• Tidak ada hasil yang ditemukan

tedeevrea. 343KB Jun 04 2011 12:09:37 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "tedeevrea. 343KB Jun 04 2011 12:09:37 AM"

Copied!
23
0
0

Teks penuh

(1)

◭◭ ◭ ◮ ◮◮ Go back

Full Screen

Close

Quit

UNIVERSAL BOUNDS FOR POSITIVE SOLUTIONS OF DOUBLY DEGENERATE PARABOLIC EQUATIONS

WITH A SOURCE

A. F. TEDEEV

Abstract. We consider a doubly degenerate parabolic equation with a source term of the form

t= div

|∇u|λ−1∇u

+up where 0< β≤λ < p.

For a positive solution of the equation we prove universal bounds and provide blow-up rate estimates under suitable assumptions on p < p0(λ, β, N). In particular, we extend some of the recent results by K. Ammar and Ph. Souplet concerning the blow-up estimates for porous media equations with a source. Our proofs are based on a generalized version of the Bochner-Weitzenb¨ok formula and local energy estimates.

1. Introduction

We study the doubly degenerate parabolic equation with a nonlinear source of the form

uβt = ∆λu+up in QT =RN ×(0, T), N ≥2,

(1.1)

where ∆λu= div|∇u|λ−1

∇u. Here and thereafter we assume that

0< β ≤λ < p.

(1.2)

Received August 28, 2010.

2010Mathematics Subject Classification. Primary 35K55, 35K65, 35B33.

(2)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Definition 1.1. We say thatu≥0 is a weak solution of (1.1) inQT if it is locally bounded in

QT, u∈C((0, T);Lβ+1loc (RN)), |∇u|λ+1 ∈L1

loc(QT) and satisfies (1.1) in the sense of the integral

identity

Z Z

QT

(−uβηt+|∇u|λ−1

∇u∇η) dxdt= Z Z

QT

upηdxdt

for anyη∈C1 0(QT).

The existence of local solutions of (1.1) follows, for example, from [22], and the uniqueness of an energy solution follows from [29]. Moreover, weak solutions are locally H¨older continuous [23, 31]. We also refer to the survey [24], [37] and the books [14, 25, 10, 38] for various local and global properties of solutions of doubly degenerate parabolic equations.

The main purpose of the present paper is to obtain universal bounds of blow-up solutions of (1.1), that is, bounds that are independent of initial data. The paper is motivated by recent results of K. Ammar and Ph. Souplet [3] (see also [33] and earlier results [39]) concerning universal blow-up behaviour of a porous medium equation with a source. We extend some of these results for a solution of the equation (1.1). One of the main tools in the proof of universal estimates in [3] is the following Bochner-Weitzenb¨ok formula

1 2∆(|∇v|

2) =

|D2v|2+ (∇∆v)· ∇v

(1.3)

with|D2v|2 = PN

i,j=1

(vxixj)2. Below we use the generalized version of (1.3) (see (2.1)) in order to

obtain some integral gradient estimates which together with the local Lq−L∞ estimates of [8]

(3)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Let

θ= (N−1)(1−β)

N β , δ=

λ−1

λ+ 1, δ1=

δ

β, A= 2(θ+δ1) + (1 +δ1) 2,

p0(β, λ, N) = N(N+λ+ 1)

(λ+ 1)(N−1)(2N δ+N−1)

1 +δ1+θ+√A.

The main result of the paper is as follows.

Theorem 1.1. Let u≥0 be a weak solution of (1.1)in QT =RN×(0, T). Assume that

p < p0(β, λ, N).

Then there exists a constantC=C(N, β, λ, p)such that

u(x, t)≤C(T−t)−1/(p−β)

(1.4)

for allx∈RN andt∈(T /2, T).

