• Tidak ada hasil yang ditemukan

Paper25-Acta26-2011. 107KB Jun 04 2011 12:03:16 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper25-Acta26-2011. 107KB Jun 04 2011 12:03:16 AM"

Copied!
8
0
0

Teks penuh

(1)

YOUNG’S INEQUALITY REVISITED

Flavia-Corina Mitroi

Abstract. Some companions and a reverse of Young’s inequality are proved in the context of absolutely continuous measures. We avoid the continuity condition that appears in the classical statement of Young’s inequality, extending some known results to the class of all nondecreasing functions.

2000Mathematics Subject Classification: 26A51, 26D15.

1. Introduction

It is well-known that:

Theorem 1. [Young’s inequality]Every strictly increasing continuous function f : [0,∞)−→[0,∞) withf(0) = 0and lim

x→∞

f(x) =∞ verifies

ab≤ Z a

0

f(x)dx+ Z b

0

f−1 (y)dy,

whenever a and b are nonnegative real numbers. The equality occurs if and only if f(a) =b.

The inequality referred to the title appears for the first time in a paper of W. H. Young [5]. At the core of this inequality is a geometric identity telling us that the curve

y =f(x), x∈[a, b]

decomposes the rectangle [0, a]×[0, f(a)] into two parts of areas Ra

0 f(x)dx and Rf(a)

0 f −1

(x)dx, so that

af(a) = Z a

0

f(x)dx+ Z f(a)

0

f−1

(x)dx.

(2)

In the sequelf : [0,∞)−→[0,∞) will denote a nondecreasing function such that

f(0) = 0 and lim

x→∞

f(x) =∞.We attach tof apseudo-inverse, with the convention

f(0−) = 0,

f−1

sup(y) = sup{x:y∈[f(x−), f(x+)]},

where f(x−) andf(x+) represent the lateral limits atx. Notice that we have

f−1

sup(y) = max{x≥0 :y=f(x)} when f is continuous.

Theorem 2.[Young’s inequality for nondecreasing functions] Under the above assumptions, forK : [0,∞)×[0,∞)−→[0,∞)is Lebesgue locally integrable and for every pair of nonnegative numbers a < b and every numberc≥f(a), we have

Z b

a

Z c

f(a)

K(x, y)dydx

≤ Z b

a

Z f(x)

f(a)

K(x, y)dy

!

dx+ Z c

f(a)

Z f−1

sup(y)

a

K(x, y)dx

!

dy.

If K is strictly positive almost everywhere, then the equality occurs if and only if c∈[f(b−), f(b+)].

This result can be find in a recent paper of F. C. Mitroi and C. P. Niculescu [1]. In what follows we consider the particular case of itK(x, y) =p(x)q(y),where

p, q: [0,∞)−→[0,∞) are continuous functions. We immediately infer the following inequality:

Z b

a

p(x)dx· Z c

f(a)

q(y)dy

≤ Z b

a

Z f(x)

f(a)

q(y)dy

!

p(x)dx+ Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!

q(y)dy.

2. Companions of Young’s inequality

Before stating the main result of this section, we require the following well-known lemma:

Lemma 1. For m, n≥0 and p, q >1such that 1p +1q = 1 one has mp

p +

nq

q ≥

(3)

We may now give an extension of Young’s Inequality:

Theorem 3. Let p≥1 be an arbitrary real number. We have:

p

Z b

a

p(x)dx· Z c

f(a)

q(y)dy+ (p−1) Z b

a

p(x)dx+ Z c

f(a)

q(y)dy

!

≤ Z b

a

Z f(x)

f(a)

q(y)dy

!p

p(x)dx+ Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!p

q(y)dy.

Proof. Applying Lemma 1 we take firstly m = Rf(x)

f(a) q(y)dy and n = 1. Then 1

p

Rf(x)

f(a) q(y)dy p

+1q ≥Rf(x)

f(a) q(y)dy.We integrate this with respect top(x)dx. 1

p

Z b

a

Z f(x)

f(a)

q(y)dy

!p

p(x)dx+ 1

q

Z b

a

p(x)dx

≥ Z b

a

Z f(x)

f(a)

q(y)dy

!

p(x)dx.

After that we consider m=Rfsup−1(y)

a p(x)dxand n= 1.Then

1

p

Z fsup−1(y)

a

p(x)dx

!p +1

q ≥

Z fsup−1(y)

a

p(x)dx

and we integrate it with respect to q(y)dy: 1

p

Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!p

q(y)dy+1

q

Z c

f(a)

q(y)dy

!

