur dan sebagainya. Fermentasi dapat dilakukan menggunakan kultur murni ataupun alami serta dengan kultur tunggal ataupun kultur campuran. Fermentasi menggunakan kultur alami umumnya dilakukan pada proses fermentasi trodisional yang memanfaatkan mikroorganisme yang ada di lingkungan.

Pembentukan ethanol sistem batch, diawali dengan kondisi aerob kemudian dilanjutkan dengan kondisi anaerob. Jika kondisi anaerob  dimulai terlalu dini maka sel yang ada tidak cukup banyak untuk melakukan fermentasi secara bagus. Bahkan untuk mewujudkan kondisi aerob perlu diadakan aerasi sebentar supaya nantinya tidak banyak kehilangan hasil (Crueger, 1984).

Beberapa faktor penting yang mempengaruhi hasil ethanol dan efisiensinya, yaitu (1) kondisi fisiologis inokulum mikroba yang ditambahkan ke dalam media, (2) kondisi lingkungan selama proses fermentasi berlangsung, dan (3) kualitas bahan media. Kondisi fisiologis (seed ) tergantung pada kondisi pertumbuhan optimal yang spesifik bagi mikroba yang digunakan. Faktor lingkungan yang paling  penting, yaitu pH dan suhu. Sedangkan faktor lain (1) buffer capacity, (2) tingkat kontaminasi di awal pertumbuhan, (3) kepekatan gula, (4) konsentrasi alkohol, (5) pemilihan strain  khamir, (6) kebutuhan nutrisi bagi pertumbuhan khamir, dan (7) jumlah oksigen yang tersedia (Stark dalam Alico, 1982). (www.kapetseram.com)

Proses fermentasi hidrolisat selulosa sama seperti proses fermentasi etanol pada umumnya. Mikroba yang umum digunakan adalah ragi roti ( yeast ). Setelah hidrolisat difermentasi selama beberapa waktu, maka tahap berikutnya adalah purifikasi ethanol.

Faktor-faktor yang mempengaruhi fermentasi : 1. Ragi

Bila dilihat dari jenisnya, maka terdapat  beberapa jenis mikroorganisme yang banyak

digunakan dalam proses fermentasi diantaranya adalah khamir, kapang dan bakteri, tetapi tidak semua mikroorganisme tersebut dapat digunakan secara langsung masih diperlukan seleksi untuk menjamin berlangsungnya proses fermentasi. Pemilihan mikroorganisme biasanya didasarkan  pada jenis substrat (bahan) yang digunakan sebagai medium, misalnya untuk menghasilkan  bioetanol digunakan khamir Saccharomyces cereviseae  untuk mengoksidasi alkohol menjadi asam asetat digunakan bakteri  Acetobacter.

(5)

You're Reading a Preview

Unlock full access with a free trial.

(6)

 Jurnal Teknik Kimia, No. 1, Vol. 17, Januari 2010 49 digunakan untuk menjaga agar kontaminan

minimal. Umpamanya fermentasi khamir pada pH 3 tidak akan terkontaminasi bakteri. (Muljono Judoamidjojo, Teknologi Fermentasi)

5. Kadar Gula

Gula yang ditambahkan pada hidrolisat  jerami padi bertujuan untuk memperoleh kadar etanol yang lebih tinggi, tetapi bila kadar gula terlalu tinggi maka aktifitas khamir dapat terhambat. Kadar gula yang optimum untuk aktifitas pertumbuhan khamir adalah 10 sampai 18  persen. (Iroi; 2008)

Hidrolisat jerami padi yang bersifat asam didinginkan sampai suhu 300C. Sebelum difermentasi ditambahkan NaOH terlebih dahulu agar pH nya mencapai sekitar 4-5, setelah ditambahkan NaOH larutan hidrolisat tersebut diletakkan pada fermentor kemudian ditambahkan  yeast   dan temperatur dijaga konstan pada 300C, dan membutuhkan ketelitian agar tidak terkontaminasi oleh mikroba lain karena itu keseluruhan rangkaian proses harus dilakukan dengan kondisi bebas kontaminasi (Washito, 1981).

Beberapa spesies mikroba dari kelompok yeast/khamir, bakteri dan fungi dapat memfermentasi karbohidrat menjadi ethanol dalam kondisi bebas oksigen (Lynd, 1996). Mikroba melakukan fermentasi tersebut untuk mendapatkan energi dan untuk tumbuh. Berdasarkan reaksi kimia fermentasi, hasil maksimum teoritis dari setiap kg gula adalah 0.51 kg ethanol dan 0.49 kg CO2.

