• Tidak ada hasil yang ditemukan

STUDI EVALUASI DAN PERENCANAAN SISTEM DRAINASE KECAMATAN KANIGORO, KABUPATEN BLITAR

N/A
N/A
Protected

Academic year: 2021

Membagikan "STUDI EVALUASI DAN PERENCANAAN SISTEM DRAINASE KECAMATAN KANIGORO, KABUPATEN BLITAR"

Copied!
12
0
0

Teks penuh

(1)

STUDI EVALUASI DAN PERENCANAAN SISTEM DRAINASE KECAMATAN KANIGORO, KABUPATEN BLITAR

Evelin O. Dalentang1, M. Janu Ismoyo2, Suhardjono2 1)

Mahasiswa Program Sarjana Teknik Jurusan Teknik Pengairan Universitas Brawijaya

2)

Dosen Jurusan Teknik Pengairan Fakultas Teknik Universitas Brawijaya Teknik Pengairan Universitas Brawijaya-Malang, Jawa Timur, Indonesia

Jl. Mayjend Haryono No. 167 Malang (0341) 65145 Email: evdalentang@yahoo.com

ABSTRAK

Kecamatan Kanigoro adalah ibu kota Kabupaten Blitar yang baru. Sebagai wilayah kota yang baru kecamatan Kanigoro memerlukan infrastrukur kota yang mendukung, salah satunya adalah sistem drainase. Sistem drainase adalah serangkaian bangunan air yang berfungsi mengurangi atau membuang kelebihan air dari suatu lahan. Dengan demikian kawasan atau lahan tidak terganggu dan dapat berfungsi secara optimal.

Studi ini bertujuan untuk mengevaluasi sistem drainase dan merencanakan sistem drainase yang mampu menampung debit drainase dengan kala ulang lima (5) tahun. Berdasarkan hasil survei dan perhitungan kapasitas saluran eksisting terhadap debit rancangan, pada beberapa zona tidak terdapat saluran, serta kapasitas saluran eksisiting tidak mencukupi. Dalam perencanaannya dapat dibuat saluran drainase dengan dimensi yang mencukupi dan dapat dikombinasikan sumur resapan.

Kata kunci: sistem drainase, debit rancangan

ABSTRACT

Kanigoro subdistrict is the new capital of Blitar regency. As a new capital, Kanigoro subdistrict needs infrastructures to support it, one of the infrastructure is drainage system. Drainage system is connected buildings that aim to reduce or remove excess water in an area, so the function of the area/land is not disturbed and function optimally.

This study aims to evaluate and to design the drainage system with design drainage discharge in five (5) years returned periode. Based on survey and the calculation show that in some zones there are no drainage channel and most of the existing channel are unable to accomadate the design discharge. The planning of drainage system are make new channel dimension that can accomadate the design discharge and combine with infiltration wells.

(2)

PENDAHULUAN Latar Belakang

Kecamatan Kanigoro adalah sebuah kecamatan di Kabupaten Blitar. Berdasarkan peraturan pemerintah, Kecamatan Kanigoro adalah wilayah Kota Blitar yang baru1). Sebagai wilayah kota yang baru, kecamatan ini memerlukan infrastrukur kota yang mendukung, salah satunya adalah sistem drainase.

Kecamatan Kanigoro memiliki kepadatan penduduk 1347 jiwa/km2. Angka tersebut menunjukan bahwa kecamatan ini padat penduduk. Kepadatan penduduk mengakibatkan beberapa masalah, salah satunya adalah perubahan tata guna lahan. Lahan terbuka beralih fungsi menjadi area tertutup, sekaligus mengurangi ruang terbuka hijau.

Perubahan tata guna lahan akan memberikan dampak respon hidrologi yang berbeda dari sebelumnya. Selanjutnya perubahan ini akan berpengaruh pada sarana-prasarana hidrologi. Salah satu sarana-prasarana hidrologi adalah sistem drainase. Dengan alasan tersebut maka studi ini bertujuan untuk mengevaluasi sistem drainase dan merencanakan sistem drainase yang mampu menampung debit drainase.

Identifikasi Masalah

Materi pembahasan yang menjadi masalah umum dalam studi ini adalah sebagai berikut:

1. Belum dibangunnya saluran drainase di beberapa ruas jalan di daerah studi. 2. Adanya sampah dan rumput-rumputan

pada saluran sehingga mengurangi kapasitas saluran.

Rumusan Masalah

Berdasarkan uraian identifikasi masalah, maka masalah yang dirumuskan dari Studi evaluasi dan Perencanaan Sistem Drainase Kecamatan Kanigoro, Kabupaten Blitar adalah sebagai berikut:

1. Berapa besar limpasan permukaan lahan di Kecamatan Kanigoro?

2. Bagaimana kapasitas saluran drainase eksisting Kecamatan Kanigoro?

3. Bagaimana perencanaan sistem drainase agar mampu menampung beban debit drainase di Kecamatan Kanigoro?

Tujuan

Berdasarkan rumusan masalah, maka tujuan dari studi ini adalah sebagai berikut: 1. Mengidentifikasi besarnya limpasan

permukaan lahan di Kecamatan Kanigoro.

2. Mengevaluasi kapasitas saluran drainase eksisting Kecamatan Kanigoro.

3. Merencanakan sistem drainase agar mampu menampung beban debit drainase di Kecamatan Kanigoro.

TINJAUAN PUSTAKA Analisa Curah Hujan Daerah

Curah hujan yang diperlukan untuk penyusunan suatu rancangan pemanfaaatan air dan rancangan pengendalian banjir adalah hujan rata-rata diseluruh daerah yang bersangkutan, bukan curah hujan pada satu titik tertentu.

