• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
4
0
0

Teks penuh

(1)

Documenta Math. 191

Erratum for

“On the Parity of Ranks of Selmer Groups III”

cf. Documenta Math. 12 (2007), 243–274

Jan Nekov´aˇr

Received: March 31, 2008

Communicated by Ulf Rehmann

Abstract. In the manuscript “On the Parity of Ranks of Selmer Groups III” Documenta Math. 12 (2007), 243–274, [1], Remark 4.1.2(4) and the treatment of archimedeanε-factors in 4.1.3 are incor-rect. Contrary to what is stated in 0.3, the individual archimedean

ε-factorsεu(M) (u| ∞) cannot be expressed, in general, in terms of

Mp, but their product can.

2000 Mathematics Subject Classification: 11G40 11R23

To motivate the corrections below, consider a motive M (pure of weight w) over F with coefficients in L. Set Se∞ ={τ : F ֒→ C}, Sep ={σ: F ֒→Qp} and denote byr∞:Se∞−→S∞,rp:Sep −→Sp the canonical surjections. Fix an embedding ι : L ֒→ C and an isomorphism λ : Qp −→∼ C such that p is induced by ιp=λ−1◦ι:L ֒→Qp. To eachv∈Sp then corresponds a subset

S∞(v) ={r∞(λ◦σ)|rp(σ) =v} ⊂S∞

such that

X

w∈S∞(v)

[Lw:R] = [Fv :Qp].

For eachτ ∈Se∞, the Betti realizationMB,τ is an L-vector space and there is a Hodge decomposition

MB,τ⊗L,ιC= M

i∈Z

(ιMτ)i,w−i.

(2)

192 Jan Nekov´aˇr

The corresponding Hodge numbers

hi,w−i(ιMu) :=hi,w−i(ιMτ) = dimC(ιMτ)i,w−i

depend only onu=r∞(τ)∈S∞. The de Rham realizationMdRis a freeL⊗Q

F-module; its Hodge filtration is given by submodulesFrM

dR(not necessarily free) which correspond, under the de Rham comparison isomorphism

MdR⊗L⊗QF,ι⊗τC−→∼ MB,τ⊗L,ιC,

to

(FrMdR)⊗L

⊗QF,ι⊗τC−→∼ M

i≥r

(ιMτ)i,w−i,

hence

dimC (grFiMdR)⊗L⊗QF,ι⊗τC=hi,w−i(ιMτ).

The p-adic realization Mp of M is isomorphic, as an Lp-vector space, to

MB,τ⊗LLp (for anyτ∈Se∞). For eachv∈Sp,DdR(Mp,v) is a freeLp⊗QpF

v-module equipped with a filtration satisfying

DrdR(Mp,v)

−→FrMdR⊗L⊗QF (Lp⊗QpFv). This implies that, for eachi∈Z, the dimension

div(Mp) := dimLp D

i

dR(Mp,v)/DdRi+1(Mp,v)

is equal to

dimLp gr

i

FMdR⊗L⊗QF(Lp⊗QpFv)

= dimQ

p gr

i

FMdR⊗L⊗QF,ιp⊗incl(Qp⊗QpFv)

= X

σ:Fv֒→Qp

dimQ

p gr

i FMdR

⊗L⊗QF,ιp⊗σQp

= X

u∈S∞(v)

[Fu:R]hi,w−i(ιMu),

hence

d−

v(Mp) :=

X

i<0 i di

v(Mp) =

X

u∈S∞(v)

[Fu:R]d−(ιMu),

d−(ιMu) :=X i<0

i hi,w−i(ιMu). (⋆)

(3)

Erratum for “On the Parity of Ranks . . .” 193

Corrections to §4.1 and §5.1: firstly, 4.1.2(4) and 5.1.2(9) should be deleted. Secondly,§4.1.3 should be reformulated as follows: we assume thatV

satisfies 4.1.2(1)-(3). For eachv∈Spwe define

d−

definition gives the correct product of archimedeanε-factors. The formula (4.1.3.6) should be replaced by

∀v∈Sp εe(Vv) = (−1)d

wherer2(F) denotes the number of complex places ofF.