Remark 1.1. For the porous medium equation with a source

vt= ∆vm+vq,

(1.4) follows from the results in [3]. Namely, as it can be seen in this caseβ= 1/mandq=pm,

λ= 1. Thus

p0= N(N+ 2)

2(N−1)2(1 +θ+ √

A) withA= 1 + 2θ, θ=(m−1)(N−1)

N

(1.5)

which coincides with the exponent found in [3]. While if in (1.5)m= 1, we get the exponent

(4)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

which was discovered in [11]. Finally, if β = 1 in (1.1), that is, (1.1) is the nonstationary

λ-Laplacian with a source, then

p0=p0(β, λ,N) =

2(1 +δ)N(N+λ+ 1) (λ+ 1)(N−1)(2N δ+N−1). To the best of our knowledge our result is still new in this case.

Remark 1.2. Notice that p0(β, λ, N) is less than the Sobolev exponentpS = (N λ+λ+ 1)/

(N−λ−1) forλ+ 1< N. Howeverp0(β, λ, N) is bigger than the Fujita exponentpF

p0(β, λ, N)> pF =λ+βλ+ 1 N .

Let us recall that the Fujita exponentpF gives the threshold between the global existence and blow-up. Namely, if 1< p≤pF, then there is no positive global solution of (1.1), while if p > pF, then there exist some positive global solutions (see the survey by Deng and Levine [13]). The Sobolev exponent pS is known to be critical for the existence of positive steady states of the stationary solution

∆λu+up = 0 on RN (see [35], [12] and references therein).

(5)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

the optimal blow-up rate and universal bounds of both global and blow-up solutions for semilinear parabolic equations were investigated in [5, 19, 20, 21, 27, 28, 30, 32] (see also the book [33] and references therein).

The rest of the paper is devoted to the proof of Theorem1.1.

2. Proof of Theorem 1.1

Turning to the proof of the theorem let us remark that since the solution to (1.1) is not regular enough, the standard way to proceed is to apply some kind of regularization to the equation before obtaining the integral estimates, and then subsequently pass to the limit with respect to the regularization parameter. This process is quite standard by now, it is described in details, for example, in [15]. Therefore without going into details we assume that our solution is sufficiently regular (see [15]).

One of the main parts in the proof of the theorem is the universal bound of the integral

t2

Z

t1

Z

BR(x0)

u2p+1−β

dxdt

for any 0< t1< t2< T, R >0 and any x0 ∈RN. In order to do this, the starting point is the following formula

|∇v|λ−1

vxi xj|∇v|

λ−1

vxj

xi

= |∇v|λ−1

vxi xj

|∇v|λ−1

vxj xi

+ (∆λv)xj|∇v|λ

−1 vxj.

(6)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

This formula is obtained by the direct differentiation and changing the order of the derivatives

|∇v|λ−1 vxi

xj|∇v| λ−1

vxj

xi

=|∇v|λ−1 vxi

xj

|∇v|λ−1 vxj

xi+

|∇v|λ−1 vxi

xjxi|∇v| λ−1

vxj

=|∇v|λ−1 vxi

xj

|∇v|λ−1 vxj

xi+

|∇v|λ−1 vxi

xi

xj

|∇v|λ−1 vxj

=|∇v|λ−1 vxi

xj

|∇v|λ−1 vxj

xi+ (∆λv)xj|∇v| λ−1

vxj.

Here and thereafter the summation on repeating indices is assumed andvwill be smooth enough. Formula (2.1) is a natural generalization of (1.3) and coincides with the latter whenλ= 1.

Next lemma is similar to [35, Proposition 6.2]. The proof we give here uses similar arguments to those used in [35]. We reproduce the proof here for the readers’ convenience.

Lemma 2.1. Let Gbe any domain inRN. Then for any sufficiently smooth functionv(x)and any nonnegativeζ∈D(G), for s >0 large enough and any d,µ∈R, it holds

−µ2λ+ 1 λ+ 1

Z

ζsvµ−1

λv|∇v|λ+1+µ(µ−1) λ λ+ 1

Z

ζsvµ−2|∇v|2(λ+1)

≤ N−1 N

Z

ζsvµ(∆λv)2+ 2sZ ζs−1vµλv|∇v|λ−1

vxiζxi

+ 2sµλ

λ+ 1 Z

ζs−1vµ−1

|∇v|λ+1|∇v|λ−1 vxiζxi

+s

Z

ζs−1

vµ|∇v|λ−1

vxi|∇v|λ−1

vxjζxixjs .