Perhitungan hujan rerata daerah dalam studi ini menggunakan metode Polygon Thiessen dimana luasan Polygon dan koefisien Thiessen yang dilakukan di tiga stasiun hujan, yaitu stasiun hujan Kanigoro, Garum dan Bendogerit.

P = =

(2.1)

Dimana, P adalah curah hujan rata-rata daerah (mm). P1, P2,…,Pn adalah curah

hujan yang tercatat di pos penakar hujan 1, 2,…,n. A1, A2,…,An adalah luas areal

poligon 1, 2,…, n. n adalah banyaknya pos penakar hujan

Analisis Ditribusi Frekuensi

Selanjutnya curah hujan harian maksimum rerata daerah yang telah dihitung, akan dipakai untuk menghitung curah hujan kala ulang tertentu dengan menggunakan distribusi Log-Pearson III.

(3)

Dimana,

X = curah hujan rata-rata daerah (mm) K = variabel yang tergantung pada nilai koefisien kepencengan dan kala ulang yang didapatkan dari tabel Log-Person III

S = simpangan baku (standar deviasi)

Analisa Debit Permukaan Lahan

Debit banjir rancangan adalah debit terbesar yang mungkin terjadi di suatu daerah dengan peluang kejadian tertetu yang digunakan sebagai dasar untuk merencanakan suatu bangunan pengairan.

Adapun faktor-faktor yang

mempengaruhi besarnya debit banjir adalah sebagai berikut:

1. Faktor hujan; mencakupi intensitas hujan, durasi hujan, dan distribusi curah hujan.

2. Karakteristik DAS; mencakupi luas dan bentuk DAS, topografi, dan tata guna lahan.

Metode yang dipakai untuk memperkirakan laju aliran permukaan puncak yang umum dipakai adalah metode Rasional USSCS (1973).

QL = 0.278CIA (2-3)

Dimana,

QL = debit limpasan (m3/det)

C = koefisien limpasan (run-off) I = intensitas hujan (mm/jam) A = luas daerah tangkapan (km2)

Intensitas Hujan

Intensitas hujan adalah tinggi atau kedalaman air hujan per satuan waktu. Sifat umum hujan adalah makin singkat hujan berlansung intensitasnya cenderung makin tinggi dan makin besar periode ulangnya makin tinggi pula intensitasnya.

Apabila data hujan jangka pendek tidak tersedia, yang ada hanya data hujan harian maka intensitas hujan dapat dihitung dengan rumus Mononobe.

I = (2.4) Dimana,

I = intensitas hujan (mm/jam) tc = waktu konsentrasi (jam)

R24 = curah hujan maksimum

harian (selama 24 jam) (mm)

Waktu Konsentrasi

Waktu konsentrasi suatu DAS adalah waktu yang diperlukan oleh air hujan yang jatuh untuk mengalir dari titik terjauh sampai keluaran DAS (titik kontrol) setelah tanah menjadi jenuh dan depresi-depresi kecil terpenuhi. Salah satu metode untuk memperkirakan waktu konsentrasi adalah rumus yang dikembangkan oleh Kirpich (1940). tc =

(2.5) Dimana,

tc = waktu konsentrasi (jam)

L = panjang saluran (km) S = kemiringan rerata saluran

Koefisien Limpasan (Run-Off)

Tidak selamanya air hujan mencapai saluran drainase, ada yang menguap, meresap kedalam tanah (infiltrasi) atau tertunda. Laju dari puncak limpasan

(run-off) hujan deras terhadap intensitas curah

hujan disebut Koefisien Limpasan dan dinotasikan dengan C.

Koefisien limpasan tergantung pada kondisi geografis, geologi dan permukaan tanah.

Analisa Debit Buangan Penduduk

Untuk menghitung debit drainase yang berasal dari air buangan penduduk dapat digunakan persamaan berikut.

QP =

(2.6) Di mana,

QP = debit buangan penduduk atu

debit air kotor (lt/det/km2)

Pn = jumlah penduduk yang

diperkirakan pada tahun n (jiwa)

q = jumlah air buangan (lt/orang/det) A = luas daerah (km2)

Analisa Debit Drainase Sawah

Debit drainase sawah dihitung dengan persamaan berikut:

Qsawah = 1.62*Dm*A0.92 (2.7)

(4)

Qsawah= debit drainase sawah (l/det)

Dm = modulus pembuang (l/det.ha) A = luas (ha)

Total Debit Layanan Drainase

Debit layanan drainase adalah debit yang berasal dari air hujan yang melimpas, air buangan penduduk (limbah domestik) dan drainase sawah. Perhitungan debit drainase digunakan untuk perencanaan dimensi saluran drainase selanjutnya. QDrain = QL + QP + Qsawah (2.9) Kapasitas Saluran

Besarnya kapasitas saluran dapat ditentukan berdasarkan bentuk dimensinya. Untuk merencanakan dimensi penampang pada saluran drainase digunakan rumus kontinuitas sebagai berikut:

Q = A * V (2.10) (2-31)

Dimana,

Q = kapasitas saluran (m3/det) A = luas penampang saluran (m2)

V = kecepatan aliran rata-rata di saluran (m/det)

Kecepatan Aliran

Sedangkan kecepatan aliran pada saluran dapat dihitung dengan menggunakan rumus Manning:

V = (2.11)

Besarnya kecepatan aliran yang diijinkan dalam saluran tergantung pada material pembentuk saluran, kondisi fisik dan sifat-sifat hidrolisnya. Kecepatan aliran yang diijinkan dibagi menjadi dua, yaitu saluran tahan erosi dan saluran tak tahan erosi.

