• Tidak ada hasil yang ditemukan

Analisis Kestabilan Sistem Pengendalian Umpan Balik

N/A
N/A
Protected

Academic year: 2021

Membagikan "Analisis Kestabilan Sistem Pengendalian Umpan Balik"

Copied!
48
0
0

Teks penuh

(1)

Analisis Kestabilan Sistem

Pengendalian Umpan Balik

05

05

Tujuan

Tujuan: Mhs mampu menganalisis kestabilan sistem

pengendalian umpan balik

Materi

Materi:

1. Konsep Kestabilan Sistem Loop Tertutup (Stability Concept

of The Closed Loop System)

2. Persamaan Karakteristik (Characteristic Equation)

3. Kestabilan Berdasarkan Ultimate Response

4. Kriteria Kestabilan Routh-Hurwitz

(2)

Loop Tertutup

• Designing a FBC (i.e. selecting its

components and tuning its controller)

seriously affects its stability characteristics.

• The notion of stability and the stability

characteristics of closed loop systems is

therefore considered to be useful.

Notion of Stability Ξ Pemahaman Kestabilan

Stability Characteristic Ξ Karakteristik Kestabilan

(3)

The Notion of Stability

(Pemahaman Kestabilan)

• How to define about stable and unstable?

Æ A dynamic system is considered to be

stable IF every bounded input produces

bounded output

• Bounded : input that always remains

between an upper and a lower limit

Æ sinusoidal, step, but not the rump

(4)

Gambar 5.1.1. Bounded Input

Input

m(t)

time

Upper Limit

Lower Limit

sinusoidal

step

(5)

Gambar 5.1.2. Tanggapan (response) stabil dan tidak stabil

y

time

Desired value

Stable

Unstable

Unstable

(6)

Transfer

Function

• m = input, and y = output

• If G(s) has a pole with positive real part, it gives

rise to a term C

1

e

pt

which grows continuously

with time Æ unstable

)

(

)

(

)

(

s

G

s

m

s

y

=

If TF of dynamic system has even one pole with

positive real part, the system is UNSTABLE

∴ all poles of TF must be in the left-hand part

of a complex plane, for the system to be

STABLE

(7)

Gambar 5.1.3. Complex Plane

Imaginary

Real

Stable

Unstable

(8)

Example 5.1.1: Stabilization of an unstable process

with P Control

Let’s consider a process with the following response:

)

(

1

5

)

(

1

10

)

(

d

s

s

s

m

s

s

y

+

=

Pole has positive root

s – 1 = 0 Æ s = +1

y(t) = C

1

e

t

(9)

Gambar 5.1.4. Tanggapan sistem tak-terkendali terhadap

perubahan satu unit gangguan dengan fungsi tahap

0

0.5

1

1.5

2

0

10

20

30

40

Time

y

unstable

Example 5.1.1 (Continued)

(10)

The closed loop response:

(

)

(

1

10

)

(

)

5

)

(

10

1

10

)

(

d

s

K

s

s

y

K

s

K

s

y

c

sp

c

c

+

=

(

c

c

)

sp

K

s

K

s

G

10

1

10

)

(

=

(

c

)

load

K

s

s

G

10

1

5

)

(

=

Example 5.1.1 (Continued)

and

The transfer function:

The closed loop will have negative pole if

10

1

>

c

(11)

Gambar 5.1.5. Penerapan FBC

Note: P only controller with Kc = 1

Example 5.1.1 (Continued)

(12)

Gambar 5.1.6. Tanggapan dinamik sistem terkendali terhadap

perubahan satu unit gangguan dengan fungsi tahap

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

Time

y

Note: Regulatory problem; with Kc = 1

Stable

(13)

Example 5.1.2:

Destabilization of a stable process

with PI Control

• process with 2

nd

order TF:

2

2

1

)

(

2

+

+

=

s

s

s

Gp

• System has two complex poles:

• Therefore, System is stable

p

1

= -1 + j

p

2

= -1 − j

0

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (second)

y

Gambar 5.1.7. Tanggapan stabil

loop terbuka terhadap perubahan

satu unit gangguan dengan fungsi

tahap

(14)

Example 5.1.2 (Continued)

• Implementation of PI Control

⎟⎟

⎜⎜

+

=

s

K

s

G

I

C

C

τ

1

1

)

(

• Assume that G

m

= G

f

= 1

• The closed loop

response for servo

problem

(

)

1

G

G

y

(

s

)

G

(

s

)

y

(

s

)

G

G

s

y

sp

sp

sp

c

p

c

p

=

+

=

(

)

(

)