(7)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Proof. Multiplying both sides of (2.1) byζsvµ and integrating by parts, we get

I1= Z

ζs

|∇v|λ−1

vxi xj|∇v|

λ−1

vxj

xi

= Z

ζsvµ(∆λv)xj|∇v|λ

−1 vxj +

Z

ζsvµ|∇v|λ−1 vxi

xj

|∇v|λ−1 vxj

xi

= −

Z

ζsvµ(∆λv)2−µ

Z

ζsvµ−1λv

|∇v|λ+1−s

Z

ζs−1vµλv

|∇v|λ−1 vxiζxi

+ Z

ζsvµ|∇v|λ−1 vxi

xj

|∇v|λ−1 vxj

xi.

Using the algebraic inequality (see, for instance, [15, 16], [35])

|∇v|λ−1

vxi xj

|∇v|λ−1

vxj xi≥

1

N(∆λv) 2,

we obtain

I1≥ −NN−1

Z

ζsvµ(∆λv)2−µ

Z

ζsvµ−1λv

|∇v|λ+1

−s

Z

ζs−1

vµ∆λv|∇v|λ−1 vxiζxi.

(8)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

On the other hand, integrating by parts twice, we have

I1= −

Z

(ζsvµ)xi

|∇v|λ−1 vxi

xj|∇v| λ−1

vxj

= Z

(ζsvµ)xi

|∇v|λ−1

vxj xj|∇v|

λ−1

vxi

= Z

∆λv(ζsvµ)xi|∇v|λ

−1

vxi+ Z

(ζsvµ)xixj|∇v|λ

−1

vxj|∇v|λ−1

vxi

Z

ζsvµ−1λv|∇v|λ+1

+s

Z

ζs−1vµλv|∇v|λ−1

vxiζxi

+µ(µ−1) Z

ζsvµ−2

|∇v|2(λ+1)

+ 2sµ

Z

ζs−1vµ−1

|∇v|λ+1|∇v|λ−1 vxjζxj

+s

Z

ζs−1

vµ|∇v|λ−1

vxj|∇v|λ−1

vxiζxixjs

Z

ζsvµ−1

|∇v|λ−1

vxj|∇v|λ−1

vxivxixj

=µI2+sI3+µ(µ−1)I4+ 2sµI5+sI6+µI7.

(2.4)

We have

I7= 1 2

Z

ζsvµ−1

|∇v|λ−1

vxi|∇v|λ−1

(|∇v|2)xi

(9)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Thus

I7=− 1 λ+ 1I2−

µ−1

λ+ 1I4− 2s λ+ 1I5

and (2.3) implies

I1= µλ

λ+ 1I2+

µ(µ−1)λ λ+ 1 I4+

2sµλ

λ+ 1I5+sI3+I6. (2.5)

Now combining (2.3) with (2.5), we derive

µ(2λ+ 1)

λ+ 1 I2+

µ(µ−1)λ λ+ 1 I4

≤ NN−1

Z

ζsvµ(∆λv)2+ 2sI3+ 2sµλ

λ+ 1I5+sI6+µI7.

Lemma2.1is proved.

Denote

a=−2d{N(d(λ−1)−2λ) + (1−β)(λ+ 1)}+ (λ+ 1)(N−1)((1−β) 2+d2)

4N(λ+ 1) ,

b= d(N+λ+ 1)

N(λ+ 1) −p

N−1

(10)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Lemma 2.2. Assume thata >0 andb >0. Then for a sufficiently small ε >0 there holds

(a−5ε) Z Z

ξsu−1−β

|∇u|2(λ+1)+ (b−ε) Z Z

ξsup−β

|∇u|λ+1

≤ C(ε) Z Z

ξs|∇ξ|λ+1 uβ−1u2

t+

Z Z

ξs−2ξ2 tu1+β

+ Z Z

ξs−2(λ+1)

|∇ξ|2(λ+1)u1−β+2λ

+ Z Z

ξs−λ−1

|∇ξ|λ+1up+1+λ−β

,

(2.6)

where integrals are taken over G×(t1, t2) with 0 < t1 < t2 < T and ξ(x, t) is a smooth cutoff function ofG×(t1, t2).