Mekanisme pembentukan bioetanol dari jerami  padi: (C6H10O5)n           → + H 2O, H 2SO4 3C5H10O5 + C6H12O6 (www.risvank.com) 3C5H10O5    → 5C2H5OH + 5CO2 C6H12O6    → 2C2H5OH + 2CO2

Media yang digunakan didalam fermentasi harus memenuhi syarat-syarat sebagai  berikut:

a. Mengandung nutrisi yang dibutuhkan  bagi pertumbuhan sel saccharomycess

cerevicea.

b. Mengandung nutrisi yang dapat digunakan sebagai sumber energi bagi sel saccharomycess cerevicea.

c. Tidak mengandung zat yang menghambat  pertumbuhan sel

d. Tidak terdapat kontaminan yang dapat meningkatkan persaingan dalam  penggunaan substrat.

Faktor-faktor yang dapat menyebabkan  berhentinya pertumbuhan mikroba antara lain:

1. Penyusutan konsentrasi nutrisi yang dibutuhkan dalam pertumbuhan mikroba karena habis terkonsumsi

2. Produk akhir metabolisme yang menghambat pertumbuhan mikroba karena terjadinya inhibisi dan represi. 2.4. PEMURNIAN

Dalam pembuatan etanol dari jerami  padi, pemurnian merupakan tahapan akhir proses. Distilasi dilakukan untuk memisahkan etanol dari beer   (sebagian besar adalah air dan etanol) titik didih etanol murni adalah 78oC sedangkan air adalah 100oC (kondisi standar). Dengan memanaskan larutan pada suhu rentang 78-90oC akan mengakibatkan sebagian besar etanol menguap. Proses distilasi akan meningkatkan kandungan ethanol hingga 95%. Sisa air yang masih ada dihilangkan dengan proses dehidrasi hingga kandungan ethanol mencapai 99.5%.

Udara di distilasi menjadi komponen-komponen seperti oksigen untuk penggunaan medis dan helium untuk pengisi balon. Distilasi  juga telah lama digunakan sejak lama untuk  pemekatan alkohol dengan penerapan panas terhadap larutan hasil fermentasi untuk menghasilkan minuman suling.

Distilasi dapat dilakukan dengan 2 macam cara yaitu: (Sudirman, 2007)

1. Pembentukan uap dengan cara mendidihkan larutan yang akan dipisahkan dimana uap kemudian diembunkan tanpa dikembalikan kekolaom distilasi.

2. Pembentukan uap dengan cara mendidihkan larutan yang akan dipisahkan dimana uap kemudian diembunkan dan dikembalikan sebagian kekolom agar terjadi kontak antara uap yang naik keatas dengan embun yang dikembalikan.

Distilasi atau penyulingan adalah suatu metode pemisahan bahan kimia berdasarkan  perbedaan kecepatan atau kemudahan menguap

(volatilitas) bahan. Dalam penyulingan, campuran zat di didihkan sehingga menguap, dan uap ini kemudian didinginkan kembali kedalam bentuk cairan. Zat yang memiliki titik didih lebih rendah akan menguap lebih dulu.

(7)

Uap yang dikeluarkan dari campuran disebut uap bebas, kondensat yang jatuh sebagai destilat dan bagian cairan yang tidak menguap sebagai residu. Apabila yang diinginkan adalah  bagian campuran yang tidak teruapkan dan bukan distilatnya, maka proses tersebut biasanya dinamakan evaporasi. Dalam hal ini seringkali  bukan pemisahan sempurna yang dikehendaki melainkan peningkatan konsentrasi bahan- bahan yang terlarut dengan cara menguapkan sebagian  pelarut.

Jika suatu larutan yang terdiri dari dua  buah larutan komponen yang cukup mudah menguap misalnya larutan benzene-toluene dididihkan, maka fase uap yang terbentuk akan mengandung komponen yang lebih mudah menguap dalam jumlah yang relative banyak dibandingkan dengan fase cair. Jika ada perbedaan titik didih merupakan syarat utama supaya  pemisahan dengan distilasi dapat dilakukan.

Titik didih suatu cairan bergantung pada tekanan. Apabila tekanan sekeliling meningkat, titik didih akan naik dan apabila tekanan sekeliling  berkurang, titik didih akann turun (sifat ini dimanfaatkan pada penguapan pada kondisi vakum, misalnya pada distilasi vakum).

