• Tidak ada hasil yang ditemukan

Imaging in tuberculosis

N/A
N/A
Protected

Academic year: 2021

Membagikan "Imaging in tuberculosis"

Copied!
7
0
0

Teks penuh

(1)

Review

Imaging

in

tuberculosis

Evangelia

Skoura

a

,

Alimuddin

Zumla

b

,

Jamshed

Bomanji

a,

*

aInstituteofNuclearMedicine,UniversityCollegeHospitalsNHSTrust,LondonNW12BU,UK

bDivisionofInfectionandImmunity,CentreforClinicalMicrobiology,UniversityCollegeLondon,andNIHRBiomedicalResearchCentre, UniversityCollegeLondonHospitals,London,UK

1. Introduction

Tuberculosis(TB)remainsaglobalemergencydespite substan-tial investment in health services over the past two decades. Patients withsputum-negative pulmonary TB (PTB) and extra-pulmonaryTB(EPTB)aredifficulttodiagnoseandmaybemissed atall pointsof care.Diagnostic imaging is challenging because signsofTBmaymimicthoseofotherdiseasessuchasneoplasmsor sarcoidosis.Clinicalsignsandsymptomsinaffectedadultscanbe non-specificandahighlevelofpre-testclinicalsuspicionbasedon history is fundamental in the diagnostic work-up. The global impactofTBisextremelyimportant,consideringthatanestimated 9.0millionpeopledevelopedTBin2013and1.5milliondiedfrom thedisease, accordingtotherecentWorld HealthOrganization (WHO)globaltuberculosisreport2014.

Early diagnosispromoteseffective treatment and leads toa reducedonwardtransmissionofTB.Thisarticlegivesareviewof imagingpatternsofchestTBasmaybedetectedonconventional radiographyandcomputedtomography(CT).Themainaimisto

improvetheradiologist’sfamiliaritywiththespectrumofimaging features of this disease in order to facilitate timely diagnosis. Furthermore, we consider the emerging role of alternative methodsofimaging,suchasmagneticresonanceimaging(MRI), whichcanbehelpfulandhighlyaccurateforabetterdefinitionof someofthesignsofTB.

Althoughnewimagingmethodsarenowbeingused, conven-tionalradiographyremainstheinitialmodalityforsuspectedPTBand formassscreeningpurposes.1CTandMRIarethemodalitiesofchoice for the evaluation of specific body parts.1 Positron emission tomography/computedtomographywiththeuseof18 F-fluorodeox-yglucose(18F-FDGPET/CT)isanon-invasiveimagingmethodthat has been used widely for the differentiation of malignant from benignlesions.However,18F-FDGalsoaccumulatesininflammatory cellssuchasneutrophils,activatedmacrophages,andlymphocytesat thesiteofinflammationorinfection.2Consequently,18F-FDGuptake isobservedinPTB,intuberculoma,andinotherTB-relatedlesions.3,4 UsingPET/CT,pulmonaryandextrapulmonaryTBinvolvementis assessedsimultaneously,withtime-andcost-savingimplications.

Although any organ of the body can be involved, the lung remainsthemostcommonlyinvolved organinTB. Theimaging appearancesofTB aredescribedbelowforboth pulmonaryand extrapulmonaryinvolvement.

ARTICLE INFO

Articlehistory:

Received14November2014

Receivedinrevisedform28November2014 Accepted1December2014

CorrespondingEditor:EskildPetersen, Aarhus,Denmark

Keywords:

Pulmonarytuberculosis Extrapulmonarytuberculosis Computedtomography Positronemissiontomography Fluorodeoxyglucose Magneticresonanceimaging

SUMMARY

Earlydiagnosisoftuberculosis(TB)isnecessaryforeffectivetreatment.InprimarypulmonaryTB,chest radiography remains the mainstay for the diagnosis of parenchymal disease, while computed tomography(CT)ismoresensitiveindetectinglymphadenopathy.Inpost-primarypulmonaryTB,CT isthemethodofchoicetorevealearlybronchogenicspread.Concerningcharacterizationoftheinfection asactiveornot,CTismoresensitivethanradiography,and18F-fluorodeoxyglucosepositronemission

tomography/CT(18F-FDGPET/CT)hasyieldedpromisingresultsthatneedfurtherconfirmation.The

diagnosisofextrapulmonaryTBsometimesremainsdifficult.Magneticresonanceimaging(MRI)isthe preferredmodalityinthediagnosisandassessmentoftuberculousspondylitis,while18F-FDGPETshows

superiorimageresolutioncomparedwithsingle-photon-emittingtracers.MRIisconsideredsuperiorto CTforthedetectionandassessmentofcentralnervoussystemTB.ConcerningabdominalTB,lymph nodesarebestevaluatedonCT,andthereisnoevidencethatMRIoffersaddedadvantagesindiagnosing hepatobiliarydisease.Asmetabolicchangesprecedemorphologicalones,theapplicationof18F-FDGPET/

CTwilllikelyplayamajorroleintheassessmentoftheresponsetoanti-TBtreatment.

ß2015TheAuthors.PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(

http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Correspondingauthor.

E-mailaddress:jamshed.bomanji@uclh.nhs.uk(J.Bomanji).