Proof. In (2.2), setv=uα with someαR. Then

I2=α2λ+1((α−1)λI8+I9), I4=α2λ+1I8,

Z

ζsvµ(∆λv)2=α2λ((α−1)2λ2I8+ 2(α−1)λI9+I10).

Here

I8= Z

ζsuh−2|∇u|2(λ+1)

, I9=

Z

ζsuh−1λu|∇u|λ+1 ,

I10= Z

ζsuh(∆λu)2 h= 2(α−1)λ+αµ.

Therefore, (2.2) implies that

−C1I8−C2I9≤ NN−1I10+ 2sI11+ 2sλ

α−1 + µα

λ+ 1

I12+I13.

(11)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Here

I11= Z

ζs−1uhλu

|∇u|λ−1 uxiζxi,

I12= Z

ζs−1

uh−1

|∇u|λ+1|∇u|λ−1 uxiζxi,

I13= Z

uh|∇u|λ−1

uxj|∇u|λ−1

uxiζxixjs .

Then replacingζbyξand integrating (2.7) fromt1 tot2, we get withd=αµ

−C3J8−C4J9≤ NN−1J10+ 2sJ11+ 2sλ

α−1 + d

λ+ 1

J12+sJ13,

(2.8)

where

Ji=

t2

Z

t1

Ii(t)dt,

C3=2d[N(d(λ−1)−2λ) +h(λ+ 1)] + (λ+ 1)(N−1)(h

2+d2)

4N(λ+ 1) ,

C4=h(N−1)(λ+ 1) +d(N+λ+ 1)

N(λ+ 1) .

By (1.1) we have

J10= Z Z

ξsuh(∆λu)2= Z Z

ξsuh∆λu(uβt −up)

= Z Z

ξsuhuβt∆λu−

Z Z

ξsuh+p∆λu.

(12)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Integrating by parts, we obtain

Z Z

ξsuh+p∆λu= (h+p) Z Z

ξsuh+p−1

|∇u|λ+1+s

Z Z

ξs−1

uh+p|∇u|λ−1 uxiξxi

= (h+p)J14+sJ15,

(2.10)

Z Z

ξsuhuβt∆λu=β

Z Z

ξsuh+β−1utλu

= − β

λ+ 1 Z Z

ξsuh+β−1|∇u|λ+1

t−β(h+β−1)

Z Z

ξsuh+β−2|∇u|λ+1 ut

−βs

Z Z

ξs−1uh+β−1

|∇u|λ−1

uxiξxiut

= − β

λ+ 1(h+β−1)λ Z Z

ξsuh+β−2

|∇u|λ+1ut

+ βs

λ+ 1 Z Z

ξs−1ξtuh+β−1

|∇u|λ+1−βs

Z Z

ξs−1uh+β−1

|∇u|λ−1

uxiξxiut

= − β

λ+ 1(h+β−1)λJ16+

βs

(13)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Next, by (1.1) we have

J9= Z Z

ξsuh−1λu

|∇u|λ+1

= Z Z

ξsuh−1

(uβt −up)|∇u| λ+1

Z Z

ξsuh+p−1

|∇u|λ+1+β

Z Z

ξsuh+p−2

|∇u|λ+1ut

= −J14+βJ16,

(2.12)

J11= Z Z

ξs−1uhλu

|∇u|λ−1

uxiξxi = Z Z

ξs−1uh(uβ

t −up)|∇u| λ−1

uxiξxi

= −

Z Z

ξs−1

up+h|∇u|λ−1

uxiξxi+β

Z Z

ξs−1

uh+β−1

ut|∇u|λ−1

uxiξxi=−J15+βJ18.