I

c

c

I

I

c

I

I

c

I

I

c

sp

K

s

K

s

s

s

K

s

s

K

s

s

s

s

K

s

s

s

G

τ

τ

τ

τ

τ

τ

τ

+

+

+

+

+

=

+

+

+

+

+

+

+

=

2

2

1

1

2

2

1

1

1

2

2

1

)

(

2

3

2

2

(15)

Example 5.1.2 (Continued)

• Let K

c

= 100 and τ

I

= 0.1

• Poles of G

sp

: s

3

+ 2s

2

+ (2+100)s + 100/0.1

• P

1

= -7.18 ; p

2

= 2.59 + 11.5j ; P

3

= 2.59 – 11.5j

0

0.2

0.4

0.6

0.8

1

-10

-5

0

5

10

Time (second)

y

Gambar 5.1.8. Tanggapan tidak stabil dari loop tertutup

(16)

Example 5.1.2 (Continued)

0

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y

Gambar 5.1.9. Tanggapan stabil loop tertutup

(17)

5.2 The Characteristic Equation

)

(

1

)

(

1

)

(

d

s

G

G

G

G

G

s

y

G

G

G

G

G

G

G

s

y

m

c

f

p

d

sp

m

c

f

p

c

f

p

+

+

+

=

)

(

)

(

)

(

)

(

)

(

s

G

s

y

s

G

s

d

s

y

=

sp

sp

+

load

The closed loop response of FBC :

The characteristic equation :

1 + G

p

G

f

G

c

G

m

= 0

(18)

Let p

1

, p

2

, …, p

n

be the n roots of the

Characteristic Equation

1 + G

p

G

f

G

c

G

m

= (s – p

1

) (s – p

2

) … (s – p

n

)

Stability criterion of a closed loop system

A FBC system is stable if all the roots of its

characteristic equation have negative real

part (i.e. are to the left of the imaginary axis)

(19)

Example 5.2.1: Stability analysis of FBC based

on characteristic equation

c

c

m

f

p

G

G

G

K

s

G

=

=

=

=

1

1

1

10

( )( )( )

1

1

0

1

10

1

1

=

+

=

+

p

f

c

m

K

c

s

G

G

G

G

Again, consider Ex. 5.1.1

characteristic equation:

Which has the root: p = 1 – 10K

c

∴ The system is stable IF p < 0

10

1

>

c

K

5.2 Persamaan Karakteristik

(20)

⎟⎟

⎜⎜

+

=

=

=

+

+

=

s

K

G

G

G

s

s

G

I

c

c

m

f

p

τ

1

1

;

1

;

1

;

2

2

1

2

( )( )

1

1

0

2

2

1

1

1

2

⎟⎟

=

⎜⎜

+

+

+

+

=

+

s

K

s

K

s

s

G

G

G

G

I

c

I

c

m

c

f

p

τ

τ

Again, consider Ex. 5.1.2

characteristic equation:

Which has three roots,

Æ

K

c

and

τ

I

affect the value of roots

(i.e. positive or negative)

(

2

)

0

2

2

3

+

+

+

+

=

I

c

c

K

s

K

s

s

τ

(21)

5.3 Kestabilan Berdasarkan Ultimate

Response

Pada bagian ini kita akan membahas batasan kestabilan berdasarkan respon

kritis (ultimate response).

Ingat kembali! Respon stabil jika akar-akar denominator pada FT adalah

negatif (di sebelah kiri sumbu imaginer pada bidang kompleks).

Metode Substitusi Langsung

Metode

ini

sangat

mudah

untuk

mencari

parameter-parameter

pengendalian yang mana dapat menghasilkan respon stabil.

Jika pers. karakteristik mempunyai satu atau dua akar yang terletak tepat

pada sumbu imaginer, maka menghasilkan respon kritis (osilasi terjaga).

Ultimate Gain, K

cu

: gain pengendali yang mana dapat menghasilkan

(22)

Gambar 5.3.1 respon loop tertutup dengan K

c

= K

cu

( )

t

=

(

ω

t

+

θ

)

C

sin

u

u

u

T

ω

π

2

=

-1.1-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91 1.1 0 5 10 15 20 25 30

c(t)

T

u

t

Ultimate period

ω

u

= ultimate frequency

(23)

( ) ( ) ( ) ( )

0

1

+

G

p

s

G

f

s

G

c

s

G

m

s

=

Persamaan Karakteristik loop tertutup: denominator dari FT loop tertutup

... (5.3.1)

Substitusi langsung: s = i

ω

u

Bagian real = 0

Bagian imaginer = 0

Penyelesaian secara simultan

menghasilkan ultimate gain, K

cu

Contoh 5.3.1: mencari K

cu

dan

ω

u

untuk pengendali suhu pada HE

Steam

Process fluid

T

i

(t),

o

C

Condensate

TC

W(t), kg/s

T

o

(t),

o

C

TT

T

o set

(t),

o

C

W

s

(t), kg/s

M(t), %CO

C(t), %TO

(24)

( )

TO

CO

K

s

G

c

c

%

%

=

( )

CO

s

kg

s

s

G

v

%

/

1

3

016

.