Sumur Resapan

Sumur resapan adalah lubang yang dibuat untuk meresapkan air hujan ke dalam tanah dan atau lapisan batuan pembawa air. Konsep dasar sumur resapan adalah memberi kesempatan dan jalan pada air hujan yang jatuh diatap atau lahan kedap air untuk meresap kedalam tanah dengan jalan menampung air tersebut pada suatu sistem resapan. Sumur resapan

ini merupakan sumur kosong dengan maksud kapasitas tampungannya cukup besar sebelum air meresap ke dalam tanah.

Metode untuk mendimensi sumur resapan adalah metode PU.

H = (2.12) dimana:

D = durasi hujan (jam) I = intensitas hujan (m/jam) At = luas tadah hujan (m2), dapat

berupa atap rumah atau

permukaan tanah yangdiperkeras k = permeabilitas tanah (m/jam) P = keliling penampang sumur (m) As = luas penampang sumur (m2)

H = kedalaman sumur (m).

METODE PENELITIAN Lokasi Studi

Lokasi studi berada di kawasan Kecamatan Kanigoro, Kabupaten Blitar. Secara geografis kawasan Kecamatan Kanigoro terletak pada koordinat 08°07’35” intang Selatan dan 112°13’15’’ Bujur Timur.

Data-data yang diperlukan

1. Peta lokasi studi 2. Data curah hujan 3. Peta topografi 4. Peta tata guna lahan 5. Data jumlah penduduk

(5)

Gambar 1. Peta Lokasi Studi

HASIL DAN PEMBAHASAN Analisa hidrologi

Perhitungan hujan rerata daerah dalam studi ini menggunakan metode Polygon Thiessen dimana luasan Polygon dan koefisien Thiessen yang dilakukan di tiga stasiun hujan, yaitu stasiun hujan Kanigoro, Garum dan Bendogerit.

Tabel 1. Perhitungan Koefisien Polygon Thiessen Stasiun Hujan Luasan (Km2) Koefisien Thiessen Kanigoro 24.61 0.443 Garum 21.39 0.385 Bendogerit 9.55 0.172 Jumlah 55.55 1

Curah Hujan Rancangan Log-Person III

Selanjutnya curah hujan harian maksimum rerata daerah yang telah dihitung, akan dipakai untuk menghitung curah hujan rancangan 5 tahun dengan menggunakan distribusi Log-Pearson III.

Dengan nilai Cs = 0.9093 dan kala ulang 5 tahun, maka nilai K dapat ditentukan dari tabel, yaitu = 0.768.

Log X og + K.s

= 1.8448 + (0.768x0.1746) Log X = 1.9789

Maka X = 95.2577 mm

Curah hujan rancangan dengan periode ulang 5 tahun adalah 95.2577 mm

Tabel 2. Perhitungan Parameter-parameter Metode Log-Pearson III.

No Tahun Curah Hujan Maksimum Log X og - og )3 (mm) 1 1990 62.33 1.7947 -0.000125545 2 1991 65.15 1.8139 -2.93755E-05 3 1992 107.35 2.0308 0.006438219 4 1993 56.06 1.7487 -0.000887961 5 1994 57.63 1.7606 -0.000595269 6 1995 110.92 2.045 0.008028871 7 1996 59.28 1.7729 -0.000371097 8 1997 55.69 1.7458 -0.000970076 9 1998 77.22 1.8877 7.92864E-05 10 1999 80.24 1.9044 0.000211936 11 2000 48.19 1.683 -0.004236799 12 2001 35.47 1.5499 -0.025648468 13 2002 106.1 2.0257 0.005924416 14 2003 84.05 1.9245 0.00050756 15 2004 197.88 2.2964 0.092120224 16 2005 69.06 1.8392 -1.70308E-07 17 2006 48.19 1.683 -0.004236799 18 2007 50.08 1.6997 -0.003055272 Jumlah 33.206 0.073153683 erata ) 1.8448 Simpangan baku (s) 0.1746 Koefisien kepecengan (Cs) 0.9092615

Analisa Debit Limpasan Permukaan Lahan

Untuk mempermudah perhitungan debit limpasan dilakukan pengelompokan zonasi wilayah layanan. Masing-masing zona yang dibangun adalah dibatasi oleh drainase alam yaitu sungai.

Contoh perhitungan debit limpasan permukaan: Koef. Limpasan = 0.62 Luas = 0.21 Km2 Kemiringan lahan = 0.005 Panjang saluran = 679.15 m Waktu konsentrasi = 0.38

Intensitas hujan = 63.07 mm/jam QL = 0.278CIA

(6)