(2.13)

DenoteE=J8, F =J14. Then combining (2.9)–(2.13), from (2.8) we get

−C3E+ (C4−NN−1(p+h))F

≤ −sN+ 1

N J15+β(C4−

(N−1)(h+β−1)λ N(λ+ 1) )J16

−(NN(λ+ 1)1)βsJ17+βsN+ 1

N J18+ 2sλ(α−1 +d/(λ+ 1))J12.

(2.14)

Letdandhbe chosen as follows

C3<0, C4−NN−1(p+h)>0.

(14)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Applying the Young inequality, we get

|J15|=

Z Z

ξs−1

up+h|∇u|λ−1 uxiξxi

≤εF+C(ε) Z Z

ξs−λ−1up+h+λ|∇ξ|λ+1 ,

(2.16)

|J16|=

Z Z

ξsuh+β−2

|∇u|λ+1ut

≤εE+C(ε) Z Z

ξsuh+2β−2

|∇ξ|λ+1u2t,

(2.17)

|J17|=

Z Z

ξs−1ξtuh+β−1|∇u|λ+1

≤εE+C(ε) Z Z

ξs−2

ξt2uh+2β

(2.18)

|J18|=

Z Z

ξs−1

uh+β−1

|∇u|λ−1

uxiξxiut ≤ε Z Z

ξs−2uh

|∇u|2λ|∇ξ|2+C(ε) Z Z

ξsuh+2β−2u2 t

≤εE+C(ε) Z Z

ξsuh+2β−2u2 t

+C(ε) Z Z

ξs−2(λ+1)

uh+2λ|∇ξ|2(λ+1).

(15)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

|J12|=

Z Z

ξs−1uh−1

|∇u|2λuxiξxi

≤εE+C(ε) Z Z

ξs−2(λ+1)

uh+2λ|∇ξ|2(λ+1).

(2.20)

Now we choose h = 1−β. Then (2.15) holds true if a and b are positive which is the case.

Lemma2.2is proved.

Notice that assumptionsa >0 andb >0 are equivalent to

d2−2dN δ+N−1 +β

2N δ+N−1 +

(N−1)(1−β)2

2N δ+N−1 <0,

d > p(λ+ 1)(N−1) N+λ+ 1 . The first of these inequalities is satisfied if

N β

2N δ+N−1(1 +δ1+θ−

A)< d < N β

2N δ+N−1(1 +δ1+θ+

√ A).

Therefore, both inequalities hold ifp < p0(β, λ, N) which coincides with our assumption. Next we need to bound the integral

J19= Z Z

ξsuβ−1u2 t.

Lemma 2.3. The following inequality holds true

J19≤4εE+C(ε) Z Z

ξs−2(λ+1)u2λ+1−β

|∇ξ|2(λ+1)

+C(ε) Z Z

ξs−2

u1+βξt2+C(ε)

Z Z

ξs−1

up+1|ξt|.

(16)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Proof. Multiply both sides of (1.1) byutξsand integrate by parts to get

βJ19= − 1 λ+ 1

Z Z

ξs|∇u|λ+1

t+

1

p+ 1 Z Z

ξs(up+1) t

−s

Z Z

ξs−1

|∇u|λ−1

utuxiξxi.

(2.22)

The right-hand side is equal to

s λ+ 1

Z Z

ξs−1ξt

|∇u|λ+1−p+ 1s

Z Z

ξs−1ξtup+1 −s

Z Z

ξs−1

|∇u|λ−1

utuxiξxi.

By Young’s inequality we have

s λ+ 1

Z Z

ξs−1ξt

|∇u|λ+1≤εE+C(ε) Z Z

ξs−2u1+βξ2 t,

s

Z Z

ξs−1

|∇u|λ−1

utuxiξxi

1 2J19+

1 2

Z Z

u1−β

ξs−2

|∇ξ|2|∇u|2λ

≤12J19+εE+C(ε) Z Z

ξs−2(λ+1)u2λ+1−β

|∇ξ|2(λ+1).

(17)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

We continue the proof of Theorem1.1. From Lemma 2.2and (2.15)–(2.21), one gets

(a−9ε)E+ (b−2ε)F ≤γ(ε) Z Z

ξs−λ−1up+λ+1−β|∇ξ|λ+1

+γ(ε) Z Z

ξs−2(λ+1)u2λ+1−β

|∇ξ|2(λ+1)

+γ(ε) Z Z

ξs−2u1+βξ2 t+

Z Z

ξs−1up+1 |ξt|.