0

+

=

( )

s

kg

C

s

s

G

o

S

/

1

30

50

+

=

( )

C

TO

s

s

G

m

%

o

1

10

1

+

=

+

W(s)

+

C(s), %TO

M(s)

E(s)

R(s) +

G

c

(s)

G

m

(s)

G

v

(s)

K

sp

%TO

%CO

G

S

(s)

G

w

(s)

W

s

(s)

kg/s

T

o

(t),

o

C

T

o

set

(t),

o

C

%TO

kg/s

P Control

dimana:

(25)

( ) ( ) ( ) ( )

0

1

+

G

m

s

G

S

s

G

v

s

G

c

s

=

Persamaan Karakteristik loop tertutup:

0

80

.

0

1

43

420

900

s

3

+

s

2

+

s

+

+

K

c

=

0

1

3

016

.

0

1

30

50

1

10

1

1

=

+

+

+

+

K

c

s

s

s

Penyusunan kembali persamaan di atas diperoleh:

(

10

s

+

1

)(

30

s

+

1

)(

3

s

+

1

)

+

0

.

80

K

c

=

0

Substitusi s = i

ω

u

pada K

c

= K

cu

:

0

80

.

0

1

43

420

900

i

3

ω

u

3

+

i

2

ω

u

2

+

i

ω

u

+

+

K

c

=

(

420

ω

u

2

+

1

+

0

.

80

K

c

) (

+

i

900

ω

u

3

+

43

ω

u

)

=

0

+

i

0

i

2

= –1

(26)

0

80

.

0

1

420

2

+

+

=

ω

u

K

c

0

43

900

3

+

=

ω

u

ω

u

Kedua pers. di atas diselesaikan secara simultan, menghasilkan:

ω

u

= 0

K

cu

= –1.25 %CO/TO

ω

u

= 0.2186 rad/sec

K

cu

= 23.8 %CO/TO

relevant

Jadi diperoleh ultimate period:

sec

7

.

28

2186

.

0

2

=

=

π

u

T

Jika diinginkan

respon STABIL,

maka K

c

< K

cu

(27)

0

50

100

150

200

-0.5

0

0.5

1

T

e

m

p

er

at

u

re [

d

eg

C

]

Time [sec]

0

50

100

150

200

-0.2

-0.1

0

S

team

[

k

g

/sec]

Time [sec]

Gambar 5.3.3. Tanggapan kritis pengendali suhu terhadap perubahan

satu unit set point dengan fungsi tahap (Contoh 5.3.1)

Kc = Kcu = 23.8

(28)

0

50

100

150

200

-1

0

1

2

T

e

mp

er

at

u

re [

d

eg

C

]

Time [sec]

0

50

100

150

200

-0.2

-0.1

0

S

team [

k

g

/sec]

Gambar 5.3.4. Tanggapan stabil pengendali suhu terhadap perubahan

satu unit set point dengan fungsi tahap (Contoh 5.3.1)

(29)

0

50

100

150

200

-5

0

5

T

e

m

p

er

at

u

re [

d

eg

C

]

Time [sec]

0

50

100

150

200

-1

-0.5

0

0.5

S

team

[

k

g

/sec]

Time [sec]

5.3 Kestabilan Berdasarkan Ultimate Response

Gambar 5.3.5. Tanggapan tidak stabil pengendali suhu terhadap

perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1)

(30)

• Does not require calculation of actual

values of the roots of the characteristic

equation.

• But, it only requires that we know if any

root is to the right of imaginary axis

• Make a conclusion as to the stability of

closed loop system quickly without

(31)

Expand the characteristic eq. into the following

polynomial form

1 + G

p

G

f

G

c

G

m

a

o

s

n

+

a

1

s

n-1

+ … +

a

n-1

s +

a

n

= 0

Let

a

o

be positive, if it is negative, multiply both

sides of equation by −1.

First Test: If any of coefficients

a

1

,

a

2

, … ,

a

n-1

,

a

n

is

negative; there is at least one root of the characteristic

eq. which has positive real part Æ UNSTABLE

Second Test: If all coefficients

a

1

,

a

2

, … ,

a

n-1

,

a

n

are

positive; Then, from the 1

st

test we cannot conclude

anything about the location of the roots. Form the

following array (known as Routh array):

(32)

Routh Array

.

