• Tidak ada hasil yang ditemukan

Paper-7-Acta24.2010. 117KB Jun 04 2011 12:03:14 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-7-Acta24.2010. 117KB Jun 04 2011 12:03:14 AM"

Copied!
10
0
0

Teks penuh

(1)

ON ORLICZ FUNCTIONS OF GENERALIZED DIFFERENCE SEQUENCE SPACES

Ahmad H. A. Bataineh and Alaa A. Al-Smadi

Abstract. In this paper, we define the sequence spaces : [V, M, p,n u, s], [V, M, p,∆nu, s]0 and [V, M, p,∆un, s]∞, where for any sequence x = (xn), the

dif-ference sequence ∆x is given by ∆x= (∆xn)∞n=1 = (xn−xn−1)∞n=1. We also

exam-ine some inclusion relations between these spaces and discuss some properties and results related to them.

2000Mathematics Subject Classification:40D05, 40A05. 1.Introduction and definitions

LetXbe a linear space. A functionp:X Ris called paranorm if the following are satisfied :

(i) p(0)0

(ii)p(x)0 for all xX

(iii) p(x) =p(x) for all xX

(iv)p(x+y)p(x) +p(y) for all xX ( triangle inequality )

(v) if (λn) is a sequence of scalars withλn→λ(n→ ∞) and (xn) is a sequence of vectors withp(xn−x)0 (n→ ∞),thenp(λnxn−λx)→0 (n→ ∞) ( continuity of multiplication by scalars ).

A paranorm pfor which p(x) = 0 impliesx= 0 is called total. It is well known that the metric of any linear metric space is given by some total paranorm (cf.[11]). Let Λ = (λn) a nondecreasing sequence of positive reals tending to infinity and

λ1 = 1 andλn+1≤λn+ 1.

The generalized de la Vall˙ee-Poussin means is defined by :

tn(x) = 1

λn X

k∈In

xk,

(2)

We write

[V, λ]0 = {x= (xk) : lim n

1

λn X

k∈In

|xk|= 0}

[V, λ] = {x= (xk) : lim n

1

λn X

k∈In

|xk−le|= 0, for somel∈C}

and

[V, λ]∞={x= (xk) : sup n

1

λn X

k∈In

|xk |<∞}.

For the set of sequences that are strongly summable to zero, strongly summable and strongly bounded by the de la Vall˙ee-Poussin method. If λn = n for n = 1,2,3,· · ·, then these sets reduce toω0, ωandω∞introduced and studied by Maddox

[5].

Following Lidenstrauss and Tzafriri [4], we recall that an Orlicz function M is continuous, convex, nondecreasing function defined for x 0 such that M(0) = 0 and M(x)0 forx >0.

If convexity of M is replaced by M(x+y) M(x) +M(y),then it is called a modulus function, defined and studied by Nakano [8], Ruckle [10], Maddox [6] and others.

An Orlicz function M is said to satisfy the ∆2−condition for all values of u, if

there exist a constant K >0 such that

M(2u)KM(u) (u0).

It is easy to see that always K > 2. The ∆2−condition is equivalent to the

satisfaction of the inequality

M(lu)KlM(u),

for all values of uand for l >1.

Lidenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the Orlicz sequence space :

lM :={x= (xk) :

X

k=1

M(|xk|

ρ )<∞, for someρ >0},

(3)

kxkM= inf{ρ >0 :

X

k=1

M(|xk|

ρ )≤1}.

If M(x) = xp,1 p < , the space lM coincide with the classical sequence space lp.

Parashar and Choudhary [9] have introduced and examined some properties of four sequence spaces defined by using an Orlicz function M, which generalized the well-known Orlicz sequence space lM and strongly summable sequence spaces [C,1, p],[C,1, p]0 and [C,1, p]∞.

Let M be an Orlicz function, p = (pk) be any sequence of strictly positive real numbers and u = (uk) be any sequence such that uk 6= 0(k = 1,2,· · ·) . Then Alsaedi and Bataineh [1] defined the following sequence spaces :

[V, M, p, u,∆] ={x= (xk) : limnλ1n

P∞ k∈In[M(

|uk∆xk−le|

ρ )]p

k = 0,

for somel andρ >0},

[V, M, p, u,∆]0 = {x = (xk) : limnλ1n

P∞ k∈In[M(

|uk∆xk|

ρ )]p

k = 0, for someρ >

0},

and

[V, M, p, u,∆]∞={x= (xk) : sup n

1

λn

X

k∈In

[M(|uk∆xk|

ρ )]

pk <

∞, for someρ >0}.