(2.23)

Denote

M1= Z Z

ξs−(λ+1)2p+1−β

p−λ |∇ξ|(λ+1)

2p+1−β p−λ ,

M2= Z Z

ξs−2p+1−β p−β |ξt|

2p+1−β p−β .

Applying the Young inequality, we have

Z Z

ξs−λ−1up+λ+1−β

|∇ξ|λ+1≤p2+pλ+ 1+ 1−β −β L+

p−λ

2p+ 1−βM1,

Z Z

ξs−2(λ+1)

u2λ+1−β

|∇ξ|2(λ+1)≤22λp+ 1+ 1−β −βL+

2(p−λ) 2p+ 1−βM1,

Z Z

ξs−2

u1+βξt2≤

1 +β

2p+ 1−βL+

2(p−β) 2p+ 1−βM2,

Z Z

ξs−1up+1

|ξt| ≤ 2pp+ 1+ 1 −βL+

p−β

2p+ 1−βM2,

(18)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

where

L= Z Z

ξsu2p+1−β.

In order to estimate the last integral we multiply both sides of (1.1) byup+1−βξsand integrate by

parts, apply also Young’s inequality to get

L= β

λ+ 1 Z Z

ξs(up+1)t+ (p+ 1−β)F+s

Z Z

ξs−1up+1−β

|∇u|λ−1 uxiξxi

p+ 1

Z Z

ξs−1

|ξt|up+1+ (p+ 1−β+s

(λ+1)/λλ

λ+ 1 )F

+ 1

λ+ 1 Z Z

ξs−λ−1up+λ+1−β|∇ξ|λ+1

p+ 1ε1L+

p+ 1−β+s

(λ+1)/λλ

λ+ 1

F

+ 1

λ+ 1ε1L+ (

sβ p+ 1+

1

λ+ 1)C(ε1)(M1+M2). Therefore for a sufficiently smallε1, we get

L≤γ(p, β, λ)(F+M1+M2) and together with (2.23) and (2.24) with a suitableεthis gives

L+F ≤γ(M1+M2).

(2.25)

LetG =BR(x0) for any fixedx0 ∈ RN, t1 = T1, t2 = t and for 0 < T1 < T2 < t, ξ is so that

|∇ξ| ≤cR−1, |ξτ| ≤c(T2T1)−1 for 0< T1< τ < t < T and anyR >0. Then

M1+M2≤cRN(T2−T1)R−(λ+1)(2p+1−β)

p−λ + (T2−T1)−

2p+1−β p−β

.

(19)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

We have

sup

T1<τ <t

Z

BR(x0)

up+1dx≤c(L+F).

Indeed, this follows from Lemma2.3, (2.24) and (2.25) observing that

Z

BR(x0)

ξs(x, τ)up+1(x, τ) = (p+ 1)

τ

Z

T1

Z

BR(x0)

ξsuput+s τ

Z

T1

Z

BR(x0)

ξs−1ξtup+1

≤(p+ 1) 

 

τ

Z

T1

Z

BR(x0)

ξsuβ−1u2 t

 

1/2

 

τ

Z

T1

Z

BR(x0)

ξsu2p+1−β

 

1/2

+s τ

Z

T1

Z

BR(x0)

ξs−1|ξt|up+1.

Therefore from (2.25) and (2.26), we have

sup

T1<τ <t

Z

BR(x0)

up+1dx

≤cRN(T2−T1)R−(λ+1)(2p+1−β)

p−λ + (T2−T1)−

2p+1−β p−β

.