ContentslistsavailableatScienceDirect

International

Journal

of

Infectious

Diseases

j o urn a l hom e pa ge : ww w. e l s e v i e r. c om/ l o ca t e / i j i d

http://dx.doi.org/10.1016/j.ijid.2014.12.007

1201-9712/ß2015TheAuthors.PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Primary TB is due to first-time exposure to Mycobacterium

tuberculosis. At radiology, primary PTB manifests as four main

entities–parenchymal disease,lymphadenopathy, pleural effu-sion,andmiliarydisease–oranycombinationthereof.1

Chestradiographycontinuestobethemainstayofdiagnosis. Typically,parenchymaldiseasemanifestsasconsolidationinany lobe,withpredominanceinthelowerandmiddlelobes.6Inthese cases,thebacterialinfectionsaremuchmorelikelytobethecause of such radiological features and hence the findings are non-specific, although primary infection should be suspected in individualsat risk of exposure to TB. Multilobar consolidation canbeseeninalmost25%ofcases.1Inapproximatelytwo-thirdsof cases, the parenchymal lesion resolves without sequelae on conventionalradiography.6 Intheremainder,aradiologicalscar persiststhatcanbecalcifiedinupto15%,whilepersistent mass-likeopacitiescalledtuberculomasareseeninapproximately9%of cases.6 Frequently,the only radiologicalevidence suggestive of previousTBistheso-calledRankecomplex:thecombinationofa parenchymalscar,calcifiedornot(Ghonlesion),andcalcifiedhilar and/orparatracheallymphnodes.5Destructionandfibrosisofthe lungparenchymaresultintheformationoftractionbronchiectasis withinthefibroticregion.5

The most common abnormality in children is lymph node enlargement,whichisseenin90–95%ofcases;bycomparison,in adultsthepercentagereachesupto43%.7Rightparatrachealand hilarlymphnodesarethemostcommonsitesofnodal involve-ment,althoughinvolvementisbilateralinaboutathirdofcases.CT ismoresensitivethanplainradiographyindetectingtuberculous lymphadenopathy.Itreveals nodes oftenmeasuringmore than 2cm,withaverycharacteristic,butnotpathognomonic,‘rimsign’ that consists of a low-density centre, representing caseous necrosis, surrounded by a peripheral enhancing rim due to granulomatousinflammatorytissue.8,9

Incontrasttolymphadenopathy,theprevalenceof radiographi-callydetectableparenchymalinvolvementissignificantlylowerin childrenupto3yearsold(51%)thaninolderchildren,amongwhom the prevalence is similar to the reported percentage in adults (80%).7,8Also,evolutiontocavitarydiseaseisrareinchildren.5

inability to distinguish tubercular from malignant lesions (Figure 1).11 Studies investigating the diagnostic value of dual time-point18F-FDGPET/CTimaginghaveshownlimitedpromise, but further investigations in larger series of patients are warranted.12,13

2.2. Post-primarytuberculosis

Post-primary PTB is one of the many terms (including reactivation,secondary,oradulthood)appliedtotheformofTB that develops and progresses under the influence of acquired immunity.5Themostcommonradiographicmanifestationof post-primary PTB is focal or patchy heterogeneous, poorly defined consolidationinvolvingtheapicalandposteriorsegmentsofthe upper lobes and the superior segments of the lower lobes (Figure2).14,15Inthemajorityofcases,morethanonepulmonary segmentisinvolved.6Cavitation,theradiologicalhallmarkofPTB, isradiographicallyevidentin20–45%ofpatients(Figure3),while air-fluidlevelsinthecavityoccurin10%ofcases.14,15Cavitation mayprogresstoendobronchialspreadandresultsinatypical ‘tree-in-bud’ distributionofnodules in additiontocavitation;this is consideredareliablemarkerofactiveTB.16High-resolutionCTis themethodofchoicetorevealearlybronchogenicspread,with 2-to 4-mm centrilobular nodules and sharply marginated linear branchingopacitiesaroundterminalandrespiratorybronchioles (tree-in-budsign).16Thetree-in-budsignistheconstellationof smallcentrilobularnodulesandconcomitantbranchingopacities, which mimics the branching pattern of a budding tree.17 The centrilobular nodulesare peripheral,spare thesubpleurallung, and denote the inflammatory lesions in the bronchioles and peribronchialalveoli.16,17Hilarormediastinallymphadenopathy isuncommoninpost-primaryPTB,seeninonly5–10%ofpatients (Figure4).18,19

Althoughpulmonarytuberculomasaremostoftentheresultof healedprimaryPTB,apulmonarytuberculomaisthemainoronly abnormalityonchestradiographsinapproximately5%ofpatients withreactivation.20TheCTscanshowsaroundorovalgranuloma, measuring from0.4 to 5cm in diameter,with a wall lined by

Figure1.Arrowsindicateamildly18

F-FDGavidrightlowerlobenodulemeasuring1.5cm(SUVmax2).Thedifferentialdiagnosisforthisnodulewouldincludecanceror

(3)

inflammatorygranulomatoustissueorencapsulatedbyconnective tissue.21Tuberculomascancavitate,whilecalcificationisfoundin 20–30%ofthem.21In80%ofcases,satellitelesionsareobservedin theimmediatevicinityofthe mainlesion.5Becauseofincreased glucosemetabolismcausedbyactivegranulomatousinflammation, tuberculomasmayaccumulate18F-FDG.22Maximumstandardized uptakevalues(SUVmax)tendnottobesignificantlydifferentfor tuberculousandmalignantlesions.23,24Onestudyhassuggested that unlike 18F-FDG PET, the 11C-choline PET scan can help to differentiate between lung cancer and tuberculoma, because tuberculomashowslowtraceruptakeon11C-cholinePETscan.25

