• Tidak ada hasil yang ditemukan

Paper-21-Acta24.2010. 107KB Jun 04 2011 12:03:12 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-21-Acta24.2010. 107KB Jun 04 2011 12:03:12 AM"

Copied!
7
0
0

Teks penuh

(1)

ON THE LOCALIZATION OF FACTORED FOURIER SERIES

H ¨USEY˙IN BOR

Abstract. In this paper, a general theorem dealing with the local property of | N , p¯ n, θn |k summability of factored Fourier series has been proved , which generalizes some known results.

2010 AMS Subject Classification: 40G99, 42A24, 42B08.

Key Words: Absolute summability, infinite series, local property, Fourier series.

1.Introduction LetP

anbe a given infinite series with partial sums (sn). Let (pn) be a sequence of positive numbers such that

Pn= n

X

v=0

pv → ∞ as n→ ∞, (P−i =p−i = 0, i≥1). (1) The sequence-to-sequence transformation

σn= 1

Pn n

X

v=0

pvsv (2)

defines the sequence (σn) of the Riesz mean or simply the ( ¯N , pn) mean of the se-quence (sn), generated by the sequence of coefficients (pn) (see [6]). The seriesPan is said to be summable |N , p¯ n|k, k≥1,if (see [2])

X

n=1

(Pn/pn)k−1|∆σn−1|k<∞, (3) where

∆σn−1 =−

pn

PnPn−1 n

X

v=1

(2)

In the special case pn = 1 for all values of n,|N , p¯ n|k summability is the same as

|C,1|k summability. Also, if we take k= 1 andpn = 1/(n+ 1),then summability

|N , p¯ n |k is equivalent to the summability |R,logn,1 |. Let (θn) be any sequence of positive constants. The series P

an is said to be summable |N , p¯ n, θn|k, k≥1, if (see [9])

X

n=1

θk−1

n |∆σn−1|k<∞. (5) If we takeθn= Ppnn,then|

¯

N , pn, θn|k summability reduces to|N , p¯ n|k summa-bility. Also, if we take θn =n and pn = 1 for all values of n, then we get | C,1|k summability.

Furthermore, if we takeθn=n,then|N , p¯ n, θn|k summability reduces to|R, pn|k (see [4]) summability. A sequence (λn) is said to be convex if ∆2

λn ≥ 0 for every positive integer n, where ∆2λ

n = ∆(∆λn) and ∆λn = λn−λn+1. Let f(t) be a periodic function with period 2π and integrable (L) over (−π, π).Without any loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that

Z π

π

f(t)dt= 0 (6)

and

f(t)∼

X

n=1

(bncosnt+cnsinnt) = ∞

X

n=1

An(t), (7)

where (bn) and (cn) denote the Fourier coefficients. It is well known that the con-vergence of the Fourier series att=x is a local property of the generating function f(t) (i. e., it depends only on the behaviour of f in a arbitrarily small neighbourhood of x), and hence the summability of the Fourier series att=xby any regular linear summability method is also a local property of the generating function f(t) (see [10]).

2.Known result

Mohanty [8] has demonstrated that the summability|R,logn,1|of

X

An(t)/log(n+ 1), (8)

at t =x, is a local property of the generating function of P

An(t). Later on Mat-sumoto [7] improved this result by replacing the series (8) by

X

(3)

Generalizing the above result Bhatt [1] proved the following theorem. Theorem A. If (λn) is a convex sequence such that P

n−1

λn is convergent, then the summability |R,logn,1 |of the series P

An(t)λnlogn at a point can be ensured by a local property.

Bor [4] has proved Theorem A in a more general form which includes of the above results as special cases. Also it should be noted that the conditions on the sequence (λn) in that theorem, are somewhat more general than in Theorem A. His theorem is as follows.

Theorem B. Let k ≥ 1. If (λn) is a non-negative and non-increasing se-quence such thatP

pnλnis convergent, then the summability|N , p¯ n|kof the series

P

An(t)λnPn at a point is a local property of the generating functionf(t).

3.The main result

The aim of the present paper is to generalize Theorem B for|N , p¯ n, θn|k summa-bility under suitable conditions. We shall prove the following theorem.

Theorem . Let k ≥ 1. If (λn) is a non-negative and non-increasing sequence such that P

pnλn is convergent and (θn) is any sequence of positive constants such that

m

X

v=1

θvpv

Pv

k−1

Pv∆λv =O(1) as m→ ∞, (10) m

X

v=1

θvpv

Pv

k−1

pvλv =O(1) as m→ ∞, (11) m

X

v=1

θvpv

Pv

k−1

pv+1λv+1=O(1) as m→ ∞, (12) m+1

X

n=v+1

θnpn

Pn

k−1 pn

PnPn−1 =O

(

θvpv

Pv

k−1

1

Pv

)

, (13)

(4)

It should be noted that if we take θn = Ppn

n, then we get Theorem B. In this case

conditions (10)-(12) are obvious and condition (13) reduces to m+1

X

n=v+1

pn

PnPn−1 =O

1

Pv

, (14)

which always holds .Also,if we takek= 1 andpn= 1/(n+1),then we obtain Theorem A.

