• Tidak ada hasil yang ditemukan

THE GOODNESS OF LONG PATH WITH RESPECT TO MULTIPLE COPIES OF COMPLETE GRAPHS | Sudarsana | Journal of the Indonesian Mathematical Society 179 482 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "THE GOODNESS OF LONG PATH WITH RESPECT TO MULTIPLE COPIES OF COMPLETE GRAPHS | Sudarsana | Journal of the Indonesian Mathematical Society 179 482 1 PB"

Copied!
5
0
0

Teks penuh

(1)

Vol. 20, No. 1 (2014), pp. 31–35.

THE GOODNESS OF LONG PATH WITH RESPECT TO

MULTIPLE COPIES OF COMPLETE GRAPHS

I Wayan Sudarsana

Combinatorial and Applied Mathematics Research Group (CAMRG) Department of Mathematics, Faculty of Mathematics and Natural Sciences

Tadulako University, Jalan Soekarno-Hatta Km. 8 Palu 94118 Indonesia sudarsanaiwayan@yahoo.co.id

Abstract. LetH be a graph with the chromatic numberχ(H) and the chromatic surpluss(H). A connected graphGof order nis called goodwith respect toH,

H-good, ifR(G, H) = (n−1)(χ(H)−1) +s(H). The notationtKmrepresents a graph withtidentical copies of complete graphs onmvertices,Km. In this note, we discuss the goodness of pathPn with respect totKm. It is obtained that the pathPnistKm-good form, t≥2 and sufficiently largen. Furthermore, it is also obtained the Ramsey numberR(G, tKm), whereGis a disjoint union of paths.

Key words and Phrases: (G, H)-free,H-good, complete graph, path, Ramsey num-ber.

Abstrak.NotasiHmenyatakan graf dengan bilangan kromatikχ(H) dan surplus kromatiks(H). GrafGyang memilikintitik disebutelokterhadapH,H-elok, jika

R(G, H) = (n−1)(χ(H)−1) +s(H). NotasitKmmerepresentasikantrangkap graf lengkap identik denganmtitik,Km. Dalam makalah ini dapat ditunjukkan bahwa graf lintasanPnadalahtKm-elok untuk semuam, t≥2 danncukup besar. Meng-gunakan sifat elok tersebut hasil lebih jauh juga diperoleh, yaitu bilangan Ramsey

R(G, tKm) dapat ditentukan jikaGadalah gabungan graf lintasan sebarang.

Kata kunci: (G, H)-kritis,H-elok, graf lengkap, lintasan, bilangan Ramsey.

1. Introduction

All graphs in this paper are finite, undirected and simple. LetGand H be two graphs, where H is a subgraph of G, we define G−H as a graph obtained from G by deleting the vertices of H and all edges incident to them. Lett be a

2000 Mathematics Subject Classification: 93C41

(2)

natural number and Gi be a connected graph with the vertex setVi and the edge

setEifor everyi= 1,2, ..., t. The disjoint union of graphs,Sti=1Gi, has the vertex

set St

i=1Vi and the edge set Sti=1Ei. Furthermore, if each Gi is isomorphic to a

connected graphGthen we denote bytGthe disjoint union oftcopies ofG. For graphsG and H, the Ramsey number R(G, H) is the minimum n such that in every coloring of the edges of the complete graph Kn with two colors,

say red and blue, there is a red copy of G or a blue copy of H. A graph F is called (G, H)-free ifF contains no subgraph isomorphic toGand its complement

F contains no subgraph isomorphic to H. The Ramsey number R(G, H) can be equivalently defined as the smallest natural number n such that no (G, H)-free graph onnvertices exists.

DeterminingR(G, H) is a notoriously hard problem. Burr [4] showed that the problem of determining whether R(G, H)≤n for a given nis NP-hard. Further-more in Shaeffer [8] one can find a rare natural example of a problem higher than NP-hard in the polynomial hierarchy of computational complexity theory, that is, Ramsey arrowing is Qp

2-complete. The few known values ofR(G, H) are collected

in the dynamic survey of Radziszowski [7]. Burr [3] proved the general lower bound

R(G, H)≥(n−1)(χ(H)−1) +s(H), (1)

whereGis a connected graph of ordern,χ(H) denotes the chromatic number ofH

ands(H) is itschromatic surplus, namely, the minimum cardinality of a color class taken over all proper colorings ofHwithχ(H) colors. Motivated by this inequality, the graphGis said to be H-good if equality holds in (1). Chv´atal [5] proved that trees areKm-good graphs. Sudarsana et al. [10] showed that path is a good graph

with respect to 2Km, andPn is alsotW4-good in [12]. Other result concerning the

goodness of graphs with the chromatic surplus one can be found in Lin et al. [6]. However, the goodness of pathPn with respect to tKm fort≥2 is still open. In

this paper, we establish thatPn istKm-good for t≥2 and sufficiently largen.