QL = 2.2828 m3/dt

Tabel 3. Pembagian Zona Layanan Saluran Drainase Utama Kecamatan Kanigoro

No Zona

Kanan Aliran Kiri Aliran Koef. Limpasan Luas Koef. Limpasan Luas (C) A (C) A (km2) (km2) 1 I 0.62 0.21 0.65 0.06 2 II 0.61 0.01 0.65 0.05 3 III 0.65 0.26 0.65 0.18 4 IV - - 0.65 0.01 5 V 0.65 0.05 0.65 0.11 6 VI 0.65 0.31 0.65 0.33 7 VII 0.65 0.01 0.65 0.05 8 VIII 0.49 0.07 0.65 0.05 9 IX 0.75 0.09 0.65 0.24 10 X 0.65 0.04 - - 11 XI 0.65 0.06 0.74 0.07 12 XII 0.65 0.13 0.65 0.05 13 XIII 0.65 0.15 0.65 0.1 14 XIV 0.65 0.19 0.65 0.11 15 XV 0.65 0.04 0.68 0.03 16 XVI - 0.65 0.04 17 XVII 0.65 0.27 0.65 0.17 18 XVIII 0.65 0.08 - -

Analisa Debit Limpasan Jalan Raya

Perhitungan debit limpasan jalan raya sama seperti perhitungan debit limpasan permukaan lahan namaun yang berbeda adalah koefisien limpasan yaitu 0.95.

Analisa Debit Drainase Sawah

Besarnya debit drainase sawah ditentukan dari besarnya luasan sawah yang terdapat dalam tiap zonasi. Sawah yang terdapat pada zona VIII Ka mempunyai luasan 5.57 Ha. Perkolasi dan rembesan di sawah berdasarkan Direktorat Jenderal Pengairan (1986), yaitu sebesar 2 mm/hari. Nilai evapotranspirasi digunakan 6.5 mm/hari. Dengan genangan atau tampungan 50 mm (genangan ijin 55-150 mm). Maka D(n) dapat dihitung sebagai berikut:

D(n) = R(n)T + n (IR – ET – P) – Δs D(n) = 95.2577 + 1*(0 – 6.5 – 2) – 50

= 36.7577 mm

Maka Drainage Modulnya adalah: Dm = n n 8. = 3 .7577 1 8. = 4.2544 lt/det.ha Qd = 1.62*Dm*A0.92 = 1.62*4.2544*5.570.92 = 33.4608 l/det Qd = 0.0335 m3/det

Analisa Debit Buangan Penduduk (Limbah)

Penduduk Kecamatan Kanigoro pada tahun 2030 diperkirakan sebesar 93641 jiwa.

Air buangan penduduk (rumah tangga) dihitung berdasarkan kebutuhan air bersih. Diperkirakan air yang masuk melalui saluran pengumpul air buangan adalah sebesar 85% dari dari kebutuhan air bersih. Perhitungan debit drainase penduduk sebagai berikut:

Jumlah penduduk (P2030) = 93641 jiwa

Luas kecamatan Kanigoro = 55.55 km2 Jumlah kebutuhan air penduduk = 130 liter/orang/hari

Jumlah air buangan peduduk (q)

= 85% x 130 liter/orang/hari = 110.5 liter/orang/hari = 0.00128 liter/orang/detik = 0.0013 liter/orang/detik Debit air kotor rata-rata (Qprata-rata)=

= 3 1 0.0013

55.55

= 2.1914 liter/detik/km2 = 0.0022 m3/detik/km2 Debit air buangan penduduk di zona 1 Ka adalah:

Qp = Qprata-rata x luas zona 1 Ka

= 0.0022 x 0.21 = 4.5 x 10-4 m3/detik

(7)

Tabel 4. Total Debit Drainase Kecamatan Kanigoro Zona Kanan Aliran

Zona Debit limpasan permukaan Debit Drainasi Sawah Debit Limpasan Jalan Debit buangan pend. Debit Total (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) I 2.2828 0.0593 0.0005 2.3426 II 0.2271 0.0351 0.0000 0.2623 III 2.8466 0.0744 0.0006 2.9216 V 0.7080 0.0652 0.0001 0.7733 VI 3.3223 0.0943 0.0007 3.4172 VII 0.2950 0.0575 0.0000 0.3526 VIII 0.7343 0.033 0.0812 0.0002 0.8486 IX 1.7129 0.0576 0.0002 1.7707 X 0.5798 0.0658 0.0001 0.6457 XI 0.7493 0.0862 0.0001 0.8356 XII 1.7892 0.1016 0.0003 1.8911 XIII 1.3416 0.0605 0.0003 1.4024 XIV 1.4029 0.0536 0.0004 1.4569 XV 0.4755 0.0615 0.0001 0.5371 XVII 3.8970 0.0709 0.0006 3.9685 XVIII 1.3110 0.0434 0.0002 1.3545

Tabel 5. Total Debit Drainase Kecamatan Kanigoro Zona Kiri Aliran

Zona Debit limpasan permukaan Debit Drainasi Sawah Debit Limpasan Jalan Debit buangan penduduk Debit Total (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) I 0.8474 0.0678 0.0001 0.9153 II 0.8142 0.0362 0.0001 0.8504 III 2.1553 0.0589 0.0004 2.2145 IV 0.3499 0.0380 0.0000 0.3880 V 1.4270 0.0650 0.0002 1.4923 VI 3.5614 0.0950 0.0007 3.6572 VII 0.9900 0.0549 0.0001 1.0450 VIII 0.6435 0.0847 0.0001 0.7284 IX 2.5839 0.0859 0.0005 2.6703 XI 0.8977 0.0876 0.0002 0.9855 XII 0.6225 0.0928 0.0001 0.7154 XIII 1.0375 0.0541 0.0002 1.0918 XIV 1.4836 0.0846 0.0002 1.5684 XV 0.3615 0.0615 0.0001 0.4230 XVI 0.7575 0.0652 0.0001 0.8227 XVII 1.7510 0.0643 0.0004 1.8157