2.3. Radiologicalpatternsinprimaryand/orpost-primaryPTB

Miliary pulmonary disease affects between 1% and 7% of patients withallforms ofTB.6 Itis usually seenin theelderly, infants, and immunocompromised persons.6 Initially, standard radiographsarenormalin25–40%ofcases.26CTcandemonstrate miliarydiseasebeforeitbecomesradiographicallyapparent,and its characteristic findings consist of innumerable 1- to 3-mm-diameternodules randomly distributed throughout both lungs, oftenassociatedwithintra-andinterlobularseptalthickening.14,27 Thenodulesusually resolvewithin2–6monthswithtreatment, withoutscarringorcalcification; however,theymaycoalesceto formfocalordiffuseconsolidation.6

A pleural effusion is seen in approximately one-fourth of patients with primary PTB and in 18% of post-primary PTB.26 Although, usually observed in association with parenchymal

and/ornodaldisease,pleuraleffusionhasbeenreportedtobethe only radiographicfinding indicative of primaryPTB in approxi-mately5%ofadultcases.26Pleuraleffusionisusuallyunilateraland onthesamesideastheprimaryfocusofPTB,whilecomplications suchaseffusion,empyema,andbronchopleuralfistulaarerare.6The CT scan of patientswith post-primary pleuraleffusiontypically shows smooth thickening of visceral and parietal pleura.28 Ultrasonographyoftendemonstratesacomplexseptatedeffusion.6 Fibrothorax with diffusepleuralthickening,but without pleural effusiononCT,suggestsinactivity.29The18F-FDGPET/CTscanmay demonstratediffuselyintense18F-FDGuptakeinthickenedpleura thatcanbeconfusedwithpleuralmesothelioma.30

2.4. DifferentiationbetweenactiveandinactiveTB

TBmakesitspresencefeltonimaginglongaftertheresolution of disease.Sometimes a questionthat needstobe answeredis whethertheinfectionisactiveornot.Activediseaseisingeneral characterizedbythepresenceofcentrilobularnodules,tree-in-bud pattern, thick-walled cavities, consolidation, miliary nodules, pleural effusions, or necrotic lymphadenopathy.1 Resolution to thin-walledsmoothcavities,fibrosis,andparenchymal,nodal,or pleuralcalcificationsoftendenotesinactivedisease.1

Chestradiographsmaybenormalorshowonlymildor non-specificfindingsinpatientswithactivedisease.26Thediagnosisof PTBwithradiographyisinitiallycorrectinonly49%ofallcases: 34% for primaryand 59% for post-primaryPTB.26On theother hand,CTcancorrectlydiagnose91%ofcasesofPTBandcorrectly Figure2.Trans-axialCTsectionshowingapatchy,heterogeneous,poorlydefinedconsolidationwithcavitatinglesionintheupperlobeoftherightlung.

Figure3.Leftpanel:CTimageshowinga1.61.2-cmcavitatinglesion(arrow)intheupperlobeoftherightlung.Rightpanel:thislesionshowsmild18

F-FDGuptakeonthe PETscan(smallarrow)(SUVmax2.2).Bottomleftpanel:Fused18F-FDGPET/CTimageshowingthesamecavitatingavidlesion(arrow).

(4)

characterize 80% of patients withactive disease and 89% with inactivedisease.31

CT is more sensitive than radiography in the detection and characterization of both parenchymal disease and mediastinal lymphadenopathy.9,32Inastudythatcomparedthetwomethods, high-resolutionCTshowedcavitiesin58%ofpatientswithactive PTB,whereaschestradiographsinonly22%.32Thediagnosisofactive PTBwasbasedonpositiveacid-fastbacilliinsputumandchangeson serialradiographsobtainedduringtreatment.32CTmayalsoshow pleuraldiseasethat isnot evidenton chestradiographyand be helpfulintheevaluationofpleuralcomplications.33

CT featurespredictiveofhighlyinfectious/activePTB include the following:34 (1) consolidation involving the apex or the posteriorsegmentoftherightupperlobeortheapico-posterior segmentof the leftupper lobe, (2) consolidation involving the superiorsegmentoftherightorleftlowerlobe,(3)acavitylesion, (4)clustersofnodules,and(5)absenceofcentrilobularnodules. High-resolutionCTisbetterthanchestradiographyinpredicting activePTB,withasensitivityof96%versus48%.35

Ithasbeenreported that18F-FDG PETisabletodifferentiate activePTBfromoldorinactivedisease,asactivetuberculomahas significantly higher SUVmax values compared with inactive tuberculoma.3When a SUV

maxof 1.05(at 60min) wasusedas thecut-off, thesensitivity andspecificity were100%and 100%, respectively.3Arecentstudyconcludedthat18F-FDGPET/CThas the potential to become a tool for monitoring the treatment responseinselectedcasesofEPTBormultidrugresistance.36An interestingstudyofpatientswithradiographiclesionssuggestive ofoldhealed TBaimedtogatherinformation onthemetabolic statusofTBlesionsusing18F-FDGPET/CTimaging.37Theauthors showedthatpatients with oldhealed TB lesionswitha higher SUVmaxmaybeathigherriskofactiveTB.37Furtherinvestigationis neededtoconfirmtheseresults.

3. Extrapulmonarytuberculosis

Despite recent advancesin imaging, the diagnosisof extra-pulmonary involvement sometimes remains difficult.38 The

imagingofsomefrequentextrapulmonarysitesofTBisreviewed below.