.

W

2

W

1

n+1

.

.

.

.

.

A

3

C

2

C

1

5

.

B

3

B

2

B

1

4

.

A

3

A

2

A

1

3

a

7

a

5

a

3

a

1

2

a

6

a

4

a

2

a

0

1

Row

(33)

Where

1

3

0

2

1

1

a

a

a

a

a

A

=

1

5

0

4

1

2

a

a

a

a

a

A

=

1

7

0

6

1

3

a

a

a

a

a

A

=

1

2

1

3

1

1

A

A

a

a

A

B

=

1

3

1

5

1

2

A

A

a

a

A

B

=

1

2

1

2

1

1

B

B

A

A

B

C

=

1

3

1

3

1

2

B

B

A

A

B

C

=

. . .

. . .

. . .

etc

.

(34)

Examine the elements of the first

column of the array above

• If any of these elements is negative, we have at

least one root to the right of the imaginary axis

and the system is UNSTABLE

• The number of sign changes in the elements of

the first column is equal to the number of roots

to the right of the imaginary axis

a

0

a

1

A

1

B

1

C

1

. . . W

1

∴ A system is STABLE IF all the elements in the

first column of the Routh Array are POSITIVE

(35)

Example 5.4.1: Stability Analysis with the

Routh-Hurwitz Criterion

(

2

)

0

2

2

3

+

+

+

+

=

I

c

c

K

s

K

s

s

τ

I

c

K

τ

Consider FBC system in Ex. 5.1.2, Its Characteristic eq. is

(

)

2

2

2

I

c

c

K

K

τ

+

I

c

K

τ

Routh array is:

Row

1

st

Column

1

2

3

4

1

2

2 + K

c

0

(36)

Example 5.4.1 (Continued)

(

)

+

I

c

I

c

c

K

K

K

τ

τ

,

2

2

2

,

2

,

1

The elements of the first column are:

Third element can be positive or negative

depending on the values of K

c

and

τ

I

The system is STABLE if K

c

and

τ

I

satisfy

the condition:

(

)

c

c

K

K

τ

>

+

2

2

(37)

Example 5.4.2: Critical stability Conditions for FBC

Return to Ex.5.4.1, and Let

τ

I

= 0.1

(

)

2

10

2

2

+

K

c

K

c

3

rd

element becomes:

IF K

c

= 0.5 Æ third element = 0 Æ critical condition,

two roots on imaginary axis (pure

imaginary) Æ ± j(1.58)

Æ sustained sinusoidal response

IF K

c

< 0.5 Æ third element is positive Æ STABLE

IF K

c

> 0.5 Æ third element is negative Æ UNSTABLE

(38)

Gambar 5.4.1. Tanggapan kritis dari sistem terkendali terhadap

perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)

Kc = 0.5 ; thoi = 0.1

0

5

10

15

0

0.5

1

1.5

2

CV

Time [sec]

0

5

10

15

-2

0

2

4

6

MV

Time [sec]

(39)

5.3 Kestabilan Berdasarkan Ultimate Response

Gambar 5.4.2. Tanggapan stabil dari sistem terkendali terhadap

perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)

Kc = 0.1 ; thoi = 0.1

0

5

10

15

0

0.5

1

1.5

CV

Time [sec]

0

5

10

15

0

1

2

3

MV

Time [sec]

(40)

Gambar 5.4.3. Tanggapan tidak stabil dari sistem terkendali terhadap

perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1)

Kc = 1 ; thoi = 0.1

0

5

10

15

-20

-10

0

10

20

CV

Time [sec]

0

5

10

15

-200

-100

0

100

MV

(41)

5.5 Root-Locus Analysis

• Root Locus is a graphical technique that

consists of graphing the roots of the

characteristic equation

• The resulting graph allows to see whether

a root crosses the imaginary axis to the

right hand side of the s-plane

(42)

Example 5.5.1

: Root locus for a Reactor with P Control

R

A

Flow rate = m

Flow rate = F – m

Flow rate = F

Concentration in C = y

Reactions:

A + R Æ B

B + R Æ C

C + R Æ D

D + R Æ E

The control objective is to keep the concentration of

the desired product C as close as possible to its set

point by manipulating the flow rate of A

(43)

Example 5.5.1: (Continued)

(

)

(

1

.

45

)(

2

.

85

) (

4

.

35

)

25

.

2

98

.