Evaluasi Saluran Drainase Eksisting

Contoh perhitungan kapasitas saluran eksisiting 1 Ka:

Saluran eksisting berbentuk segiempat: b = 0.75 m

h = 0.55 m

Menghitung luas penampang (A) A = b*h

A = 0.75*0.55 A = 0.413 m2 Menghitung keliling basah (P)

P = b+2h

P = 0.75+2*0.55 P = 1.85 m

Menghitung jari-jari hidrolis (R) R =

R = 0. 13

1.85

R = 0.223 m

Menghitung kecepatan aliran dalam saluran (V)

V =

V = V = 1.045 m/det

Menghitung kapasitas saluran (Q) Q = A*V

Q = 0.413 *1.045 Q = 0.431 m3/det

(8)

Tabel 6. Evaluasi Kapasitas Saluran Eksisting terhadap Debit Rancangan Zona Kanan

Saluran Zona Layanan Saluran

Debit Saluran Rencana

Kapasitas

Sal. Eksisting Qsal >

Qdrain Keterangan

Debit Genangan

Qdrain Qsal (Qdrain-Qsal)

(m3/dt) (m3/dt) (m3/dt) (m3/det)

1 Ka I Ka 1.7685 0.431 Tidak Terjadi genangan 1.337

2 Ka II Ka 0.2333 0.208 Tidak Terjadi genangan 0.025

3 Ka III Ka 2.0451 0.274 Tidak Terjadi genangan 1.771

5 Ka V Ka 0.3867 direncanakan sistem drainase 0.387

6 Ka VI Ka 2.3921 direncanakan sistem drainase 2.392

7 Ka VII Ka 0.1763 direncanakan sistem drainase 0.176

8 Ka VIII Ka 0.4243 direncanakan sistem drainase 0.424

9 ka IX Ka 1.2395 direncanakan sistem drainase 1.239

10 Ka X Ka + IX Ka 1.5623 direncanakan sistem drainase 1.562

11 Ka XI Ka 0.4178 direncanakan sistem drainase 0.418

12 Ka XII Ka 1.3943 0.235 Tidak Terjadi genangan 1.159

13 Ka XIII Ka 0.9081 0.416 Tidak Terjadi genangan 0.492

14 Ka XIV Ka 1.0457 0.088 Tidak Terjadi genangan 0.958

15 Ka IX Ka + XI Ka + X

Ka + XV Ka 2.3758 0.259 Tidak Terjadi genangan 2.116

17 Ka XVII Ka 2.8670 1.137 Tidak Terjadi genangan 1.730

18 Ka XVIII Ka + XVII Ka 3.9176 0.306 Tidak Terjadi genangan 3.612

Tabel 7. Evaluasi Kapasitas Saluran Eksisting terhadap Debit Rancangan Zona Kiri

Saluran Zona Layanan Saluran

Debit Saluran Rencana

Kapasitas

Sal. Eksisting Qsal >

Qdrain Keterangan

Debit Genangan

Qdrain Qsal (Qdrain-Qsal)

(m3/dt) (m3/det) (m3/det) (m3/det)

1 Ki I Ki 0.7290 0.554 Tidak Terjadi genangan 0.175

2 Ki II Ki 0.5329 0.217 Tidak Terjadi genangan 0.316

3 Ki III Ki + IV Ki 1.7959 0.176 Tidak Terjadi genangan 1.620

4 Ki IV Ki 0.1940 0.000 Tidak Terjadi genangan 0.194

5 Ki V Ki 1.0886 0.147 Tidak Terjadi genangan 0.941

6 Ki VI Ki 2.5600 direncanakan sistem drainase 2.560

7 Ki VII Ki 0.7315 direncanakan sistem drainase 0.732

8 Ki VIII ki 0.3642 direncanakan sistem drainase 0.364

9 Ki IX Ki 1.8692 direncanakan sistem drainase 1.869

11 Ki XI Ki 0.4927 direncanakan sistem drainase 0.493

12 Ki XII Ki 0.4584 0.192 Tidak Terjadi genangan 0.266

13 Ki XIII Ki 0.6338 0.180 Tidak Terjadi genangan 0.454

14 Ki XIV Ki 1.2479 0.501 Tidak Terjadi genangan 0.747

15 Ki XI Ki + XV ki 1.0304 0.638 Tidak Terjadi genangan 0.392

16 Ki XVI Ki 0.8227 1.390 Ya Tidak terjadi genangan -

17 Ki XVII Ki 1.3318 0.202 Tidak Terjadi genangan 1.130

Perencanaan Sistem Drainase

Dalam studi ini perbaikan sistem drainase dilakukan dengan cara merencanakan dimensi saluran yang baru dan membuat sumur resapan individu pada tiap zona. Besarnya kapasitas dimensi saluran yang baru dan sumur resapan adalah sebagai berikut:

- Apabila debit genangan kurang dari 1 m3/det maka besarnya kapasitas saluran rencana adalah 50% dari debit genangan

ditambah debit kapasitas eksisting, dan besarnya debit yang direncanakan untuk sumur resapan adalah 50% dari debit genangan.

- Apabila debit genangan lebih dari 1 m3/det maka besarnya kapasitas saluran rencana adalah 70% dari debit genangan ditambah debit kapasitas eksisting, dan besarnya debit yang direncanakan untuk sumur resapan adalah 30% dari debit genangan.