3.1. Musculoskeletaltuberculosis

Approximately50%ofcasesofskeletalTBinvolvethespine.6 Spondylodiscitis, also known as Pott’s disease, is the most commonform.39Theinfectionbeginsin subchondralboneand spreadsslowlytotheintervertebraldiskspaceandtheadjacent vertebralbodies,commonlyinthelowerdorsalandupperlumbar spine.40Failuretoidentifyandtreattheseareasofinvolvementat anearlystagemayleadtoseriouscomplicationssuchasvertebral collapse, spinal compression, and spinal deformity.38 Plain radiographyis normalearly inthedisease.1Thefirst signmay bedemineralizationoftheendplateswithresorptionandlossof densemargins.Asthediseaseprogresses,radiographywillshow progressivevertebralcollapsewithanteriorwedgingandgibbus formation.1 MRI is the preferred imaging modality in the diagnosis and assessment of tuberculous spondylitis.41,42 Be-causeoftheoftenmultifocalnatureofspinalTB,theMRIimaging oftheentirespinalcolumncouldbemoreeffectiveintheearly diagnosisofthedisease.43IncasesofspinalTB,thespinalcordis susceptible tomyelopathy secondary tocompression from an epidural abscess.6 The collapsed vertebra along with the epiduralcollection/abscessisalsobestevaluatedonMRI.6After antibioticadministrationisinitiated,repeatimagingisadvisedat approximately 4-weekintervals orat any time ifneurological deteriorationoccurs.44

Astubercularlesionsdemonstratehigh18F-FDG uptake,18 F-FDGPET/CTis apromisingtechniqueforthediagnosisofspinal infection(Figures 5and6).45–48Aninterestingfindingwasthat 63.6% of patients with spinal TB had clinically occult non-contiguous multifocal skeletal involvement at the time of whole-body18F-FDGPET/CTscan.49

Besidesthespine,anypartofthemusculoskeletalsystemcan becomeinvolved,butthelargejointsofthelowerlimbsaremost commonlyaffected. Imagingfindings in musculoskeletalTB are oftennon-specific.MRI isthemostsensitive modality forearly diagnosisandcompletedelineationofthedisease.1

Figure4.Leftpanel:Multipleintensityprojectionimageshowing18

F-FDGuptakeinthemediastinalandbilateralhilarlymphnodes(arrows).Rightpanel:Multiplefused trans-axialsection18

(5)

3.2. Centralnervoussystem(CNS)tuberculosis

TBoftheCNSisahighlydevastatingformofthedisease.Various forms of involvement of the CNS are observed: parenchymal, meningeal, calvarial,spinal, or any combination thereof.1 MRIis generallyconsideredsuperiortoCTindetectingandassessingCNS TB.50Parenchymalinvolvementismostfrequentlyseenintheformof atuberculoma,whichmaybesingleormultiple.Inthepaediatricage groupitisseenmorefrequentlyinthecerebellum,whereasinadults ithasapredilectionforthecerebralhemispheresandbasalganglion. TheappearanceofatuberculomavariesonMRIdependingonits stageofmaturation.50,51Anon-caseatinggranulomaishyperintense onT2andhypointenseonT1andshowssolidenhancement,whilea solidcaseatinggranulomaisusuallyhypointenseonbothT1andT2 images.OnCT,tuberculomasappearasroundorlobulatedsofttissue masses with varying attenuation and homogeneous or ring enhancement.1Miliary TBis oftenassociatedwithTB meningitis and presents as small (<2mm) foci of hyperintensity on T2 acquisitions,whileaftergadoliniumadministration,T1imagesshow numerous,round, small,homogeneous,enhancinglesions.50 Con-trast-enhanced MRI is also superior toCT for the evaluationof meningitisanditscomplications,includinghydrocephalus.1

3.3. Abdominaltuberculosis

Abdominallymphadenopathyisthemostcommon manifesta-tionofabdominalTB,seenin55–66%ofpatients,andmayormay not be associated with other abdominal organ involvement.52 AbdominallymphnodesarebestevaluatedonCT,whichreveals enlargednodeswithhypoattenuatingcentresand hyperattenuat-ing enhancing rims.52,53 On MRI, the appearance is typically hypointenseon T1 images, whereas onT2 images thesignal is generallyhyperintenseorwithperipherallow-intensitysignal.1

Hepatic TB can be classified into local, miliary TB, or tuberculomas.54MiliaryTBisthemostcommonformofliverTB andisapartofgeneralizeddisease;innumerablesmallnodulesare foundontheliverwhichmayormaynotbeseenonCT,buton ultrasoundusuallypresentasbrightliverorspleenpatternsinthe formofadiffuseincreaseinechogenicity.54

Calcificationinthehepatic regionon plainradiographymay occasionallybeseeninlocalhepaticTB.54OnCT,livertuberculoma appears asa non-enhancing, central,low-densitylesion witha slightly enhancing peripheral rim,while liver calcificationscan also be demonstrated. MRI offers no added advantage in diagnosinghepatobiliaryTB.55

Figure5.CT(leftpanel)and18F-FDGPET/CTfusedimages(rightpanel):trans-axialandsagittalsections.Moderatetointense18F-FDGuptakeisseeninaparavertebralsoft

tissuemasslesionextendingfromthelevelofT7–T10vertebraewithassociatedlyticscleroticchangesinT7–T9vertebraeandcollapseoftheT8vertebra(arrows).Thelesion infiltratesintothespinalcanalattheleveloftheT8vertebraandinvolvesthespinalcord(smallarrow).Thelesionisseentoextendalongtheleftcostalmargin,withfaint18

F-FDGuptakeandfociofcalcification,likelyrepresentingacoldabscess(courtesyofProf.B.R.Mittal).