2. Known Results

For the proof of our new result, Theorem 3.1, we use the following results.

Theorem 2.1 (Chv´atal [5]). Let n, m≥2 be integers andTn is a tree of order n. Then, R(Tn, Km) = (n−1)(m−1) + 1.

Note that the chromatic surplus ofKm,s(Km), is equal to one and pathPn

is a tree of ordern. Therefore,R(Pn, Km) = (n−1)(m−1) + 1.

Theorem 2.2 (Sudarsana et al. [10]). Let m≥ 2 and n ≥3 be integers. Then,

R(Pn,2Km) = (n−1)(m−1) + 2.

Lemma 2.3 (Sudarsana et al. [10]). Let n andtbe positive integers. Then,

R(Pn, tK2) =

n+t−1, t≤ ⌊n 2⌋;

2t+⌈n

(3)

3. The Main Result

The following theorem deals with the goodness of pathPn with respect tot

identical copies of complete graphs,tKm.

Theorem 3.1. Letm, t≥2be integers andg(t, m) = (t−2)((tm−2)(m−1)+1)+3. If n≥g(t, m) thenR(Pn, tKm) = (n−1)(m−1) +t.

Proof of Theorem 3.1: The lower bound R(Pn, tKm) ≥ (n−1)(m−1) +t

follows from the fact that (m−1)Kn−1∪Kt−1is a (Pn, tKm)–free graph of order

(n−1)(m−1) +t−1.

To prove the upper boundR(Cn, tKm)≤(n−1)(m−1) +twe use inductions

ontandm. Fort= 2, we haveg(2, m) = 3 and therefore Theorem 2.2 implies that

R(Pn,2Km) = (n−1)(m−1) + 2 for n≥g(2, m) = 3. Hence, the assertion holds

forn≥g(2, m) = 3. Assume that the theorem is true forn≥g(t−1, m), that is

R(Pn,(t−1)Km)≤(n−1)(m−1) +t−1.

From Lemma 2.3, we haveR(Pn, tK2) =n+t−1 forn≥2t. Note that ift≥2

thenn≥g(t,2)>2t. Therefore, the theorem holds form= 2. Assume thatm≥3 and the theorem is true forn≥g(t, m−1), that isR(Pn, tKm−1)≤(n−1)(m−2)+t.

Now we will show that the theorem is also valid forn ≥g(t, m). Let F be an arbitrary graph on (n−1)(m−1) +tvertices. We shall show thatF contains

Pn or F containstKm. Note that Theorem 2.1 guarantees thatF containsPn or

F containsKm. IfF containsPn then we are done. Thus we may assume thatF

containsKm. Since the subgraphF−KmofF has (n−2)(m−1) +t−1 vertices

and n−1≥g(t, m)−1 > g(t−1, m), by the induction hypothesis ont we know that F −Km contains Pn−1 or the complement ofF −Km contains (t−1)Km.

If the complement of F −Km contains (t−1)Km then by companying with the

first ones we have a tKm in F and hence the proof is done. Thus, F has a path

Pn−1. Therefore, the subgraphF−Pn−1ofF has (n−1)(m−2) +tvertices. Note

that n≥g(t, m)> g(t, m−1). By the induction hypothesis onm, we know that

F−Pn−1containsPnor the complement ofF−Pn−1containstKm−1. IfF−Pn−1

containsPn then we are done. Hence we may assume thatF contains a pathPn−1

with vertex set, sayp1, p2, . . . , pn−1and edgespipi+1 (subscripts modulo (n−1)),

and thatF containstdisjoint copiesKm1−1, Km2−1, ..., Kmt−1of the complete graph

withm−1 vertices. It is clear that the subgraphsPn−1andtKm−1have no vertices

in common.