(9)

Tabel 8. Tabel Debit Eksisting, Debit Rencana dan Debit Genangan Zona Kanan Zona Debit Eksisting Debit Rencana Debit Genangan 50% Debit Genangan 30% Debit Genangan 70% Debit Genangan Debit Saluran Rencana Debit Rencana Sumur Resapan (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) I 0.4290 2.3426 1.9135 0.9568 0.5741 1.3395 1.7685 0.5741 II 0.2043 0.2623 0.0580 0.0290 0.0174 0.0406 0.2333 0.0290 III 0.0000 2.9216 2.9216 1.4608 0.8765 2.0451 2.0451 0.8765 V 0.0000 0.7733 0.7733 0.3867 0.2320 0.5413 0.3867 0.3867 VI 0.0000 3.4172 3.4172 1.7086 1.0252 2.3921 2.3921 1.0252 VII 0.0000 0.3526 0.3526 0.1763 0.1058 0.2468 0.1763 0.1763 VIII 0.0000 0.8486 0.8486 0.4243 0.2546 0.5940 0.4243 0.4243 IX 0.0000 1.7707 1.7707 0.8853 0.5312 1.2395 1.2395 0.5312 X 0.0000 0.6457 0.6457 0.3229 0.1937 0.4520 0.3229 0.3229 XI 0.0000 0.8356 0.8356 0.4178 0.2507 0.5849 0.4178 0.4178 XII 0.2351 1.8911 1.6560 0.8280 0.4968 1.1592 1.3943 0.4968 XIII 0.4137 1.4024 0.9887 0.4943 0.2966 0.6921 0.9081 0.4943 XIV 0.0863 1.4569 1.3706 0.6853 0.4112 0.9594 1.0457 0.4112 XV 0.2542 0.5371 0.2828 0.1414 0.0848 0.1980 0.3956 0.1414 XVII 0.2969 3.9685 3.6716 1.8358 1.1015 2.5701 2.8670 1.1015 XVIII 0.3414 1.3545 1.0131 0.5065 0.3039 0.7092 1.0506 0.3039

Tabel 9. Debit Eksisting, Debit Rencana dan Debit Genangan Zona Kiri

Zona Debit Eksisting Debit Rencana Debit Genangan 50% Debit Genangan 30% Debit Genangan 70% Debit Genangan Debit Saluran Rencana Debit Rencana Sumur Resapan (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) (m3/dt) I 0.5427 0.9153 0.3726 0.1863 0.1118 0.2608 0.7290 0.1863 II 0.2153 0.8504 0.6351 0.3176 0.1905 0.4446 0.5329 0.3176 III 0.1725 2.2145 2.0420 1.0210 0.6126 1.4294 1.6019 0.6126 IV 0.0000 0.3880 0.3880 0.1940 0.1164 0.2716 0.1940 0.1940 V 0.1466 1.4923 1.3457 0.6729 0.4037 0.9420 1.0886 0.4037 VI 0.0000 3.6572 3.6572 1.8286 1.0971 2.5600 2.5600 1.0971 VII 0.0000 1.0450 1.0450 0.5225 0.3135 0.7315 0.7315 0.3135 VIII 0.0000 0.7284 0.7284 0.3642 0.2185 0.5099 0.3642 0.3642 IX 0.0000 2.6703 2.6703 1.3352 0.8011 1.8692 1.8692 0.8011 XI 0.0000 0.9855 0.9855 0.4927 0.2956 0.6898 0.4927 0.4927 XII 0.2013 0.7154 0.5141 0.2571 0.1542 0.3599 0.4584 0.2571 XIII 0.1758 1.0918 0.9160 0.4580 0.2748 0.6412 0.6338 0.4580 XIV 0.4998 1.5684 1.0686 0.5343 0.3206 0.7480 1.2479 0.3206 XV 0.6522 0.4230 -0.2292 -0.1146 -0.0688 -0.1604 0.5376 -0.1146 XVI 1.3882 0.8227 -0.5655 -0.2828 -0.1697 -0.3959 1.1055 -0.2828 XVII 0.2028 1.8157 1.6129 0.8064 0.4839 1.1290 1.3318 0.4839

Dimensi Saluran Baru

Dengan debit beban sebesar 1.7685 m3/dt maka direncanakan dimensi saluran drainasi dengan prinsip saluran tahan erosi dengan pasangan batu kali. Dengan menggunakan persamaan kontinuitas dan persamaan Manning.

Contoh perhitungan dimensi saluran 1 Ka: Direncanakan:

b = 0.8 m h = 0.9 m dengan S = 0.010

Menghitung luas penampang (A) A = (b+zh) h

A = (0.8 + 0.2*0.9)*0.9 A = 0.902 m2

Menghitung keliling basah (P) P = b+2h(1+z2)0.5

P = 0.8 +2*0.9(1+0.22)0.5 P = 2.645 m

Menghitung jari-jari hidrolis (R) R =

R = 0. 02

(10)

R = 0.341 m

Menghitung kecepatan aliran dalam saluran (V) V = V = 1 0.025 0.3 1 2 3 0.01 1 2 V = 1.981 m/det Menghitung debit saluran (Q)

Q = A*V

Q = 0.902*1.981 Q = 2.489 m3/det Kontrol debit Qhitung > Qbeban

Qhitung (1.788 m3/det) > Qbeban(1.7685 m3/det)

Perencanan Sumur Resapan

Contoh perhitungan rencana sumur resapan Debit genangan di zona I Ka

= 0.57406 m3/detik Kedalaman sumur (H) = 3 m

Jari-jari sumur (R) = 0.5 m Faktor geometrik sumur (F) = 5.5*R

= 5.5*0.5 = 2.75 m Koefisien permeabilitas tanah (K)

= 0.015 m/detik Waktu Pengaliran (T) = 7200 detik

Debit sumur (Q) = = = 0.1238 m3/detik Jumlah sumur 5 = 5 x 0.1238 = 0.6188 m3/detik Kontrol debit = Qsumur > Qgenangan = (0.6188 m3/detik) > (0.57406 m3/detik) = Ya

Jumlah sumur resapan yang direncanakan sebanyak 128 sumur.