(6)

Few reports are available on 18F-FDG PET/CT imaging in abdominalTB,showingthattheappearanceofabdominalTB is non-specificandvaried(Figure6).56–58

4. Assessmentoftreatmentresponse

Thisispotentiallythemostimportantclinicalapplicationof18 F-FDGPET/CTinTB.Duringanti-TBtreatment,somebacillus-negative tuberculomasdonotdecreaseinsizeandmayevenincrease,making itdifficultfor thephysiciantodecidewhetherornottomodify treatment.Inthesecases,18F-FDGPET/CTimagingmayhelp,asthe changes in glycolytic activity within the inflammatory lesion, measured by 18F-FDG uptake, correlate well with the clinical markersofresponse.49Severalstudieshaveconfirmedthevalueof

18F-FDGPET/CTinthefollow-upandevaluationofthetreatment response,especiallyinpatientswithextrapulmonaryinvolvement andwhendrugresistanceisprevalent.57,59–63In pulmonaryand extrapulmonary TB, a decrease of approximately one-third in SUVmaxhasbeenreportedafter1monthofanti-TBtreatmentwhen thereisagoodresponse.60InitialdatahasshownthatSUV

max(both earlyand delayed)ofinvolvedlymphnodes andthe numberof involved lymph node basins are significantly higher in non-respondersthan inresponders.64Thesefindingswarrantfurther confirmationinlargercohortsofpatients.

After4 monthsofanti-TBtreatment18F-FDGPET/CTcanalso evaluatethetreatmentresponseinpatientswithhighsensitivityand specificity,usingthevalueof4.5astheSUVmaxcut-off.62

Otherauthorshaveaimedtomonitorthemetabolicchangesin spinalTB during the course oftherapy.49 Themean changesin SUVmax at various time points – from baseline to 6, 12, and 18months,from6to12months,from6to18months,andfrom12to 18months–werecalculatedandfoundtobehighlysignificant(p -value<0.001).4918F-FDGPET/CTalsoshowsencouragingresultsfor theprognosis anddetection ofresidual diseasein patientswith spinalinfection,particularlywhenMRIisunconvincingin distin-guishingbetweendegenerativechangesandinfection.65

5. TuberculosisinHIVpatients

The diagnosis of active PTB is a majorchallenge, especially in individuals with severe immunosuppression, such as those

co-infected with HIV. Such patients characteristically demon-strateanatypicalradiographic pattern,forexamplemiddleand lower lunginvolvement, absence of cavity formation, presence oflymphadenopathyandpleuraleffusions,oramiliarypattern.38 TheradiographicappearanceofHIV-associatedPTB hasbeen foundtobedependentonthelevelofimmunosuppressionatthe time of overt disease.66 Radiologicalmanifestations in patients with a CD4 T-lymphocyte count of <200/mm3 show a higher incidenceofmediastinalorhilarlymphnodeenlargement,alower prevalenceofcavitation,andoftenextrapulmonaryinvolvement comparedwithHIVpatientswithaCD4T-lymphocytecountof

200/mm3.66AstudyperformedtodeterminetheCTspectrumof PTBinHIVpatientsshowednodularopacities(in78.5%ofcases), consolidation(46.4%),lymphadenopathy(35.7%),pleuraleffusion (35.7%), ground glass opacity (21.4%), and cavitation (21.4%).67 Otherauthorshavereportedthatfeaturesofpost-primaryPTBare patchyconsolidationwithinvolvementatunusualsites.68 Cavita-tionis less common atlower CD4counts.Patients withsevere immunosuppression have an increased incidence of miliary pulmonary disease, withdiffuse, randomly distributed nodules onCT.69Mediastinalandhilarlymphadenopathyoccursin75–77% ofcasesandismorecommonlyseeninHIV-positivethanin HIV-negativepatients.68Extrapulmonarylocalizationsarefrequentin HIV-infected patients and may involve brain, pericardium, gastrointestinal tract, peritoneum, and genitourinary tract.70 Currently thereareno datatosupporttheuseof 18F-FDGPET/ CTinthispatientgroup.

Funding:None.

Ethicalapproval:Ethicalapprovalwasnotrequired.

Conflictofinterest:Allauthorshavenocompetingintereststo

declare.

References

1.BomanjiJB,GuptaN,GulatiP,DasCJ.Imagingintuberculosis.In:KaufmannSH, RubinE,ZumlaA,editors.Clinicaltuberculosis.NewYork:ColdSpringHarbor LaboratoryPress;2014.

2.Jones HA, ClarkRJ, Rhodes CG, SchofieldJB, Krausz T,Haslett C. Invivo measurementofneutrophilactivityinexperimentallunginflammation.AmJ RespirCritCareMed1994;149:1635–9.

3.KimIJ,LeeJS,KimSJ,KimYK,JeongYJ,JunS,etal.Double-phase18F-FDG PET-CTfordeterminationofpulmonarytuberculomaactivity.EurJNuclMedMol Imaging2008;35:808–14.

Figure6.Multipleintensityprojectionimage(leftpanel)andfusedtrans-axialsection18

F-FDGPET/CTimages(rightpanel)showing18

F-FDGuptakeinmultiplelymphnodes (SUVmax6.8)(portahepatis,portacaval,para-aortic,retroperitoneal,bilateralinternaliliac,leftexternaliliac,andleftinguinal(arrows))andheterogeneous18F-FDGuptakein

thegrosslyenlargedspleen(SUVmax10.2)(arrow)andinbones(T8vertebracoupledwithparavertebralsofttissueuptake(SUVmax17.6),L3vertebralbodyanteriorly(SUVmax

(7)

4.HahmCR,ParkHY,JeonK,UmSW,SuhGY,ChungMP,etal.Solitarypulmonary nodules caused by Mycobacterium tuberculosis and Mycobacterium avium complex.Lung2010;188:25–31.