(20)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Now we are in a position to complete the proof of Theorem1.1. The final step of the proof is to utilize the local estimate of Lemma 3.3 from [8] which we write in the suitable form

kuk∞,BR/2(x0)×(T2,t)≤ (T2−T1)

−1/(p−β)

+ (R/2)−(λ+1)/(p−λ)

+c(t−T1)1/(ω−p)

 sup

T1<τ <t

Z

BR(x0)

up+1dx

 

µ/(ω−p)

(2.28)

for all 0< T1< T2< t < T providedp < pS andω > p+ 1 is a free parameter,

µ= (λ+ 1)(ω−p−1)β+p (p+ 1)β(λ+ 1)−(p−λ)N.

Finally, in (2.27) and (2.28) choosing T2 = t − (T − t)/2, T1 = t − (T − t),

R = (T −t)(p−λ)/(λ+1)(p−β) with t

∈ (T /2, T) and noting that x0 is an arbitrary point of RN, we arrive at the desired result.

The proof of Theorem1.1 is complete. ✷

1. Afanas’eva N. V. and Tedeev A. F.,Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero,Sbornik: Mathematics, 195:4 (2004), 459–478.

2. ,Theorems on the existence and nonexistence of solutions of the Cauchy problem for degenerate parabolic equations with non local sources,Ukrainian Mathematical Journal57(11)(2005), 1687–1711.

3. Ammar K. and Souplet Ph.,Liouville-type theorems and universal bounds for positive solutions of the porous medium equation with source, Discrete and Continuous Dynamical Systems26(2010), 665–689.

(21)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

5. Andreucci D., Herrero M. and Velazquez J .J.,Liouville theorems and blow-up behaviour in semilinear reaction diffusion systems, Annales Non Lin´eaire. I’Inst. H. Poincar´e14(1997), 1–53.

6. Andreucci D. and Tedeev A. F.,A Fujita type result for a degenerate Neumann problem in domains with non compact boundary, J. Math. Analysis and Appl.231(1999), 543–567.

7. ,Optimal bounds and blow up phenomena for parabolic problems in narrowing domains, Proc. Roy. Soc. Edinburgh Sect. A128(6)(1998), 1163–1180.

8. ,Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differential Equations

10(1)(2005), 89–120.

9. Andreucci D., Tedeev A. F., and Ughi M.,The Cauchy problem for degenerate parabolic equations with source and damping, Ukrainian Mathematical Bulletin,1(1)(2004), 1–23.

10. Antontsev S. N., Diaz J. I. and Shmarev S., 2002,Energy methods for the free boundary problems. Application to nonlinear PDEs and fluid mechanics, Boston-Birkh¨auser, 2002.

11. Bidaut-V´eron M.-F., Initial blow-up for the solutions of a semilinear parabolic equation with source term, Equations aux d´eriv´ees partielles et applications, articles d´edi´es `a Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, 189–198.

12. ,Thep-Laplace heat equation with a source term: self-similar solutions revisited, Advanced Nonlinear Studies5(2005), 1–41.

13. Deng K. and Levine H. A.,The role of critical exponents in blow-up theorems, the sequel, J. Math. Anal. Appl.

243(2000), 85–126.

14. DiBenedetto E.,Degenerate parabolic equations, Springer-Verlag, New-York, NY, 1993.

15. Esteban J. R. and V´azquez J. L., R´egularit´e des solutions positives de l’´equation paraboliquep-Laplacienne, C.R. Acad. Sci. Paris310, Serie I (1990), 105–110.

16. Fabricant A., Marinov M., and Rangelov Ts., Some properties of nonlinear degenerate parabolic equations, Mathematica Balkanica. New series,8(1)(1994), 59–73.

17. Galaktionov V. A., Kurdyumov S., Mikhailov A., and Samarskii A.,Blow-up in quasilinear parabolic equations, Nauka, Moscow, 1987, English translation: Gruyter Expositions in Mathematics, no. 19, Walter de Gruyter, Berlin, 1995.

18. Galaktionov V. A. and V´azquez J. L.,The problem of blow-up in nonlinear parabolic equations, Discrete and Continuous Dynamical Systems8(2002), 399–433.

(22)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

20. ,Characterizing blow-up using similarity variables, Indiana Univ. Math. J.36(1987), 1–40.

21. , Nondegeneracy of blow-up for semilinear heat equations, Commun. Pure Appl. Math., 42 (1989), 845–884.