Tabel.10 Perhitungan Sumur Resapan Zona Kanan

Zona Tinggi Muka Air Dalam Sumur Jari-Jari Sumu r Faktor Geometrik Koef. Permeabilitas Tanah Waktu Pengaliran Debit Air Yang Masuk (1 Sumur) Debit Genangan Jumlah Sumur Debit

Sumur Kontrol Debit

H R F K T Q1sumur Qgenangan Qsumur Qsumur >

Qgenangan (m) (m) (m) (m/det) (det) (m3/dt) (m3/dt) (m3/dt) I 3 0.5 2.75 0.015 7200 0.1238 0.57406 5 0.6188 Ya II 2 0.5 2.75 0.015 7200 0.0825 0.02902 1 0.0825 Ya III 3 0.5 2.75 0.015 7200 0.1238 0.87647 8 0.9900 Ya V 3 0.5 2.75 0.015 7200 0.1238 0.38665 4 0.4950 Ya VI 3 0.5 2.75 0.015 7200 0.1238 1.02517 9 1.1138 Ya VII 3 0.5 2.75 0.015 7200 0.1238 0.17628 2 0.2475 Ya VIII 3 0.5 2.75 0.015 7200 0.1238 0.42432 4 0.4950 Ya IX 3 0.5 2.75 0.015 7200 0.1238 0.53120 5 0.6188 Ya X 3 0.5 2.75 0.015 7200 0.1238 0.32287 3 0.3713 Ya XI 3 0.5 2.75 0.015 7200 0.1238 0.41780 4 0.4950 Ya XII 3 0.5 2.75 0.015 7200 0.1238 0.49681 5 0.6188 Ya XIII 3 0.5 2.75 0.015 7200 0.1238 0.49434 4 0.4950 Ya XIV 3 0.5 2.75 0.015 7200 0.1238 0.41117 4 0.4950 Ya XV 2 0.5 2.75 0.015 7200 0.0825 0.14142 2 0.1650 Ya XVII 3 0.5 2.75 0.015 7200 0.1238 1.10148 9 1.1138 Ya XVIII 2.5 0.5 2.75 0.015 7200 0.1031 0.30393 3 0.3094 Ya

(11)

Tabel.10 Perhitungan Sumur Resapan Zona Kiri Zona Tinggi muka air dalam sumur Jari-jari sumur Faktor Geometrik Koef. Permeabilitas tanah Waktu pengaliran Debit air yang masuk (1 sumur) Debit Genangan Jumlah sumur Debit sumur Kontrol Debit

H R F K T Q1sumur Qgenangan Qsumur Qsumur >

Qgenangan (m) (m) (m) (m/det) (det) (m3/dt) (m3/dt) (m3/dt) I 3 0.5 2.75 0.015 7200 0.12375 0.18630 2 0.2475 Ya II 3 0.5 2.75 0.015 7200 0.12375 0.31757 3 0.3713 Ya III 3 0.5 2.75 0.015 7200 0.12375 0.61260 5 0.6188 Ya IV 3 0.5 2.75 0.015 7200 0.12375 0.19399 2 0.2475 Ya V 3 0.5 2.75 0.015 7200 0.12375 0.40371 4 0.4950 Ya VI 3 0.5 2.75 0.015 7200 0.12375 1.09715 9 1.1138 Ya VII 3 0.5 2.75 0.015 7200 0.12375 0.31351 3 0.3713 Ya VIII 3 0.5 2.75 0.015 7200 0.12375 0.36420 3 0.3713 Ya IX 3 0.5 2.75 0.015 7200 0.12375 0.80110 7 0.8663 Ya XI 3 0.5 2.75 0.015 7200 0.12375 0.49274 4 0.4950 Ya XII 3 0.5 2.75 0.015 7200 0.12375 0.25707 3 0.3713 Ya XIII 3 0.5 2.75 0.015 7200 0.12375 0.45799 4 0.4950 Ya XIV 3 0.5 2.75 0.015 7200 0.12375 0.32058 3 0.3713 Ya XVII 3 0.5 2.75 0.015 7200 0.12375 0.48387 4 0.4950 Ya

KESIMPULAN DAN SARAN Kesimpulan

Berdasarkan rumusan masalah penelitian, dapat diambil beberapa kesimpulan dari hasil evaluasi saluran drainase eksisting terhadap debit rancangan sebagai berikut:

1. Hasil perhitungan debit limpasan permukaan lahan dengan hujan rancangan periode ulang 5 tahun (Q5)

tiap zona dapat dilihat pada Tabel 4 dan Tabel 5

2. Berdasarkan hasil survei dan perhitungan kapasitas saluran eksisting terhadap debit rancangan, pada beberapa zona tidak terdapat saluran, serta kapasitas saluran eksisiting tidak mencukupi.