5.VanDyckP,VanhoenackerFM,VandenBrandeP,DeSchepperAM.Imagingof pulmonarytuberculosis.EurRadiol2003;13:1771–85.

6.BurrillJ,WilliamsCJ,BainG,ConderG,HineAL,MisraRR.Tuberculosis:a radiologicreview.Radiographics2007;27:1255–7.

7.LeungAN,MullerNL,PinedaPR,FitzGeraldJM.Primarytuberculosisin child-hood:radiographicmanifestations.Radiology1992;182:87–91.

8.PomboF,RodriguezE,MatoJ,Perez-FontanJ,RiveraE,ValvuenaL.Patternsof contrastenhancementoftuberculouslymphnodesdemonstratedbycomputed tomography.ClinRadiol1992;46:13–7.

9.KimWS,MoonWK,KimIO,LeeHJ,ImJG,YeonKM,etal.Pulmonary tubercu-losisinchildren:CTevaluation.AmJRoentgenol1997;168:1005–9.

10.SoussanM,BrilletPY,MekinianA,KhafagyA,NicolasP,VessieresA,BraunerM. PatternsofpulmonarytuberculosisonFDG-PET/CT.EurJRadiol2012;81:2872–6.

11.LiY, SuM,LiF, KuangA,TianR. Thevalueof (18)F-FDG-PET/CTinthe differentialdiagnosisof solitary pulmonarynodules inareas witha high incidenceoftuberculosis.AnnNuclMed2011;25:804–11.

12.YenRF,ChenKC,LeeJM,ChangYC,WangJ,ChengMF,etal.18F-FDGPETforthe lymphnodestagingofnon-smallcelllungcancerinatuberculosis-endemic country:isdualtimepointimagingworththeeffort?EurJNuclMedMolImaging 2008;35:1305–15.

13.RazakHR,Geso M,AbdulRahimN,NordinAJ.Imaging characteristicsof extrapulmonarytuberculosislesionsondualtimepointimaging(DTPI)of FDGPET/CT.JMedImagingRadiatOncol2011;55:556–62.

14.LeungAN.Pulmonarytuberculosis:theessentials.Radiology1999;210:307–22.

15.KryslJ,Korzeniewska-KoselaM,MullerNL,FitzGeraldJM.Radiologicfeatures ofpulmonarytuberculosis:anassessmentof188cases.CanAssocRadiolJ 1994;45:101–7.

16.LeeKS,ImJG.CTinadultswithtuberculosisofthechest:characteristicfindings androleinmanagement.AJRAmJRoentgenol1995;164:1361–7.

17.Verma N, Chung JH, Mohammed TL. Tree-in-bud sign. J Thorac Imaging 2012;27:W27.

18.Curvo-SemedoL,TeixeiraL,Caseiro-AlvesF.Tuberculosisofthechest.EurJ Radiol2005;55:158–72.

19.RodriguezE,SolerR,Juffe´ A,Salgado L.CTandMRfindingsinacalcified myocardial tuberculoma of the left ventricle. J Comput Assist Tomogr 2001;25:577–9.

20.SochockyS.Tuberculomaofthelung.AmRevTuberc1958;78:403–10.

21.LeeKS,SongKS,LimTH,KimPN,KimIY,LeeBH.Adult-onsetpulmonary tuberculosis:findingsonchestradiographsandCTscans.AmJRoentgenol 1993;160:753–8.

22.GooJM,ImJG,DoKH,YeoJS,SeoJB,KimHY,etal.Pulmonarytuberculoma evaluatedbymeansofFDGPET:findingsin10cases.Radiology2000;216: 117–21.

23.SathekgeMM,MaesA,PottelH,StoltzA,vandeWieleC.Dualtime-pointFDG PET-CTfordifferentiatingbenignfrommalignantsolitarypulmonarynodules inaTBendemicarea.SAfrMedJ2010;100:598–601.

24.ChenCJ,LeeBF,YaoWJ,ChengL,WuPS,ChuCL,etal.Dual-phase18F-FDGPET inthediagnosisofpulmonarynoduleswithaninitialstandarduptakevalueless than2.5.AJRAmJRoentgenol2008;191:475–9.

25.HaraT,KosakaN,SuzukiT,KudoK,NiinoH.Uptakeratesof 18F-fluorodeox-yglucoseand11C-cholineinlungcancerandpulmonarytuberculosis:a posi-tronemissiontomographystudy.Chest2003;124:893–901.

26.JeongYJ,LeeKS.Pulmonarytuberculosis:up-to-dateimagingand manage-ment.AJRAmJRoentgenol2008;191:834–44.

27.KwongJS,CarignanS,KangEY,MullerNL,FitzGeraldJM.Miliarytuberculosis: diagnosticaccuracyofchestradiography.Chest1996;110:339–42.

28.YilmazMU,Kumcuoglu Z,UtkanerG, YalnizO, ErkmenG. CTfindingsof tuberculouspleurisy.IntJTubercLungDis1998;2:164–7.

29.KimY, Song KS,Goo JM,Lee JS,Lee KS,Lim TH. Thoracic sequelaeand complicationsoftuberculosis.Radiographics2001;21:839–58.