Now, ifnis a nonnegative integer andsis any real number such thats0,then we define the following sequence spaces :

[V, M, p,∆nu, s] ={x= (xk) : limnλ1n

P∞ k∈Ink

−s[M(|∆n uxk−le|

ρ )]p

k = 0,

for somel, ρ >0 and s0},

[V, M, p∆nu, s]0 ={x= (xk) : limnλ1n

P∞ k∈Ink

−s[M(|∆n uxk|

ρ )]p

k = 0,

for someρ >0 ands0},

and

[V, M, p,∆nu, s]∞={x= (xk) : supnλ1n

P∞ k∈Ink

−s[M(|∆n uxk|

ρ )]p

k <

∞,

for someρ >0 ands0},

(4)

∆1ux=ukxk−uk+1xk+1,

∆2ux= ∆(∆1ux),

.. .

∆nux= ∆(∆nu−1x),

so that

∆nux= ∆nukxk= n X

r=0

(1)r

n r

uk+rxk+r.

Ifn= 0 ands= 0,then these gives the spaces of Alsaedi and Bataineh [1]. 2.Main results

We prove the following theorems :

Theorem 1. For any Orlicz function M and any sequence p= (pk) of strictly

positive real numbers, [V, M, p,∆nu, s],[V, M, p,∆un, s]0 and [V, M, p,∆nu, s]∞ are

lin-ear spaces over the set of complex numbers.

Proof. We shall prove only for [V, M, p,∆nu, s]0.The others can be treated simi-larly. Letx, y[V, M, p,∆nu, s]0 and α, β∈C. In order to prove the result, we need

to find some ρ >0 such that : lim

n 1

λn X

k∈In

k−s[M(|α∆ n

uxk+β∆nuyk|

ρ )]

pk

= 0.

Since x, y[V, M, p,∆n

u, s]0,there exists some positiveρ1 and ρ2 such that :

lim n

1

λn X

k∈In

k−s[M(|∆ n uxk|

ρ1

)]pk

= 0 and lim n

1

λn X

k∈In

k−s[M(|∆ n uyk|

ρ2

)]pk

(5)

Define ρ= max(2|α|ρ1,2|β |ρ2).SinceM is nondecreasing and convex, This completes the proof.

(6)

Suppose that xnm 6= 0 for some m∈In,then (

which is a contradiction. Therefor xnm = 0 for all m. Finally we prove that scalar

multiplication is continuous. Letµ be any complex number, then by definition,

g(µx) = inf{ρpn/H

(7)

is continuous at zero. So there exists 1 > δ > 0 such that | f(t) |< (ǫ/2)H for

Theorem 3. For any Orlicz function M which satisfies the ∆2−condition, we have [V, λ,∆nu, s][V, M,∆nu, s],where and convex, it follows that

(8)

Hence

X

2

M(yk)≤Kδ−1M(2)λnTn which together with P

1 ≤ ǫλn yields [V, λ,∆nu, s] ⊆ [V, M,∆nu, s]. This completes the proof.

The method of the proof of Theorem 3 shows that for any Orlicz function

M which satisfies the ∆2−condition, we have [V, λ,∆nu, s]0 ⊆ [V, M,∆nu, s]0 and

[V, λ,∆nu, s]∞⊆[V, M,∆nu, s]∞,where

[V, λ,∆nu, s]0 ={x= (xk) : lim n

1

λn X

k∈In

k−s|∆nuxk|= 0}, and

[V, λ,∆nu, s]∞={x= (xk) : sup n

1

λn X

k∈In

k−s|∆nuxk|<∞}.

Theorem 4. Let 0pk≤qk and (qk/pk) be bounded. Then [V, M, q,∆nu, s]⊂ [V, M, p,∆nu, s].

Proof. The proof of Theorem 4 used the ideas similar to those used in proving Theorem 7 of Parashar and Choudhary [9].Mursaleen [7] introduced the concept of statistical convergence as follows :

A sequence x= (xk) is said to beλ−statistically convergent or sλ−statistically convergent to L if for everyǫ >0,

lim n

1

λn | {

kIn:|xk−L|≥ǫ} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this case we writesλ−limx=Lorxk →L(sλ) andsλ={x:∃L∈R:sλ−limx=L}.In a similar way, we say that a sequence x = (xk) is said to be (λ,∆nu)−statistically convergent or sλ(∆nu)−statistically convergent toL if for everyǫ >0,

lim n

1

λn | {

kIn:|∆nuxk−Le|≥ǫ} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this case we write sλ(∆nu)−limx = Le or ∆nuxk → Le (sλ) and sλ(∆nu) = {x : ∃L ∈ R:sλ(∆n

u)−limx=Le}.