Corrections to Theorem 5.3.1 and its proof: the statement should say that, under the assumptions 5.1.2(1)-(8), the quantity

(−1)h1f(F,V)/ε(V) = (−1)eh

In the proof, a reference to (4.1.3.7) should be replaced by that to (4.1.3.7’), which yields

(4)

194 Jan Nekov´aˇr

Corrections to §5.3.3: the first question should ask whether (−1)d−v(V)ε(W D(Vv)N−ss) (vSp)

depends only on Vv?

Corrections to §5.3.4-5: it is often useful to use a slightly more general version of Example 5.3.4 with Γ = Γ0×∆, where Γ0 is isomorphic toZp and ∆ is finite (abelian). Given a characterα: ∆−→ O∗

p, set

R=Op[[Γ0]], T = T⊗OpOp[[Γ

+]]

Op[∆],αOp,

T+

v = Tv+⊗OpOp[[Γ+]]

⊗Op[∆],αOp (v∈Sp).

As in 5.3.4(2)-(3), T is an R[GF,S]-module equipped with a skew-symmetric

R-bilinear pairing (, ) :T × T −→R(1) inducing an isomorphism

T ⊗Q−→∼ HomR(T, R(1))⊗Q.

In 5.3.4(5) we have to replaceβ: Γ−→Lp(β) byβ : Γ0−→Lp(β); then

TP/̟PTP = IndGGF,SF

0,S(V ⊗(β×α)).

In 5.3.5, we set, for anyLp[Γ]-moduleM,

M(β×α)={xM⊗L

pLp(β)| ∀σ∈Γ σ(x) = (β×α)(x)};

then

Hf1(F,TP/̟PTP) =Hf1(F0, V ⊗(β×α))

= Hf1(Fβ, V)⊗(β×α)

Gal(Fβ/F0)

=Hf1(Fβ, V)(β

−1

×α−1 )

and

τ:Hf1(Fβ, V)(β

−1

×α−1 ) ∼

−→Hf1(Fβ, V)(β×α).

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order

β, β′ : Γ

0−→L

p, that

(−1)h1f(F0,V⊗(β×α))/ ε(F0, V (β×α))

= (−1)h1

f(F0,V⊗(β

×α))/ ε(F0, V (β×α)). (5.3.5.1)

References

[1] Jan Nekov´aˇr, On the Parity of Ranks of Selmer Groups III, Documenta Math. 12 (2007) 243–274

Referensi

Dokumen terkait

Hasil penelitian menunjukkan bahwa penerapan model pembelajaran card sort dapat meningkatan motivasi belajar siswa hal ini terlihat dari beberapa hal berikut :

pendekatan taktis terhadap hasil belajar keterampilan gerak dasar bolabasket siswa.. SMKN

Politik Luar negeri sendiri memiliki adalah kebijakan yang ditetapkan suatu negara yang merdeka dan terbebas dari negara lain untuk mengatur mekanisme hubungan dengan

[r]

Terkait butir 2 (dua) tersebut maka Pokja Unit Layanan Pengadaan Politeknik Ilmu Pelayaran Makassar menyatakan membatalkan pemenang pekerjaan tersebut dan akan

KEPALA DINAS SOSIAL DAN TENAGA KERJA KOTA BANDA ACEH.. Selaku

Wakil Sah Perusahaan : SALMIA MEILDA RAHMADANI, ST Hasil Evaluasi Adminitrasi : Memenuhi Syarat. Hasil Evaluasi Teknis (Bobot) : Memenuhi Syarat ( ) Hasil Evaluasi Harga/Biaya

Cambang ( lanjutan ) Kabupaten Tanjung Jabung Timur Tahun Anggaran 2014, untuk Paket Pekerjaan tersebut diatas telah dilaksanakan Pembukaan Penawaran pada Tanggal 09 Juni 2014,