30.YehCL,ChenLK,ChenSW,ChenYK.AbnormalFDGPETimagingintuberculosis appearinglikemesothelioma:anatomicdelineationbyCTcanaidindifferential diagnosis.ClinNuclMed2009;34:815–7.

31.LeeKS,HwangJW,ChungMP,KimH,KwonOJ.UtilityofCTintheevaluationof pulmonarytuberculosisinpatientswithoutAIDS.Chest1996;110:977–84.

32.ImJG,ItohH,ShimYS,LeeJH,AhnJ,HanMC,etal.Pulmonarytuberculosis:CT findings—earlyactive disease andsequentialchangewith antituberculous therapy.Radiology1993;186:653–60.

33.HulnickDH, Naidich DP, McCauley DI. Pleural tuberculosisevaluated by computedtomography.Radiology1983;149:759–65.

34.YehJJ,ChenSC,TengWB,ChouCH,HsiehSP,LeeTL,etal.Identifyingthemost infectiouslesionsinpulmonarytuberculosisbyhigh-resolutionmulti-detector computedtomography.EurRadiol2010;20:2135–45.

35.RanigaS,ParikhN,AroraA.IsHRCTreliableindeterminingdiseaseactivityin pulmonarytuberculosis.IndianJRadiolImaging2006;16:221–8.

36.HeysellSK,ThomasTA,SifriCD,RehmPK,HouptER.18-Fluorodeoxyglucose positronemissiontomographyfortuberculosisdiagnosisandmanagement:a caseseries.BMCPulmMed2013;13:14.

37.JeongYJ,PaengJC,NamHY,LeeJS,LeeSM,YooCG,etal.(18)F-FDG positron-emissiontomography/computedtomographyfindingsofradiographiclesions suggestingoldhealedtuberculosis.JKoreanMedSci2014;29:386–91.

38.VorsterM,SathekgeMM,BomanjiJ.Advancesinimagingoftuberculosis:the roleof18F-FDGPETandPET/CT.CurrOpinPulmMed2014;20:287–93.

39.MartiniM,OuahesM.Boneandjointtuberculosis:areviewof652cases. Orthopedics1988;11:861–6.

40.WeaverP,LifesoR.Theradiologicaldiagnosisoftuberculosisoftheadultspine. SkeletalRadiol1984;12:178–86.

41.HoffmanEB,CrosierJH,CreminBJ.Imaginginchildrenwithspinaltuberculosis: acomparisonofradiography,computedtomographyandmagneticresonance imaging.JBoneJointSurgBr1993;75:233–9.

42.ModicMT,FeiglinDH,PirainoDW,BoumphreyF,WeinsteinMA,Duchesneau PM,etal.Vertebralosteomyelitis:assessmentusingMR.Radiology1985;157: 157–66.

43.Akman S,SirvanciM,TaluU, GogusA,HamzaogluA.Magneticresonance imagingoftuberculousspondylitis.Orthopedics2003;26:69–73.

44.GabrielliA,LayonAJ,YuM.Chapter73:Neurologicalinfections.In:Civetta, Taylor,andKirby’s(Eds)manualofcriticalcare2012,LippincottWilliams& Wilkins;Philadelphia.

45. LeeIS,LeeJS,KimSJ,JunS,SuhKT.Fluorine-18-fluorodeoxyglucosepositron emissiontomography/computedtomographyimaginginpyogenicand tu-berculousspondylitis:preliminarystudy.JComputAssistTomogr2009;33: 587–92.

46.GratzS,Do¨rnerJ,FischerU,BehrTM,Be´he´ M,AltenvoerdeG,etal.18F-FDG hybridPETinpatientswithsuspectedspondylitis.EurJNuclMedMolImaging 2002;29:516–24.

47.Rivas-GarciaA,Sarria-EstradaS,Torrents-OdinC,Casas-GomilaL,FranquetE. ImagingfindingsofPott’sdisease.EurSpineJ2013;22(Suppl4):567–78.

48.KimSJ,LeeJS,Suh KT,KimIJ,KimYK.Differentiationoftuberculousand pyogenicspondylitisusingdoublephaseF-18FDGPET.OpenMedImagingJ 2008;2:1–6.

49.DurejaS,SenIB,AcharyaS.PotentialroleofF18FDGPET-CTasanimaging biomarkerforthenoninvasiveevaluationinuncomplicatedskeletal tubercu-losis:aprospectiveclinicalobservationalstudy.EurSpineJ2014[Epubaheadof print].

50.TrivediR,SaksenaS,GuptaRK.Magneticresonanceimagingincentralnervous systemtuberculosis.IndianJRadiolImaging2009;19:256–65.

51.CelsoL,daCruzJrH,DominguesRC.Intracranialinfections. In:AtlasSW, editor.Magneticresonanceimagingofthebrainandspine.4thed.,Philadelphia: LippincottWilliams&Wilkins;2009.p.929–1026.

52.Leder RA, Low VH. Tuberculosis of the abdomen. Radiol Clin North Am 1995;33:691–705.

53.DentonT,HossainJ.AradiologicalstudyofabdominaltuberculosisinaSaudi population,withspecialreferencetoultrasoundandcomputedtomography. ClinRadiol1993;47:409–14.

54.ChaudharyP.Hepatobiliarytuberculosis.AnnGastroenterol2014;27:207–11.

55.ReedDH,NashAF,ValabhjiP.Radiologicaldiagnosisandmanagementofa solitarytuberculoushepaticabscess.BrJRadiol1990;63:902–4.