22. Ishige K.,On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equations, SIAM J. Math. Anal. ,27(5)(1996), 1235–1260.

23. Ivanov A. V.,H¨older estimates near the boundary for generalized solutions of quasilinear parabolic equations that admit double degeneration, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov,188(1991), 45–69.

24. Kalashnikov A. S., Some problems on the qualitative theory of nonlinear degenerate second-order parabolic equations, Uspekhi Mat. Nauk,42(1987), 135–176, English translation in Russian Math. Surveys,42(1987), 169–222.

25. Ladyzhenskaya O. A., Solonnikov V. A., and Ural’ceva N. N., Linear and quasilinear equations of parabolic type, vol. 23 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1968.

26. Martynenko A. V. and Tedeev A. F.,The Cauchy problem for a quasilinear parabolic equation with a source and nonhomogeneous density, (Russian) Zh. Vychisl. Mat. Mat. Fiz.47(2) (2007), 245–255; translation in Comput. Math. Math. Phys.47(2)(2007), 238–248.

27. Matos J. and Souplet Ph.,Universal blow-up rates for semilinear heat equation and applications, Adv. Differ-ential Equations,8(2003), 615–639.

28. Merle F. and Zaag H.,Refined uniform estimates at blow-up and applications for nonlinear heat equations, Comm. pure appl. Math.,51(1998), 139-196.

29. Otto F.,L1

-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations,

131(1996), 20–38.

30. Pol´aˇcik P., Quittner P., and Souplet Ph.,Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part 2. Parabolic Equations, Indiana Univ. Math. J.,56(2007), 879–908.

31. Porzio M. and Vespri V.,H¨older estimates for local solutions of some doubly nonlinear parabolic equations, J. Differential Equations,103(1993), 141–178.

32. Quittner P.,Universal bounds for global solutions of a superlinear parabolic problems, Math. Ann.,320(2001), 299–305.

(23)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

34. Quittner P., Souplet Ph., and Winkler M.,Initial blow-up rates and universal bounds for nonlinear heat equa-tions, J. Differential Equations,196(2004), 316-339.

35. Serrin J. and Zou H.,Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math.,189(2002), 79–142.

36. Souplet Ph.,An optimal Liouville-type theorem for radial entire solutions of the porous medium equation with source, J. Differential Equations,246(2009), 3980–4005.

37. Tedeev A. F.,The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal, V.86(6)(2007), 755–782.

38. Vazquez J. L.,The Porous Medium Equation. Mathematical theory. Oxford Mathematical Monographs. Claren-don Press, Oxford, 2007.

39. Winkler M.,Universal bounds for global solutions of a forced porous medium equation, Nonlinear Anal.57

(2004), 349–362.

Referensi

Dokumen terkait

Hasil analisis regresi yang telah dilakukan, diantara kedua variabel independen yang memiliki dampak paling dominan terhadap gaya komunikasi sehari-hari mahasiswa STAIN Kediri

Pada bakteri Gram negatif, flavonoid harus dapat menembus membran luar dan ruang periplasmik kemudian berinteraksi dengan protein pengikat pada membran sitoplasma untuk

Ilmu ekonomi sebagai moral science dan behaviour science, maka ilmu ini sangat erat kaitannya dengan etos, etika dan karakter manusia, karena nilai-nilai tersebut akan ber-

Pada hari ini minggu tanggal sebelas bulan juni tahun dua ribu tujuh belas Pokja I ULP Pekerjaan Pelapisan Runway, Taxiway, Apron, Fillet Termasuk Marking

development of their teachers. The assessments can be implemented at the end of each semester or during the midterm exam to provide feed-back to teachers on teaching style and

This study used SERVQUAL model from Zeithaml, et al (1990; and in Aldri and Dede, 2014) to measure the quality of services performed by health officers at private hospital Y

This paper thus, has made attempts to try to show case some of the underpinning issues that need to be addressed. The most important is how the Nigerian state can integrate her

These results indi - cate that the main driving force for economic growth before de- centralization was the education sector, whereas, following fiscal decentralization,