2. 6. 1 Distilasi vakum

Distilasi vakum terutama digunakan untuk secara hati-hati, memisahkan campuran yang peka terhadap suhu. Dalam hal ini tekanan rendah (tekanan absolute) yang dipilih tergantung  pada titik didih yang diinginkan, namun pada

instalasi teknik jarang yang kurang dari 1 mbar. Pengoperasian sebuah instalasi sebuah distilasi vakum dilihat dari segi peralatan (pompa vakum, sambungan kedap vakum, penampang yang lebih besar) namun dari segi penggunaan energi, akan lebih mahal dari pada operasi dengan alat tekanan normal. Lagi pula kerena beda suhu yang diizinkan lebih kecil, yang berarti laju  perpindahan panas lebih kecil, maka untuk

kerjanya lebih rendah.

Tekanan terendah yang mungkin dicapai dalam alat penguap (yang berarti titik didih yang  paling rendah) tidak hanya bergantung pada

vakum maksimum yang dapat dihasilkan pompa vakum, melainkan terutama tergantung pada kerugian tekanan di dalam kolom. Kerugian ini sedapat mungkin bernilai kecil, karena tekanan dalam alat penguap harus mengatasi kerugian tekanan dalam kolom. Adapun peralatan distilasi vakum yang digunakan adalah terlihat pada gambar 3 dibawah ini.

Gambar 3. destilasi vacum 2. 6. 2 Distilasi Atmosferik

Distilasi pada umumnya dilakukan secara kontinu atau tak kontinu. Pada tekanan normal atau vakum. Pada distilasi atmosferik, yang paling sering dilakukan adalah operasi tak kontinu. Dalam hal ini campuran yang akan dipisahkan dimasukkan ke dalam alat penguap (umumnya alat  penguap labu) dan dididihkan.

Pendidihan terus dilangsungkan hingga sejumlah tertentu komponen yang mudah menguap terpisahkan. Selama pendidihan, fraksi komponen yang mudah menguap dalam cairan  bertambah besar, sehingga komposisi distilat yang

dihasilkan juga berubah terus.

Peristiwa yang terjadi pada distilasi atmosferik adalah: (Sudirman,2007)

1. Penguapan komponen yang mudah menguap dari campuran dalam alat  penguap.

2. Pengeluaran uap yang terbentuk melaui sebuah pipa uap yang lebar dan kosong, tanpa perpindahan panas dan perpindahan massa yang disengaja atau dipaksakan, yang dapat menyebabkan kondensat mengalir kembali ke alat p enguap.

3. Tetes cairan yang sukar menguap yang ikut terbawa dalam uap dipisahkan dengan bantuan siklon dan disalurkan kembali ke dalam alat penguap.

4. Kondensasi uap dalam sebuah kondenser. 5. Pendinginan lanjut dari distilat panas

dalam sebuah alat pendingin.

6. Penampungan distilat dalam sebuah  bejana (penampung).

7. Pengeluaran residu (secara pertaian atau kontinu) dari alat penguap.

(8)

 Jurnal Teknik Kimia, No. 1, Vol. 17, Januari 2010 51 8. Pendinginan lanjut dari residu yang

dikeluarkan.

9. Penampungan residu dalam sebuah  bejana.

Adapun Rangkaian Alat Distilasi Atmosferik dapat dilihat pada gambar 4 dibawah ini:

Gambar 4 Peralatan distilasi atmosferik (//id.wikipedia.org/wiki/)

2.4. KROMATOGRAFI GAS

Gas kromatografi adalah suatu proses dimana suatu campuran menjadi komponen-komponennya oleh fase gas yang bergerak melewati suatu lapisan serapan (sorben) yang stasioner. Di dalam kromatografi diperlukan adanya dua fase yang tidak salaing bercampur, yaitu fase diam dan fase bergerak. Fase diam nya disini dapat berupa suatu zat padat yang ditempatkan di dalam suatu kolom atau dapat juga  berupa cairan terserap (teradsorbsi) berupa lapisan yang tipis pada butir-butir halus suatu zat padat  pendukung yang ditempatkan di dalam kolom. Fase geraknya dapat berupa gas (gas pembawa) atau cairan.

Campuran yang akan dipisahkan komponen-komponennya, dimasukkan ke dalam kolom yang mengandung fase diam. Dengan  bantuan fase gerak, komponen- komponen campuran itu kemudian dibawa bergerak melalui fase diam didalam kolom. Perbedaan ataraksi dan afinitas antara komponen-komponen itu bergerak dengan kecepatan berbeda melalui kolom. Akibat

adanya perbedaan kecepatan, komponen-komponen itu terpisah satu sama lain.

GC terdiri dari :

1. Tangki gas pembawa. Gas yang bertindak sebagai fase gerak disebut juga gas pembawa atau carier gas. Gas pembawa yang biasa digunakan seperti helium (He), dan nitrogen (N).