56.TakalkarAM,BrunoGL,ReddyM,LilienDL.IntenseFDGactivityinperitoneal tuberculosismimicsperitonealcarcinomatosis.ClinNuclMed2007;32:244–6.

57.TianG,XiaoY,ChenB,XiaJ,GuanH,DengQ.FDGPET/CTfortherapeutic responsemonitoringinmulti-sitenon-respiratorytuberculosis.Acta Radiol 2010;51:1002–6.

58.JeffryL,KerrouK,CamatteS,LelievreL,MetzgerU,RobinF,etal.Peritoneal tuberculosisrevealedbycarcinomatosisonCTscananduptakeatFDG-PET. BJOG2003;110:1129–31.

59.ParkIN,RyuJS,ShimTS.Evaluationoftherapeuticresponseoftuberculoma usingF-18FDGpositronemissiontomography.ClinNuclMed2008;33:1–3.

60.MartinezV,Castilla-LievreMA,Guillet-CarubaC,GrenierG,FiorR,DesarnaudS, et al.(18)F-FDGPET/CT intuberculosis:an early non-invasivemarker of therapeuticresponse.IntJTubercLungDis2012;16:1180–5.

61.ParkYH,YuCM,KimES,JungJO,SeoHS,LeeJH,etal.Monitoringtherapeutic responseinacaseofextrapulmonarytuberculosisbyserialF-18FDGPET/CT. NuclMedMolImaging2012;46:69–72.

62.SathekgeM,MaesA,D’AsselerY,VorsterM,GongxekaH,VandeWieleC. Tuberculouslymphadenitis:FDGPETandCTfindingsinresponsiveand non-responsivedisease.EurJNuclMedMolImaging2012;39:1184–90.

63.Hofmeyr A, LauWF, SlavinMA. Mycobacterium tuberculosis infectionin patients withcancer,theroleof18-fluorodeoxyglucosepositron emission tomographyfordiagnosisandmonitoringtreatmentresponse.Tuberculosis (Edinb)2007;87:459–63.

64.SathekgeM,MaesA,KgomoM,StoltzA,VandeWieleC.Useof18F-FDGPETto predictresponsetofirst-linetuberculostaticsinHIV-associatedtuberculosis.J NuclMed2011;52:880–5.

65.KimSJ,KimIJ,SuhKT,KimYK,LeeJS.Predictionofresidualdiseaseofspine infectionusingF-18FDGPET/CT.Spine(PhilaPa1976)2009;34:2424–30.

66.LeungAN,BraunerMW,GamsuG,Mlika-CabanneN,BenRomdhaneH,Carette MF,etal.Pulmonarytuberculosis:comparisonofCTfindingsin HIV-seroposi-tiveandHIV-seronegativepatients.Radiology1996;198:687–91.

67.AtwalSS,PuranikS,MadhavRK,KsvA,SharmaBB,GargaUC.Highresolution computed tomography lung spectrum in symptomatic adultHIV-positive patientsinSouth-EastAsiannation.JClinDiagnRes2014;8:RC12–6.

68.FengF,Yu-xinS, Gan-linX,YingZ,Hong-zhouLu, Zhi-yongZ.Computed tomography inpredictingsmear-negative pulmonarytuberculosis inAIDS patients.ChinMedJ2013;126:3228–33.

69.AllenCM,Al-JahdaliHH,IrionKL,GhanemSA,GoudaA,KhanAN.Imaginglung manifestationsofHIV/AIDS.AnnThoracMed2010;5:201–16.

70.RaviglioneMC,NarainJP,KochiA.HIV-associatedtuberculosisindeveloping countries:clinicalfeatures,diagnosis,andtreatment.BullWorldHealthOrgan 1992;70:515–26.

Gambar

Figure 1. Arrows indicate a mildly 18
Figure 3. Left panel: CT image showing a 1.6  1.2-cm cavitating lesion (arrow) in the upper lobe of the right lung
Figure 4. Left panel: Multiple intensity projection image showing 18
Figure 5. CT (left panel) and 18 F-FDG PET/CT fused images (right panel): trans-axial and sagittal sections
+2

Referensi

Dokumen terkait

Berdasarkan Surat Penetapan Pemenang Lelang Nomor : 08/TAP/DPU/BM-10/POKJA/2014 tanggal 19 Mei 2014 tentang Penetapan Pemenang Lelang Paket Pekerjaan Bantuan Peningkatan

Predictors: (Constant), PERSENTASE LERENG, PH TANAH, KAPASITAS TUKAR KATION, C-ORGANIK,.

volume pelarut yang terbaik terhadap proses ekstraksi pada pembuatan pupuk cair. dari daun

Respirasi eksternal merupakan salah satu proses respirasi yang dilakukan oleh tubuh, berdasarkan table dibawah ini bagian manakah yang berperan dalam proses respirasi eksternal…...

Pola makan akan mempengaruhi pada kelompok usia. Semakin tua usianya maka kemampuan baik dalam mengakses dan menyiapkan serta fisiologis terhadap daya terima

Pada hari ini, Jum’at, tanggal lima, bulan Oktober, tahun dua ribu dua belas, Kami selaku Panitia Pengadaan Barang / Jasa telah mengadakan Pemberian Penjelasan Dokumen Pengadaan

a) Mempunyai perilaku yang bertanggung jawab, integritas yang tinggi, baik dan jujur. b) Selalu mengikuti pelatihan profesional untuk menjaga kompetensinya. c) Terdaftar

[r]