• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
8
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

SOME OBSERVATIONS ON A CLASS OF D-LINEAR CONNECTIONS ON THE TANGENT BUNDLE

Monica Purcaru and Mirela Tˆarnoveanu

Abstract.The present paper deals with some problems on the conformal structure on TM. The concepts of conformal structure and d-linear connection compatible with the conformal structure, corresponding to two 1-forms are introduced in the tangent bundle. The problem of determining the set of all d-linear connections compatible with the conformal structure, corresponding to two 1-forms is solved for an arbitrary nonlinear connection.Some important particular cases are considered.

2000 Subject Classification:53C05, 53C15, 53C21, 53C60, 53B05, 53B35, 53B40.

Keywords and phrases:tangent bundle, conformal structure, d-linear con-nection compatible with the conformal structure, corresponding to two 1-forms.

1. Preliminaries

The geometry of the tangent bundle (T M, π, M) has been studied by M. Matsumoto in [4], by R. Miron and M. Anastasiei in [5], [6], by R. Miron and M. Hashiguchi in [7], by V. Oproiu in [8], by Gh. Atanasiu and I. Ghinea in [1], by R. Bowman in [2], by K. Yano and S. Ishihara in [10],etc. Concerning the terminology and notations, we use those from [6].

Let M be a real n-dimensional C∞-differentiable manifold and (T M, π, M)

its tangent bundle.

If (xi) is a local coordinates system on a domain U of a chart on M, the

induced system of coordinates on π−1(U) is (xi, yi),(i= 1, ..., n).

Let N be a nonlinear connection onT M, with the coefficientsNi

j(x, y),(i, j =

(2)

2. The notion of d-linear connection compatible with a conformal structure

We consider on T M a metrical (almost symplectic) structure G defined by: G(x, y) = 1

2gij(x, y)dx

i

∧dxj +1

2g˜ij(x, y)δy

i

∧δyj, (1) where (dxi, δyi),(i = 1, ..., n) is the dual basis of δ

δxi,

∂ ∂yi

, and (gij(x, y),

˜

gij(x, y)) is a pair of given d-tensor fields on T M, of the type (0,2), each of

them nondegenerate and symmetric (alternate), in the last case it is necessary that n=2n’.

We asociate to the lift G the Obata’s operators:

(

Ωir

sj = 12(δ

i

sδjr−gsjgir), Ω∗sjir = 12(δ

i

sδjr+gsjgir),

˜ Ωir

sj = 12(δ

i

sδjr−˜gsjg˜ir), Ω˜∗sjir = 12(δ

i

sδjr+ ˜gsjg˜ir).

(2) Obata’s operators have the same properties as the ones associated with a Finsler space [7].

Let S2(T M) be the set of all symmetric d-tensor fields, of the type (0,2) on T M (A2(T M) be the set of all alternate d-tensor fields, of the type (0,2) on T M). As is easily shown, the relations on S2(T M) (A2(T M)) defined by (3):

 

(aij ∼bij)⇔

(∃)λ(x, y)∈ F(T M), aij(x, y) =e2λ(x,y)bij(x, y)

,

˜

aij ∼˜bij

⇔(∃)µ(x, y)∈ F(T M),a˜ij(x, y) = e2µ(x,y)˜bij(x, y)

, (3) is an equivalence relation on S2(T M) (A2(T M)).

Theorem 1. The equivalent class: Gˆ of S2(T M)/∼ (A2(T M)/∼) to which

the metrical (almost symplectic) tensor field G belongs, is called conformal structure on T M.

Thus:

ˆ

G={G′|G′ij(x, y) = e2λ(x,y)g

ij(x, y)andG˜′ij(x, y) = e

2µ(x,y)˜g

ij(x, y)}. (4) Definition 1. A d-linear connection, D, on T M, with local coefficients DΓ(N) = (Li

(3)

T M:

ω =ωidxi+ ˙ωiδyi, ω˜ = ˜ωidxi+ ˙ω˜iδyi such that: (

gij|k = 2ωkgij, gij|k = 2 ˙ωkgij,

˜

gij|k = 2˜ωkg˜ij, ˜gij|k = 2 .