We need the following lemmas for the proof of our theorem.

Lemma 1([5]). If (λn) is a non-negative and non-increasing sequence such that

P

pnλn is convergent, thenPnλn=O(1) as n→ ∞ and PPn∆λn<∞.

Lemma 2 . Let (sn)=a1+a2+...+an=O(1). If (λn) is a negative and non-increasing sequence such thatP

pnλnis convergent and the conditions (10)-(13) are satisfied , then the series P

anλnPn is summable |N , p¯ n, θn|k, k≥1.

Proof. Let (Tn) denotes the ( ¯N , pn) mean of the series PanλnPn. Then, by defi-nition, we have

Tn= 1

Pn n

X

v=0

pv v

X

r=0

arλrPr= 1

Pn n

X

v=0

(Pn−Pv−1)avλvPv.

Then, for n≥1, we have that

Tn−Tn−1 =

pn

PnPn−1 n

X

v=1

Pv−1Pvavλv.

By Abel’s transformation, we have

Tn−Tn−1 =

pn

PnPn−1 n−1

X

v=1

PvPvsv∆λv−

pn

PnPn−1 n−1

X

v=1

Pvsvpvλv

− pn

PnPn−1 n−1

X

v=1

Pvpv+1svλv+1+snpnλn = Tn,1+Tn,2+Tn,3+Tn,4, say.

By Minkowski’s inequality for k >1, to complete the proof of the Lemma 2 , it is sufficient to show that

X

n=1

θk−1

(5)

Now, applying H¨older’s inequality with indices k and k′ by virtue of the hypotheses of the Lemma 2 and Lemma 1. Again

m+1

in view of the hypotheses of the Lemma 2 and Lemma 1 . Using the fact that

(6)

Finally, we have that

m

X

n=1

θk−1

n |Tn,4 |k = m

X

n=1

θk−1

n |sn|kpknλkn

= O(1) m

X

n=1

θkn−1pkn−1pnλkn−1λn

Pk−1 n

Pnk−1

= O(1) m

X

n=1

θnpn

Pn

k−1

(Pnλn)k−1pnλn

= O(1) m

X

n=1

θnpn

Pn

k−1

pnλn=O(1) as m→ ∞,

by virtue of the hypotheses of the Lemma 2 and Lemma 1 . Therefore, we get that

m

X

n=1

θk−1

n |Tn,r |k=O(1) as m→ ∞, f or r= 1,2,3,4. This completes the proof of the Lemma 2.

4.Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighbourhood of this point only , hence the truth of the Theorem is a necessarry consequence of Lemma 2. If we take θn =nand pn= 1 for all values of n, then we have a new local property result dealing with |C,1|k summability. Also, if we take

θn=n, then we obtain another new local property result for|R, pn|ksummability. Acknowledgement.The author wishes to express his sincerest thanks Profes-sor L. Leindler (Szeged University, Hungary) for his invaluable suggestions for the improvement of this paper.

References

(7)

[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos Soc., 97 (1985),147-149.

[3] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.

[4] H. Bor, Localization of factored Fourier series , J.Inequal. Pure Appl. Math., 6 (2005), Article 40 , ( electronic).

[5] H. Bor, A note on local property of factored Fourier series , Nonlinear Anal., 64 (2006), 513-517 .

[6] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, (1949).

[7] K. Matsumoto, Local property of the summability|R, logn,1|, Tˆohoku Math. J. (2), 8 (1956), 114-124.

[8] R. Mohanty, On the summability | R, logw,1 | of Fourier series, J. London Math. Soc., 25 (1950), 67-72.

[9] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.

[10] E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, (1961).

H¨useyin BOR

Department of Mathematics Erciyes University

38039 Kayseri, Turkey

Referensi

Dokumen terkait

Berdasarkan hasil penelitian ini menyatakan umur perusahaan memiliki kecenderungan yang menurunkan kinerja saham jangka pendek negatif yang berarti bahwa perusahaan

Konawe Utara pada Dinas Pekerjaan Umum Kabupaten Konawe Utara, dengan ini kami mengundang Saudara untuk mengikuti pembuktian kualifikasi, yang akan dilaksanakan pada :. KELOMPOK KERJA

Penyusunan Rencana Kegiatan Bidang Rehabilitasi Lahan dan Perhutanan Sosial Di Wilayah Kerja BPDAS

Beberapa rumusan masalah yang dibahas di dalam penelitian ini adalah mengenai hak dan kewajiban pemilik tanah dan developer dalam akta perjanjian, problematika yang muncul

Melek konstitusi dan hukum, yang memahami pokok pikiran Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 dan hukum yang ada dalam Negara Republik

Augmented Reality (AR) adalah sebuah teknologi yang berguna untuk memvisualisasikan benda maya menjadi bagian dari lingkungan yang nyata sehingga ke dua benda dan atau

Demikian Penetapan Pemenang Pelelangan ini dibuat dan ditandatangani pada hari, tanggal dan bulan sebagaimana tersebut di atas untuk dipergunakan sebagaimana mestinya.

Maka untuk menghitung volume benda ruang yang dibatasi di atas oleh kurva z = f ( x,y ) dan di bawah oleh D dilakukan sebagai berikut...