Assume thatF contains noPn. We will show that F containstKm. Thus,

the end vertices p1 and pn−1 of path Pn−1 must not be adjacent to any vertices

inKm1−1, Km2−1, ..., Kmt−1. Therefore, the setD={{p1} ∪V(Km1−1)} ∪ {{pn−1} ∪ V(K2

m−1)}forms a 2KminF. Let us now consider the relation between the vertices

in A′={p

2, p3, ..., pn−2} and inB′=V(Km3−1)∪V(Km4−1)∪...∪V(Kmt−1).

Since there is noPninF, it follows that every two consecutive verticespi, pi+1

inA′can not be adjacent to any vertices inBfor everyi∈ {2,3, ..., n2}. Suppose

(4)

we can extendPn−1 to a path of order n containingu. Ifpi+1pj+1 is an edge in

are adjacent to no vertex inB′and hence together withDwe have thatF contains

tKm. This concludes the proof of Theorem 3.1.

By extending previous results of Baskoro et al. [1] and Stahl [9], Bielak [2] and Sudarsana et al. [11] independently proved a formula forR(G, H) when every connected component of G is anH-good graph. This result motivates the study of general families of H-good graphs. In particular, Theorem 3.1 provides the following computation ofR(G, tKm), ifGis a set of disjoint paths (linear forest).

Corollary 3.2. Letm, t≥2be integers andg(t, m) = (t−2)((tm−2)(m−1)+1)+3.

Acknowledgements. The author is thankful to the anonymous referees for some comments that helped to improve the presentation of the manuscript. The author also gratefully acknowledges Professor Oriol Serra for helpful discussion while do-ing this research. This research was supported by Directorate General of Higher Education (DGHE), Indonesian State Ministry of Education and Culture under Fundamental research grant: 125.C/un 28.2/PL/2012.

References

[1] Baskoro, E.T., Hasmawati, and Assiyatun, H., ”Note. The Ramsey number for disjoint unions of trees”,Discrete Math.306(2006), 3297–3301.

[2] Bielak, H., ”Ramsey numbers for a disjoint union of good graphs”,Discrete Math.310(2010),

1501–1505.

[3] Burr S.A., ”Ramsey numbers involving long suspended paths”,J. London Math. Soc.24:2

(1981), 405-413.

[4] Burr, S.A., ”Determining generalized Ramsey numbers is NP-hard”,Ars Combin.17(1984),

21–25.

(5)

[6] Lin, Q., Li, Y., and Dong, L., ”Ramsey goodness and generalized stars”,Europ. J. Combin.,

31(2010), 1228-1234.

[7] Radziszowski, S.P., ”Small Ramsey numbers”, Electron. J. Combin. (2009), DS1.12, h http://www.combinatorics.orgi.

[8] Schaefer, M., ”Graph Ramsey theory and the polynomial hierarchy”, J. Comput. Sys. Sci.

62(2001), 290–322.

[9] Stahl, S., ”On the Ramsey numberr(F, Km) whereF is a forest”,Canadian J. Math.27

(1975), 585–589.

[10] Sudarsana, I W., Assiyatun, H., Adiwijaya, and Musdalifah, S., ”The Ramsey number for a linear forest versus two identical copies of complete graphs”,Discrete Math. Algo. Appl.2

(2010), 437–444.

[11] Sudarsana, I W., Baskoro, E.T., Assiyatun, H., and Uttunggadewa, S., ”The Ramsey numbers for the union graph withH-good components”,Far East J. Math. Sci.39:1(2010), 29-40.

Referensi

Dokumen terkait

Demikian Berita Acara ini dibuat dengan sesungguhnya untuk dapat dipergunakan sebagaimana mestinya. Kelompok Kerja 31-16 Unit Layanan

[r]

Untuk membuat audience menjadi ingat dengan Art of Yoga by Sari sebagai tempat yoga yang dapat membentuk tubuh menjadi indah dengan guru atau pengajar yang

1 Radio Dalam Jakarta Selatan, Pokja ULP I I Kementerian Sosial berdasarkan Surat Tugas Pokja Pekerjaan Pengadaan Renovasi Gedung/ Bangunan bagi Penyandang

[r]

non-intervention terhadap permasalahan dalam negeri sebuah negara yang merujuk pada konsep keamanan nasional (biasanya berkonotasi kemanan negara), menuju kesebuah

Maksud dilakukannya penelitian ini untuk merancang Sistem Informasi penerapan kurikulum sepakbola usia muda berbasis web sebagai media pendukung para orangtua dalam

Pokja IV ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan konstruksi sebagai