3. Direncanakan perbaikan sistem drainase dengan mendimensi saluran baru dan dikombinasikan dengan sumur resapan.

Saran

Berikut merupakan beberapa saran:

1. Perlu direncanakan sistem drainase yang baru, baik pada area yang terjadi genangan maupun pada area/zona dimana belum dibangunnya saluran drainase. Pada beberapa zona yang tidak terdapat saluran dibangun saluran

drainase yang dikombinasikan dengan membuat sumur resapan pada lahan tertentu.

2. Diperlukan kesadaran masyarakat agar

tidak membuang sampah pada saluran drainase karena sampah yang ada dapat mengurangi kapasitas saluran.

3. DAFTAR PUSTAKA

Badan Pusat Statistik Kabupaten Blitar. 2013. Kecamatan Kanigoro dalam

Angka 2013. Blitar: Badan Pusat

Statistik Kabupaten Blitar.

Badan Pusat Statistik Kabupaten Blitar. 2014. Statistik Daerah Kecamatan

Kanigoro 2014. Blitar: Badan Pusat

Statistik Kabupaten Blitar.

Br, Sri Harto. 1993. Analisis Hidrologi. Jakarta: Gramedia.

Chow, Ven Te. 1985. Hidrolika Saluran

Terbuka. Jakarta: Erlangga.

Departemen Pekerjaan Umum. 1986.

Kriteria Perencanaan Bagian Saluran KP-03. Bandung: Galang Persada.

Kementrian Negara Lingkungan Hidup. 2009. Peraturan Menteri Negara

Lingkungan Hidup Nomor 12 Tahun 2009 tentang Pemanfaatan Air Hujan.

Jakarta: Deputi MENLH Bidang Penaatan Lingkungan.

(12)

Kementrian Pekerjaan Umum. 2013. Materi

Bidang Drainase I Diseminasi dan Sosialisasi Keteknikan Bidang PLP.

Jakarta: Kementrian Pekerjaan Umum. Limantara, L. M. dan Soetopo, W. 2009.

Statistik Hidrologi. Malang: Tirta

Media.

Limantara, L. M. 2009. Hidrologi Teknik

Sumberdaya Air-2. Malang: CV Asrori.

Limantara, L. M. 2010. Hidrologi Teknik

Dasar. Malang: CV Citra Malang.

Pemerintah Republik Indonesia. 2010.

Peraturan Pemerintah Republik Indonesia Nomor 3 Tahun 2010 tentang Pemindahan Ibu Kota Kabupaten Blitar dari Wilayah Kota Blitar ke Wilayah Kecamatan

Kanigoro Kabupaten Blitar Provinsi

Jawa Timur. Jakarta: Sekretariat

Negara.

Soewarno. 2000. Hidrologi Operasional

Jilid Kesatu. Bandung: PT Citra Aditya

Abadi.

Sosrodarsono, S. dan Takeda, K. 1985.

Hidrologi untuk Pengairan. Jakarta:

Pradnya Paramita.

Standar Nasional Indonesia. 1991. SNI

06-2405-1991 Tata Cara Perencanaan Teknik Sumur Resapan Air Hujan untuk Lahan Pekarangan. Jakarta:

Badan Standar Nasional.

Suhardjono. 2015. Naskah Buku Ajar:

Drainase Perkotaan. Malang:

Universitas Brawijaya.

Suripin. 2004. Sistem Drainase Perkotaan

Gambar

Tabel  1.  Perhitungan  Koefisien  Polygon  Thiessen  Stasiun Hujan  Luasan (Km2) Koefisien Thiessen  Kanigoro  24.61  0.443  Garum  21.39  0.385  Bendogerit  9.55  0.172  Jumlah  55.55  1
Tabel 3. Pembagian Zona Layanan Saluran  Drainase Utama Kecamatan Kanigoro
Tabel 4. Total Debit Drainase Kecamatan  Kanigoro Zona Kanan Aliran
Tabel 7. Evaluasi Kapasitas Saluran Eksisting terhadap Debit Rancangan Zona Kiri
+2

Referensi

Dokumen terkait

Berdasarkan observasi langsung bahwa adanya perbedaan pelaksanaan model praktik keperawatan profesional pemula sesudah mendapat pelatihan model praktik keperawatan

Dari hasil perhitungan error kinerja alat yang dilihat pada LCD zelio SR2B121BD dan perhitungan manual pada tegangan masuk ke zelio SR2B121BD atau tegangan

Berdasarkan hasil penelitian ini ekstrak etanol biji pepaya dengan dosis 30 mg/kg BB, 100 mg/kg BB, 300 mg/kg BB minimal selama 9 hari dapat menurunkan jumlah

Pelaksanaan kegiatan pengabdian masyarakat melalui pendidikan kesehatan dalam penggunaan antibiotik pada hasil pretest dan posttest menunjukkan bahwa terdapat

Penyandang tuna daksa yang memiliki konsep diri positif berkaitan dengan persepsi fisik adalah mereka yang walaupun memiliki perbedaan fisik dari orang lain tetapi

Iradiasi yang dilakukan terhadap bumbu, rempah-rempah dan ramuan lain yang berasal dari sayuran ditujukan untuk membasmi mikroorganisme dan atau serangga dan tidak digunakan

Ayu Putriyani dalam penelitiannya yang berjudul Pengaruh Periklanan dan Personal Selling Terhadap Volume Penjualan Batu Akik (Studi Kasus Pedagang Batu Akik

Bandar Udara (selanjutnya disebut bandara) adalah kawasan di daratan dan/atau perairan dengan batas-batas tertentu yang digunakan sebagai tempat pesawat udara mendarat