2

)

(

)

(

)

(

2

+

+

+

+

=

=

s

s

s

s

s

m

s

y

s

G

p

TF of the process:

(

)

(

1

.

45

)(

2

.

85

) (

4

.

35

)

0

25

.

2

98

.

2

1

2

=

+

+

+

+

+

K

c

s

s

s

s

Implementation of P Control with G

c

(s) = K

c ,

and

Assume that G

m

= G

f

= 1, we have the following

characteristic equation:

S

4

+ 11.5 s

3

+ 47.49 s

2

+ (2.98K

c

+ 83.0633)s

+ (6.705K

c

+ 51.2327) = 0

(44)

Roots of the characteristic equation

(for ex. 5.5.1)

−9.85

+0.30

− 5.70 j

+0.30

+ 5.70 j

−2.25

100

−8.49

−0.38 − 4.48 j

−0.38 + 4.48 j

−2.24

50

−7.14

−1.06 − 3.23 j

−1.06 + 3.23 j

−2.23

20

−5.77

−1.76 − 1.88 j

−1.76 + 1.88 j

−2.20

5

−4.89

−2.34 − 0.82 j

−2.34 + 0.82 j

−1.92

1

−2.85

−2.85

−2.85

− 1.45

0

p

4

p

3

p

2

p

1

K

c

(45)

Gambar 5.5.1. Root-Locus of the reactor in Ex. 5.5.1

-20

-15

-10

-5

0

5

10

15

-20

-15

-10

-5

0

5

10

15

20

Root Locus

Real Axis

Im

agi

nar

y A

xi

s

(46)

Gambar 5.5.2. Tanggapan stabil loop terkendali terhadap

perubahan satu unit set-point (Ex. 5.5.1)

Kc = 50

Kc = 20

Kc = 5

Kc = 1

0

2

4

6

8

10

12

14

16

18

20

0

0.5

1

1.5

Time (Sec)

y

Offset

New set-point

(47)

0

2

4

6

8

10

12

14

16

18

20

0

0.5

1

1.5

2

Time (Sec)

y

Critical condition

Kc = 75

5.5 Analisis Kestabilan dengan Root-Locus

Gambar 5.5.3. Tanggapan kritis dari loop terkendali

terhadap perubahan satu unit set-point (Ex. 5.5.1)

(48)

0

2

4

6

8

10

12

14

16

18

20

-300

-200

-100

0

100

200

300

y

Kc = 100

Gambar 5.5.4. Tanggapan tak-stabil dari loop terkendali

terhadap perubahan satu unit set-point (Ex. 5.5.1)

Gambar

Gambar 5.1.1. Bounded Input Input m(t) timeUpper LimitLower Limitsinusoidalstep
Gambar 5.1.2. Tanggapan (response) stabil dan tidak stabil y timeDesired valueStableUnstableUnstable
Gambar 5.1.3. Complex Plane
Gambar 5.1.4. Tanggapan sistem tak-terkendali terhadap perubahan satu unit gangguan dengan fungsi tahap
+7

Referensi

Dokumen terkait

BEBERAPA HARI LALU DIADAKAN KEGIATAN UNTUK ANAK-ANAK BERUPA OLAHRAGA.

Acquired artinya didapat, bukan penyakit keturunan; Immuno berarti sistem kekebalan tubuh, Deficiency artinya kekurangan; sedangkan Syndrome adalah kumpulan gejala.Orang

PEKERJAAN UMUM (PU) / SEBAGAI KOTA TERBAIK PERTAMA / DI BIDANG PENANGANAN PEMUKIMAN KUMUH KATEGORI KOTA BESAR // HAL TERSEBUT SEPERTI YANG DISAMPAIKAN HERRY ZUDIANTO..

Tabel 4.13 Resume Hasil Uji Pengaruh Abu Vulkanik Terhadap Kuat Geser Error!. Bookmark

100 Pertanyaan Seputar HIV/AIDS Yang Perlu Anda Ketahui, Medan: USU Press. 111 Pertanyaan Seputar HIV/AIDS Yang Perlu Anda Ketahui,Medan:

Didukung oleh penelitian [9] pada pertumbuhan pucuk tomat dari hipokotil juga menunjukkan hasil yang lebih baik pada kontrol, dibandingkan dengan perlakuan lainnya

Berdasarkan data di atas terlihat bahwa terdapat perbedaan hasil yang diperoleh untuk air laut lebih tinggi dibandingkan dengan sedimen dimana yang seharusnya kandungan logam

Pengendalian secara kimia dengan bakterisida terhadap penyakit bakteri pada tanaman kedelai tidak dianjurkan mengingat mahalnya biaya yang diperlukan