˜ ωkg˜ij,

(5)

where and denote the h-and v-covariant derivatives with respect to D,is said to be compatible with the conformal structure G, corresponding to the 1-formsˆ ω,ω˜ and is denoted by: DΓ(N, ω,ω).˜

3. The set of all d- linear connections compatible with the

conformal structure ˆG, corresponding to two 1-forms

Let N0 and N be two nonlinear connections on TM, with the coefficients (

0 N i

(1) j,

0 N i

(2) j) and (N i

(1) j, N i

(2) j) respectively.

Let D0Γ(N0) = ( 0 Li

jk,

0 ˜ Li

jk,

0 ˜ Ci

jk,

0 Ci

jk) be the local coefficients of a fixed

d-linear connection D0 on T M. Then any d-linear connection, D, on T M, with local coefficients: DΓ(N) = (Li

jk,L˜ijk,C˜ijk, Cijk),can be expresed in the form: 

                   

                   

Ni j =

0 Ni

j −Aij,

Li jk =

0 Li

jk +Alk

0 ˜ Ci

jl −Bijk,

˜ Li

jk =

0 ˜ Li

jk +Alk

0 Ci

jl −B˜ijk,

˜ Ci

jk =

0 ˜ Ci

jk −D˜ijk,

Ci jk =

0 Ci

jk −Dijk,

Al j

0

|k

= 0,

(6)

where (Ai

j, Bijk,B˜ijk,D˜ijk, Dijk) are components of the difference tensor fields

of DΓ(N) fromD0 Γ(N0), [4] and 0, 0

denotes the h-and v-covariant derivatives with respect to D0.

(4)

Theorem 2.Let D0 be a given d-linear connection on T M, with local co-efficients DΓ(0 N0) = (

0 Li jk, 0 ˜ Li jk, 0 ˜ Ci jk, 0 Ci

jk). Then set of all d-linear connections

compatible with the conformal structureG, corresponding to the 1-formsˆ ω and ˜

ω, with local coefficients DΓ(N, ω,ω) = (L˜ i

jk,L˜ijk,C˜ijk, Cijk) is given by:                                              Ni j = 0 Ni

j −Xij,

Li jk = 0 Li jk + 0 ˜ Ci

jm Xmk+ 12g

is(g sj

0

|k+gsj

0 |m Xm

k)−δijωk+ ΩirhjXhrk,

˜ Li jk = 0 ˜ Li jk + 0 Ci

jm Xmk+ 12g˜

isg sj

0

|k+ ˜gsj

0 |m Xm

k)−δijω˜k+ ˜ΩirhjX˜hrk,

˜ Ci jk = 0 ˜ Ci

jk +12gisgsj

0 |k −δi

jω˙k+ ΩirhjY˜hrk,

Ci jk =

0 Ci

jk +12g˜

isg˜ sj

0 |k −δi

jω˙˜k+ ˜ΩirhjYhrk,

Xi j 0 |k = 0, (7)

where Xi

j, Xijk, X˜ijk, Y˜ijk, Yijk are arbitrary tensor fields on T M, ω =

ωidxi + ˙ωiδyi and respective ˜ω = ˜ωidxi + ˙˜ωiδyi are arbitrary 1-forms in T M

and 0, 0

denote the h-and respective v-covariant derivatives with respect toD0.