2. Alat pengatur tekanan (regulator ), regulator  digunakan untuk mengatur tekanan gas-gas yang digunakan.

3.  Injection Port   adalah cabang untuk memasukkan cuplikan dengan cara  penyuntikan.

4. Kolom, tempat terjadinya proses pemisahan komponen-komponen cuplikan. Kolom ini ditempatkan di dalam oven bersuhu tinggi, sehingga komponen- komponen cuplikan tetap berupa uap.

5.  Detector . Untuk mendeteksi komponen-komponen yang keluar dari kolom. Detector ini akan mengirimkan isyarat listrik ke alat  pencatat (recorder ).

6.  Recorder (alat pencatat yang berfungsi untuk mencatat isyarat-isyarat)

7.  Recorder yang banyak digunakan pada saat ini disebut integrator yang mempunyai fasilitas yang lebih lengkap daripada recorder  biasa.

III. KESIMPULAN

Jerami padi yang banyak dianggap masyarakat sebagai limbah pertanian ternyata dengan perlakuan khusus dapat dimanfaatkan sebagai bioetanol, yaitu energi alternatif dengan melibatkan bantuan mikroba ragi, sedangkan pada  proses pemurniannya menggunakan distilasi vakum pada kondisi suhu set point 500C dan tekanan nya 200 mmHg. Perlakuan akhir pada  proses ini adalah menganalisa produk bioetanol yang dihasilkan dengan menggunakan alat gas kromatografi.

IV. DAFTAR PUSTAKA

..., 2009. Bioetanol Sebagai Energi Alternetif yang Kompetitif. Online di http://skadrongautama.blogspot.com. Diakses 10 juli 2009.

..., Info Bioetanol. Oline di www.kapetseram.com. Diakses 27 Desember 2008

Isroi. 2008. Potensi Biomassa Lignoselulosa di Indonesia sebagai Bahan Baku Bioetanol:JERAMI PADI. Online di

(9)

http://isroi.wordpress.com. Diakses 06  juni 2009.

Isroi. 2008. Topik Penelitian Bioethanol, Topik Penelitian Paling Hot Saat Ini. Online di http://isroi.wordpress.com/2008/11/16/. Diakses 06 juni 2009.

Judoamidjojo, Muljono, Darwis, Abdul Aziz, dan Sa’id, Endang Gumbira. Teknologi Fermentasi. Rajawali Pers. Jakarta

Maryani, 2007. Pembuatan Etanol dari Ubi Kayu (Cassava) secara Fermentasi. Politeknik  Negeri Sriwijaya. Palembang.

Prihandana, Rama, Noerwijayari K, Adinuari P G, Setiadi S, dan Hendroko R. 2007. Bioetanol Ubi Kayu Bahan Bakar Masa Depan. AgroMedia. Jakarta

Wijaya, Prabu P. 2007. Pembuatan Bioetanol dari  Nira Aren secara Fermentasi. Laporan

Akhir tahun 2007. Politeknik Negeri Sriwijaya. Palembang.

Gambar

Gambar 1. Skema Tujuan Pretreatment Biomassa Lignoselulosa (Mosier, et al., 2005).
Gambar 3. destilasi vacum
Gambar 4 Peralatan distilasi atmosferik (//id.wikipedia.org/wiki/)

Referensi

Dokumen terkait

Eutiroidisme adalah suatu keadaan hipertrofi pada kelenjar tiroid yang disebabkan stimulasi kelenjar tiroid yang berada di bawah normal sedangkan kelenjar

Agar mendapatkan pengaturan kecepatan motor induksi satu fasa yang ideal, perlu dilakukan variasi penempatan rangkaian modul pengatur kecepatan pada supply, kumparan utama,

Upaya pemerintah yang teah dilakukan sampai saat ini ternyata masih belum cukup untuk membendung semaraknya tindak pidana perdagangan orang yang terjadi disurabaya, sebagai salah

Salatiga adalah kota yang unik, kas dan menyenangkan bagi sebagian besar orang. Orang datang ke Salatiga bukan karena ada “gula-gula” atau sumber ekonomi yang melimpah, namun

from pleural effusions. Establishment and characterization of a cell-line of human breast carcinoma origin. American Type Culture Collection.. Regulation of Ovarian Follicle

Persentase penghambatan pertumbuhan fungi patogen oleh fungi endofit dihitung dengan rumus (Nuangmek et.al. oxysporum dengan fungi endofit yang diisolasi dari

Diambil tiga kali ulangan untuk menentukan kecepatan aliran

dan zat padat tersuspensi di dapat hasil pada air keran mengalami tidak keruh dan pada air sawah mengalami sedikit keruh demikian kian juga pada zat padat tersuspensi dihasilkan