≥ Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!

q(y)dy.

The sum of these two inequalities gives us: 1

p

Z b

a

Z f(x)

f(a)

q(y)dy

!p

p(x)dx+ 1

p

Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!p

q(y)dy

≥ Z b

a

Z f(x)

f(a)

q(y)dy

!

p(x)dx+ Z c

f(a)

Z f−1

sup(y)

a

p(x)dx

!

q(y)dy

− 1

q

Z b

a

p(x)dx+ Z c

f(a)

q(y)dy

!

(4)

Multiplying this inequality withpand applying Theorem 2 we finally get the claimed result:

Z b

a

Z f(x)

f(a)

q(y)dy

!p

p(x)dx+ Z c

f(a)

Z fsup−1(y)

a

p(x)dx

!p

q(y)dy

≥p

Z b

a

p(x)dx· Z c

f(a)

q(y)dy−(p−1) Z b

a

p(x)dx+ Z c

f(a)

q(y)dy

!

.

The casep= 1 coincides to the case K(x, y) =p(x)q(y) in Theorem 2. The following corollary appears in a paper of W.T. Sulaiman [3]:

Corollary 1. The above inequality, for p(x) =q(x) = 1,with a=f(a) = 0, f continuous and strictly increasing, reduces to:

pbc−(p−1) (b+c)≤ Z b

0

fp(x)dx+ Z c

0

f−1 (y)p

dy, for everyp ≥1.

The casep= 1 is exactly Young’s inequality.

Theorem 4.Let p, q≥1 be arbitrary real numbers such that 1p +1q = 1. Then

Z a

0

Z f(x)

0

q(y)dy

!

p(x)dx· Z b

0

Z fsup−1(y)

0

p(x)dx

!

q(y)dy

≤ Rb

0 q(y)dy

p

Z a

0

Z f(x)

0

q(y)dy

!p

p(x)dx

+ Ra

0 p(x)dx

q

Z b

0

Z fsup−1(y)

0

p(x)dx

!q

q(y)dy.

Proof. Via Lemma 1, if we integrateRa 0

Rb

0 (.)q(y)dy

p(x)dxboth sides of the following inequality:

Z f(x)

0

q(y)dy· Z f−1

sup(y)

0

p(x)dx≤

Rf(x)

0 q(y)dy p

p +

Rf−1

sup(y)

0 p(x)dx q

q ,

(5)

3. Reverse of Young’s inequality

Noticing that the functions

F : (a,∞) −→R+, F(x) = Rx

a

Rf(t)

f(a)q(y)dy

p(t)dt

Rx

a p(t)dt

and

G: (f(a),∞) −→R+, G(x) = Rx

f(a)

Rf−1

sup(y)

a p(t)dt

q(y)dy

Rx

f(a)q(y)dy are nondecreasing, we can state the following result:

Theorem 5.Let a, b be two positive real numbers with a < b . The following inequality is true:

min  

 1,

Rc

f(a)q(y)dy Rf(b)

f(a) q(y)dy  

 Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt (1)

+ min  

 1,

Rb

ap(t)dt

Rf−1

sup(c)

a p(t)dt

 

 Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy

≤ Z b

a

p(t)dt· Z c

f(a)

q(y)dy.

Equality holds iff we haveRfsup−1(c)

b p(t)dt= 0for b≤f

−1 sup(c)or

Rf(b)

c q(y)dy= 0

for b≥f−1 sup(c).

Proof. Consider first that b ≤ f−1

sup(c). Then F(f −1

sup(c)) ≥ F(b) and more explicitely this reads as

Rfsup−1(c)

a

Rf(t)

f(a)q(y)dy

p(t)dt

Rfsup−1(c)

a p(t)dt

≥ Rb

a

Rf(t)

f(a)q(y)dy

p(t)dt

Rb

ap(t)dt

.

We already know that Z fsup−1(c)

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Z c

f(a)

Z fsup−1(y)

a

p(t)dt

!

q(y)dy

= Z f−1

sup(c)

a

p(t)dt· Z c

f(a)

(6)

Consequently Rf−1

sup(c)

a p(t)dt

Rb

ap(t)dt

Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy

≤ Z f−1

sup(c)

a

p(t)dt· Z c

f(a)

q(y)dy.

We multiply this by Rb

ap(t)dt

Rf−1

sup(c)

a p(t)dt

and we immediately obtain the following partial result:

Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Rb

ap(t)dt

Rf−1

sup(c)

a p(t)dt

Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy (2)

≤ Z b

a

p(t)dt· Z c

f(a)

q(y)dy.