(9)

Proof. Let x[V, M,∆nu, s] and ǫ >0.Then 1

λn X

k∈In

k−sM(|∆ n

uxk−le|

ρ ) ≥

1

λn

X

k∈In,|∆nuxk−le|≥ǫ

M(|∆ n

uxk−le|

ρ )

≥ 1

λn

M(ǫ/ρ).| {kIn:|∆nuxk−le|≥ǫ} | from which it follows thatxsλ(∆nu).

To show that sλ(∆nu) strictly contain [V, M,∆nu, s], we proceed as in [7]. We define x= (xk) by (xk) =kifn−[√λn] + 1≤k≤n and (xk) = 0 otherwise. Then

x /l∞(∆nu, s) and for everyǫ (0< ǫ≤1), 1

λn | {

kIn:|∆unxk−0|≥ǫ} |= [√λn]

λn →

0 as n→ ∞

i.e. x 0 (sλ(∆nu)), where [ ] denotes the greatest integer function. On the other hand,

1

λn X

k∈In

k−sM(|∆ n

uxk−0|

ρ )→ ∞ asn→ ∞

i.e. xk90 [V, M,∆nu, s].This completes the proof.

References

[1] Alsaedi, Ramzi S. and Bataineh, Ahmad H. A., Some generalized difference sequence spaces defined by a sequence of Orlicz functions, Aust. J. Math. Analy. & Appli. (AJMAA), Volume 5, Issue 2, Article 2, pp. 1-9, 2008.

[2] Leindler, L.,Uber de la Pousinsche summierbarkeit allgemeiner Orthogonalrei-¨ hen, Acta Math. Hung. 16(1965),375-378.

[3] Lindenstrauss, J., Some aspects of the theory of Banach spaces, Advances in Math., 5 ( 1970 ), 159-180.

[4] Lindenstrauss, J., and Tzafriri, L., On Orlicz sequence spaces,Israel J. Math., 10 ( 3 ) ( 1971 ), 379-390.

[5] Maddox, I. J.,Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2), 18(1967), 345-355.

(10)

[7] Mursaleen,λ-statistical convergence, Math. Slovaca 50, No. 1(2000), 111-115. [8] Nakano, H., Concave modulus,J. Math. Soc. Japan 5(1953), 29-49.

[9] Parashar, S. D., and Choudhary, b.,Sequence spaces defined by Orlicz functions,

Indian J. pure appl. Math., 25 ( 4 ) ( 1994 ), 419-428.

[10] Ruckle, W. H.,FK spaces in which the sequence of coordinate vectors is bounded,

Can. J. Math., 25 ( 5 ) ( 1973 ), 973-978.

[11] Wilansky, A., Summability through Functional Analysis, North-Holland Math. Stud., 85(1984).

Ahmad H. A. Bataineh and Alaa A. Al-Smadi Faculty of Science

Department of Mathematics Al al-Bayt University

Referensi

Dokumen terkait

[r]

Lebih spesifik tentang aktivisme filantropi yang dilakukan PKO, berdasarkan catatan Bambang Purwanto bahwa PKO milik Muhammad- iyah di Yogyakarta pada pertengahan 1920an yang

Pada perusahaan ini tidak pernah diadakan suatu pengukuran kepuasan kerja.Namun dapat disimpulkan secara langsung bahwa karyawan yang bekerja pada perusahaan

Jenis penelitian ini menggunakan jenis penelitian kuantitatif. Teknik pengumpulan data yang digunakan adalah kuisioner. Populasi yang digunakan dalam penelitian ini

Pada hasil olahan data antara variabel modal sosial dan inovasi produk, ternyata didapatkan hasil informasi bahwa antara modal sosial pengusaha dengan indikator

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

hwa setelah diadakan penelitian oleh panitia penga g Bina Marga, menurut ketentuan–ketentuan yang be. PP.PWS.JALAN/BM/DPU/2011, tanggal 29 Sept erturut-turut

Dari tabel di atas, dapat dilihat bahwa pemilik usaha mikro dan kecil yang memiliki visionary tinggi, ternyata juga sering melakukan perubahan pada pengendalian/kontrol