Particular cases

1. IfXi

j =Xijk = ˜Xijk = ˜Yijk =Yijk = 0 in Theorem 2, we have:

Theorem 3.Let D0 be a given d-linear connection onT M, with local coeffi-cients DΓ(0 N0) = (

0 Li jk, 0 ˜ Li jk, 0 ˜ Ci jk, 0 Ci

jk). Then the following d-linear connection

D, with local coefficients DΓ(N , ω,0 ω) = (L˜ i

jk,L˜ijk,C˜ijk, Cijk) given by (8) is

compatible with the conformal structureG, corresponding to the 1-formsˆ ω and ˜

(5)

                         Li jk = 0 Li

jk +12g

isg sj

0

|k−δ i jωk,

˜ Li jk = 0 ˜ Li

jk +12˜gis˜g sj

0

|k−δ i jω˜k,

˜ Ci jk = 0 ˜ Ci

jk +12g

isg sj

0 |k −δi

jω˙k,

Ci jk =

0 Ci

jk +12g˜isg˜sj

0 |k −δi

jω˙˜k,

(8)

where 0, 0

denote the h-and respective v-covariant derivatives with respect to the given d-linear connection D0 and ω = ωidxi + ˙ωiδyi and respective

˜

ω = ˜ωidxi+ ˙˜ωiδyi are two given 1-forms in T M.

2. If we take a metrical (almost symplectic) d-linear connection as D0 in Theorem 3, then (8) becomes:

                     Li jk = 0 Li

jk −δjiωk,

˜ Li jk = 0 ˜ Li

jk −δjiω˜k,

˜ Ci jk = 0 ˜ Ci

jk −δjiω˙k,

Ci jk =

0 Ci

jk −δjiω˙˜k.

(9)

3. If we consider a d-linear connection compatible with conformal structure ˆ

G, corresponding to the 1-forms ω and ˜ω, as D0 in Theorem 2, we have

Theorem 4.Let D0 be a given d-linear connection compatible with confor-mal structure G, corresponding to the 1-formsˆ ω and ω˜ on T M, with local coefficients: D0Γ(N , ω,0 ω) = (˜

0 Li jk, 0 ˜ Li jk, 0 ˜ Ci jk, 0 Ci

jk). The set of all d-linear

con-nections compatible with conformal structure G, corresponding to the 1-formsˆ ω and ω˜ on T M, with local coefficients DΓ(N, ω,ω) = (L˜ i

jk,L˜ijk,C˜ijk, Cijk) is

(6)

                    

                   

Ni j =

0 Ni

j −Xij,

Li jk =

0 Li

jk +(

0 ˜ Ci

jm +δijω˙m)Xmk+ +ΩirhjXhrk,

˜ Li

jk =

0 ˜ Li

jk +(

0 Ci

jm +δijω˙˜m)Xmk+ ˜ΩirhjX˜hrk,

˜ Ci

jk =

0 ˜ Ci

jk +ΩirhjY˜hrk,

Ci jk =

0 Ci

jk + ˜ΩirhjYhrk,

Xi j

0

|k

= 0,

(10)

where Xi

j, Xijk, X˜ijk, Y˜ijk, Yijk are arbitrary tensor fields on T M, ω =

ωidxi + ˙ωiδyi and respective ˜ω = ˜ωidxi + ˙˜ωiδyi are two arbitrary 1-forms in

T M and0, 0

denote h-and respective v-covariant derivatives with respect toD0. The result obtained in this particular case support the findings of R.Miron and M.Hashiguchi for the Finsler connections in their paper [7].

4. If we take Xi

j = 0 in Theorem 3 we obtain a result given by R.Miron

and M.Anastasiei in [6]:

Theorem 5.Let D0 be a given d-linear connection compatible with confor-mal structure G, corresponding to the 1-formsˆ ω and ω˜ on T M, with local coefficients: D0Γ(N , ω,0 ω) = (˜

0 Li

jk,

0 ˜ Li

jk,

0 ˜ Ci

jk,

0 Ci

jk). The set of all d-linear

con-nections compatible with conformal structure G, which preserve the nonlinearˆ connection N0, corresponding to the 1-forms ω and ω˜ on T M, with local coef-ficients DΓ(N , ω,0 ω) = (L˜ i

(7)

            

           