The equality holds if Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt

+ 

1−

Rfsup−1(c)

b p(t)dt

Rfsup−1(c)

a p(t)dt

 Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy

= Z b

a

p(t)dt· Z c

f(a)

q(y)dy,

and that happens if and only if Rfsup−1(c)

b p(t)dt= 0.

Considering now the reverseb≥f−1

sup(c), we use the factG(f(b))≥G(c), written more explicitely as

Rf(b)

f(a)

Rf−1

sup(y)

a p(t)dt

q(y)dy

Rf(b)

f(a)q(y)dy

≥ Rc

f(a)

Rf−1

sup(y)

a p(t)dt

q(y)dy

Rc

f(a)q(y)dy Since

Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Z f(b)

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy

= Z b

a

p(t)dt· Z f(b)

f(a)

(7)

we obtain

Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Rf(b)

f(a)q(y)dy Rc

f(a)q(y)dy Z c

f(a)

Z fsup−1(y)

a

p(t)dt

!

q(y)dy

≤ Z b

a

p(t)dt· Z f(b)

f(a)

q(y)dy.

We multiply by Rc

f(a)q(y)dy

Rf(b)

f(a)q(y)dy

. Finally:

Rc

f(a)q(y)dy Rf(b)

f(a)q(y)dy Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy (3)

≤ Z b

a

p(t)dt· Z c

f(a)

q(y)dy.

The equality holds when 

1− Rf(b)

c q(y)dy

Rf(b)

f(a) q(y)dy 

 Z b

a

Z f(t)

f(a)

q(y)dy

!

p(t)dt+ Z c

f(a)

Z f−1

sup(y)

a

p(t)dt

!

q(y)dy

= Z b

a

p(t)dt· Z c

f(a)

q(y)dy,

and that happens if and only if Rf(b)

c q(y)dy= 0.

The inequality (1) appears now as a shorter version of the inequalities (2) and (3).

As a particular case of it we obtain a result due to A. Witkowski [4] .

Corollary 2.For p(x) =q(x) = 1 on [0,∞), a= f(a) = 0, f continuous and strictly increasing, we obtain an inequality with upper bound :

min

1, c f(b)

Z b

0

f(x)dx+ min

1, b f−1

(c) Z c

0

f−1

(y)dy≤bc,

(8)

References

[1] F. C. Mitroi, C. P. Niculescu,An extension of Young’s inequality, submitted. [2] C. P. Niculescu, L.-E. Persson,Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.

[3] W. T. Sulaiman, Notes on Young’s Inequality, International Mathematical Forum, 4 (2009), No. 24, 1173 - 1180.

[4] A. Witkowski, On Young’s inequality, J. Ineq. Pure and Appl. Math., 7 (2006), Issue 5, article 164.

[5] W. H. Young, On classes of summable functions and their Fourier series, Proc. Roy. Soc. London, Ser. A 87, 225-229, 1912.

Flavia-Corina Mitroi

Department of Mathematics University of Craiova

Street A. I. Cuza 13, Craiova, RO-200585, Romania

Referensi

Dokumen terkait

ISS Indonesia Surabaya telah melakukan proses rekrutmen dengan cukup baik dalam departemen cleaning service karena menggunakan metode rekrutmen yang bersumber dari dalam

Narasumber-4 melanjutkan kuliah program studi teknologi pangan dan gizi, saat ini ia menjabat sebagai manajer bussiness development (untuk Ekstraksi dan Toll

Selain itu, pemimpin juga memiliki beberapa karakter pemimpin Kristen dalam hubungan dengan sesama yaitu, ingin melayani orang lain, mau berbagi, mengampuni

Sedangkan menurut Daft (2011, p.153) personal moral development seseorang terdiri dari 3 level yaitu preconventional level, conventional level, dan postconventional

Pengalaman kerja bersifat sebagai full mediation variable (variabel mediasi penuh) dikarenakan pengaruh langsung praktek sumber daya manusia terhadap sikap perilaku

Yang perlu dicermati dari rantai pembeli ini adalah PT. Belirang Kalisari tidak langsung menawarkan jasa pada konsumen tingkat akhir. Jika dilihat prosesnya,

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Dari hasil tabel diatas dapat dilihat bahwa secara keseluruhan pengelolaan sumber daya manusia pada sektor formal lebih baik dibandingkan dengan sektor informal, selain