• Tidak ada hasil yang ditemukan

draghici1. 122KB Jun 04 2011 12:08:37 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "draghici1. 122KB Jun 04 2011 12:08:37 AM"

Copied!
6
0
0

Teks penuh

(1)

meromorphic starlike functions

Eugen Dr˘aghici

Abstract

LetU ={zC:|z|<1}be the unit disc in the complex plane.Let Σk be

the class of meromorphic functionsf inU having the form:

f(z) = 1

z+αkz

k+

· · ·,0<|z|<1, k0

A functionf Σ = Σ0 is called starlike if

Re

−zff(′(zz))

>0 inU

Let denote by Σ∗

k the class of starlike functions inΣk and by An the class of holomorphic functionsgof the form:

g(z) =z+an+1zn+1+· · · , z∈ U, n1

With suitable conditions on k, pN,on cR,on γ C and on the function

gAk+1, the author shows that the integral operator Lg,c,γ: Σ→Σ defined by:

Kg,c(f)(z)≡

c gc+1(z)

Z z

0 f(t)g

c(t)eγtp

dt, z∈ U, f Σ

maps Σ∗

k into Σ∗l, where l= min{p−1, k}.

The author aknowleges support received from the“Conference of the German Academies of

Sciences”( Konferenz der Deutschen Akademien der Wissenschaften ), with funds provided by the “Volkswagen Stiftung”.This work was done while the author was visiting the University of Hagen in Germany.

1991Mathematics Subject Classification : Primary: 30C80,30C45,Secondary : 30D.

Key words and phrases : meromorphic starlike function,subordination.

(2)

1

Introduction

Let U = {z C : |z| < 1} be the unit disc in the complex plane.We denote by Σk the class of meromorphic functions f in U having the form:

f(z) = 1

k the class of starlike functions in Σk. LetAn be the class of functions

g(z) = z+an+1zn+1+· · · , z ∈ U, n ≥1

that are holomorphic inU.Letk, pN, c >0,γ C andg Ak+1 with g(z)/z6= 0 in U.Let us define the following integral operators:

Ig,c , Jg,c , Kg,c andLg,c,γ : Σ→Σ

In [1] and [2] the authors found sufficient conditions on cand g so that

Ig,c(Σ∗k)⊂Σ∗k , Jg,c(Σ∗k)⊂Σ∗k andKg,c(Σ∗k)⊂Σ∗k

The purpose of this article is to find sufficient conditions on g, c and γ so that Lg,c,γ(Σ∗k) ⊂ Σ∗l where l = min{p−1, k}. For γ = 0 we obtain Theorem 1 from [2]. In section 4 we give also a new example of an integral operator that preserves meromorphic starlike functions.

2

Preliminaries

For proving our main result we will need the following definitions and lemmas. If f and g are holomorphic functions inU and g is univalent, then we say thatf is subordinate to g, written f g or f(z) g(z) if f(0) = g(0) andf(U)g(U).

The holomorphic function f, with f(0) = 0 and f′(0) 6= 0 is starlike in U (i.e.

(3)

Lemma 1 [6] Let hbe starlike in U and let p(z) = 1 +pnzn+· · · be holomorphic

in U.If

zp′(z)

p(z) ≺h(z)

then pq, where

q(z) = exp1 n

Z z

0 h(t)

t dt.

This result is due to T.J.Suffridge and the proof can be found in [6]

Lemma 2 [3] Let the function ψ :C2× U →C satisfy the condition:

Reψ[is, t;z] 0

for all real s and t≤ −n(1 +s2)/2

If p(z) = 1 +pnzn+· · · is holomorphic in U and

Reψ[p(z), zp′(z);z]>0, z∈ U

then Rep(z)>0 in U.

Lemma 3 [4] LetB andC be two complex functions in the unit discU satisfying:

|ImC(z)| ≤nReB(z), z ∈ U , nN

If p(z) = 1 +pnzn+· · · is holomorphic in U and

Re [B(z)zp′(z) +C(z)p(z)]>0 , z ∈ U

then Rep(z)>0 in U.

We mention here that Lemma 3 is a particular case of Lemma 2. More general forms of this two lemmas and proofs can be found in [5]

3

Main result

Theorem 1 Let γ C, c > 0 and let p and k be positive integers. If g Ak+1

is starlike and g(z)/z 6= 0in U and if G(z) =zg′(z)/g(z) satisfies:

Im "

(c+ 1)g′(z)g(z)

z #

e−γzp

#

≤(k+ 1) Reg(z) z e

−γzp

, z ∈ U (5)

[2 + (k+ 1)(c+ 1)] ReG(z)>2 [1 +pReγzp] , z ∈ U (6)

(c+ 1) [ImzG′(z)2 ImG(z) Re (1G(z) +γpzp)]2

≤ ≤ {[2 + (k+ 1)(c+ 1)] ReG(z)2 [1 +pReγzp]

·nhk+1+2(c+1)|G(z)|2iReG(z)+2(c+1)RezG′(z)G(z)2(c+1)|G(z)|2(1+pReγzp)o

(7)

(4)

Proof Let f Σ∗ with its principal branch. Sincek+ 12 we deduce:

Reφ(z) =Rezf(z)>0 in U

Then, from (5) and Lemma 3 it follows immediately that: ReP(z) = Re[zF(z)]>0 inU. Hence, the function

is holomorphic in U and (8) becomes:

F(z) [(c+ 1)G(z)p(z)] = czf(z)e γzp

g(z)