Li jk =

0 Li

jk +ΩirhjXhrk,

˜ Li

jk =

0 ˜ Li

jk + ˜ΩirhjX˜hrk,

˜ Ci

jk =

0 ˜ Ci

jk +ΩirhjY˜hrk,

Ci jk =

0 Ci

jk + ˜ΩirhjYhrk,

(11)

where Xi

j, Xijk, X˜ijk, Y˜ijk, Yijk are arbitrary tensor fields on T M. References

[1.] Atanasiu, Gh., Ghinea, I., Connexions Finsleriennes G´en´erales Presque Symplectiques, An. St. Univ. “Al. I. Cuza”, Ia¸si, Sect. I a Mat. 25 (Supl.), 1979, 11-15.

[2.] Bowman, R.,Tangent Bundles of Higher Order, Tensor, N.S., Japonia, 47, 1988, 97-100.

[3.] Cruceanu, V., Miron, R., Sur les connexions compatible `a une

Structure Mˆetrique ou Presque symplectique, Mathematica (Cluj),9(32), 1967, 245-252.

[4.] Matsumoto, M.,The Theory of Finsler Connections, Publ. of the

Study Group of Geometry 5, Depart.Math., Okayama Univ., 1970, XV+220 pp.

[5.] Miron, R., Introduction to the Theory of Finsler Spaces, The Proc. of Nat. Sem. on Finsler Spaces, Bra¸sov, 1980, 131-183.

[6.] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces:

Theory and Applications,Kluwer Acad. Publ., FTPH, no.59, 1994.

[7.] Miron R., Hashiguchi, M., Conformal Finsler Connections, Rev.

Roumaine Math. Pures Appl., 26, 6(1981), 861-878.

[8.] Oproiu, V., On the Differential Geometry of the Tangent Bundle, Rev. Roum. Math. Pures Appl., 13, 1968, 847-855.

[9.] Purcaru, M., Structuri geometrice remarcabile ˆın geometria La-grange de ordinul al doilea, Tez˘a de doctorat, Univ. “Babe¸s-Bolyai” Cluj-Napoca, 2002.

(8)

M. Purcaru and M. Tˆarnoveanu Department of Algebra and Geometry ”Transilvania” University

Bra¸sov, Romania

Referensi

Dokumen terkait

Bagian ini menguraikan suatu perluasan metoda yang sebelumnya melaporkan ke kendali dan penilaian keamanan dinamis dari sistem kuasa otonomi dengan diesel yang lebih

Pada hari ini Kamis tanggal Dua belas bulan Mei tahun Dua ribu enam belas, kami Pokja Pengadaan Barang BBRVBD Cibinong ULP Kementerian Sosial RI sehubungan

CV.BUDI BERSAUDARA merupakan perusahaan yang bergerak dalam bidang pembuatan roti sejak tahun 2008. Perusahaan ini memproduksi tiga macam jenis roti seperti Roti isi,Roti

Berdasarkan Berita Acara Nomor : 08/BA/DED-2/RUTIN/V/2017 tanggal 29 Mei 2017 mengenai Hasil Evaluasi Dokumen Kualifikasi Pengadaan Jasa Konsultansi Reviu Detail

Sejarah ketatanegaraan Indonesia mencatat, sampai saat ini terdapat empat produk hukum yang mengatur mengenai hierarki peratran perundang-undangan, yaitu Ketetapan MPRS

Hal tersebut tertuang dalam Pasal 18 ayat (1) huruf a UU Pemberantasan Tindak Pidana Korupsi yang menyatakan bahwa: “Perampasan barang bergerak yang berwujud atau tidak berwujud

(Selasa, 08-08-2017), kami yang bertandatangan dibawah ini Kelompok Kerja Unit Layanan Pengadaan Kantor Kesyahbandaran Dan Otoritas Pelabuhan Kelas II Benoa Paket

Sebelum mengerjakan soal, tulislah dahulu nomor tes anda pada lembar jawab yang telah disediakan4. Tulislah jawaban anda pada lembar jawab yang telah disediakan