Taking the logarithmic derivative, we obtain:

(5)

From (9) we have:

Reψ[p(z), zp′(z);z]>0 in U (10)

In order to show that (10) implies Rep(z) > 0 in U it is sufficient to check the inequality:

Reψ[is, t;z] = Ret−(c+ 1)zG

(z)

(c+ 1)G(z)is + 1−ReG(z) + Reγpz p

≤0 (11)

for all real s and t ≤ −(k+ 1)(c+ 1)/2 and then to apply Lemma 2. If we denote:

D=|(c+ 1)G(z)is|2 = (c+ 1)2|G(z)|2

−2(c+ 1) ImG(z) +s2 (12)

then we have:

Reψ[is,t;z] = 1

DRe{t(c+1)G(z) +ist−(c+1)

2zG(z)G(z)(c+1)iszG(z) +

+(1G(z)+γpzp)h(c+1)G(z)+isi[(c+1)G(z)is]}

Because t≤ −(k+ 1)(1 +s2)/2 and g is starlike( i.e. ReG(z)>0 in U ), we have:

2DReψ[is, t;z]≤ −{s2[(2 + (k+ 1)(c+ 1)) ReG(z)2 (1+pReγzp)]

−2s(c+ 1)[ImzG′(z)2 ImG(z) Re (1G(z)+γpzp)]+

+(c+ 1)hk+ 1 + 2(c+ 1)|G(z)|2ReG(z)+2(c+ 1) RezG′(z)G(z)i

−2(c+ 1)2|G(z)|2(1 +pReγzp)}

Then, from (6) and (7) it follows immediately that Reψ[is, t;z] 0 for all real s and t≤ −(k+ 1)(s2+ 1)/2

Hence,byLemma 2 we obtain that p has positive real part in U, and thusF Σ∗

k and the theorem is proved.

4

Some particular cases

1.

If we letγ = 0, by applyingTheorem 1we obtain the result from [2].

2.

If we letc=k =p1 = 1, g(z) =zexpλz2

2 andγ =−λ/2, thenG(z) = 1+λz 2

and for |λ|<1 we have immediately that ReG(z) >0 in U. Hence,g is starlike in

U for |λ|<1

Letλz2 =ρe,0< ρ <1, θR and let τ =ρsinθ(1,1). Condition (5) is equivalent to:

|2ρsin(θ+τ) + sinτ| ≤2 cosτ

It is easy to show that this inequality holds for allθR and ρ(21)/2. Condition (6) is equivalent to:

(6)

which is true for all ρ(0,1). Condition (7) is equivalent to:

ρ4sin22θ4ρ3cos3θ3ρ2(2 cos2θ+ 1)6ρcosθ10

It is easy to show that this last inequality holds for all ρ(√21)/2). Hence, by applying Theorem 1 we deduce the following result:

Corollary 1 If λCwith|λ| ≤(21)/2 = 0.2071. . . and ifL is the integral

operator defined by F =L(f), where

F(z) = 1 z2eλz2

Z z

0 tf(t)dt

then L(Σ∗

1)⊂Σ∗1.

References

[1] H.Al–Amiri, P.T.Mocanu, Integral operators preserving meromorphic starlike

functions, Mathematica (Cluj-Romania) (to appear).

[2] E.Draghici,An integral operator preserving meromorphic starlike functions, (to appear).

[3] S.S.Miller, P.T.Mocanu, Second order differential inequalities in the complex

plane, J.Math.Anal.Appl. 65(1978), pp.289–305.

[4] S.S.Miller, P.T.Mocanu,Differential subordinations and inequalities in the com-plex plane, J. of Diff.Equs., 67, 2(1987), pp 199–211.

[5] S.S.Miller, P.T.Mocanu,The theory and applications of second order differential subordinations, Studia Univ. Babe¸s-Bolyai, Math., 34, 4(1989), pp. 3–33.

[6] T.J.Suffridge,Some remarks on convex maps of the unit disc, Duke Math. J. , 37(1979), pp. 775–777.

Department of Mathematics “Lucian Blaga”–University 2400, Sibiu

Referensi

Dokumen terkait

Kabupaten Hulu Sungai Seiatan, tanggal 27 September 2011, dengan ini diumumkan bahwa hasil. pengadaan barang/jasa untuk kegiatan dan pekeriaan sebagaimana tersebut

Sedangkan bangunan club house dengan masa bangunan memanjang yang mengarah utara-selatan, dimana arah selatan memiliki potensi view padang

Fitriyani | Analisa Strategi Pemasaran Ekspor CV Amartha Indotama Dalam Memasuki Pasar Global 149 perusahaan, dan tidak jarang pembeli lama merekomendasikan produk perusahaan

[r]

Koreksi aritmatika telah dilakukan terhadap 1 (satu ) perusahaan yang kelengkapan dokumen administrasi dan teknis telah memenuhi syarat , didapat hasil sebagai berikut: No

Laporan kasus ini bertujuan untuk merawat lesi periapikal pada gigi insisivus lateralis pada maksila kanan dengan nekrosis pulpa disertai lesi periapikal nekrosis pulpa

Diamond Peel Room Ruangan untuk perawatan kulit menggunakan Kristal alumunium- Penghawaan dan pencahayaan yang baik, tersedia perabotan yang Berdekatan dengan ruangan

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Nomor : 20/BA/POKJA.KANTOR/UPP.PGN-17 tanggal 06 Juni 2017 dan Berita Acara Penetapan Pemenang Nomor :