• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:OTHER:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:OTHER:"

Copied!
8
0
0

Teks penuh

(1)

SOME PROPERTIES INVOLVING QUASI-CONVOLUTION PRODUCTS CONCERNING SOME SPECIAL CLASSES OF

UNIVALENT FUNCTIONS

Mugur Acu 1

Abstract. In this paper we give some sample properties involving quasi-convolution products of functions with negative coefficients.

2000 Mathematics Subject Classification: 30C45

Keywords and phrases: Quasi-convolution product, uniform starlike func-tions with negative coefficients, uniform convex funcfunc-tions with negative co-efficients, Alexander integral operator, Bernardi integral operator

1. Introduction

Let H(U) be the set of functions which are regular in the unit disc

U, A = {f ∈ H(U) : f(0) = f′(0) 1 = 0}, Hu(U) = {f ∈ H(U) :

f is univalent in U} and S ={f A:f is univalent in U}. Let define the Alexander integral operator IA:A→A ,

f(z) = IAF(z) = z

Z

0

F(t)

t dt , z ∈U (1)

and the Bernardi integral operator Ia:A→A ,

f(z) =IaF(z) = 1 +a

za z

Z

0

F(t)·ta−1

dt , a= 1,2,3, ... (2)

(2)

It is easy to observe that for f(z) A, f(z) = z + ∞

X

j=2

ajzj, we have

IAf(z) = z+ ∞

X

j=2

aj

j z

j

and Iaf(z) =z+ ∞

X

j=2

a+ 1

a+jajz

j .

If we consider the functionsf(z), g(z)A,f(z) =z

X

j=2

aj ·zj , aj ≥0,

j = 2,3, ... z U andg(z) =z

X

j=2

bj·zj , bj ≥0 , j = 2,3, ... z ∈U, we define the quasi-convolution product of the functionsf and g by

(fg)(z) =z

X

j=2

aj ·bjzj.

Similarly, the quasi-convolution product of more than two functions can also be defined. The quasi-convolution product was used in previously papers by Kumar (see [4], [5]), Owa (see [8], [9]), Misra (see [7]) and many others.

The purpose of this note is to obtain some properties regarding certain subclasses of functions with negative coefficients, by using the integral oper-ators defined above and quasi-convolution products.

2. Preliminary results

Definition 1 [10] Let T be the set of all functions f S having the form:

f(z) = z

X

j=2

aj·zj , aj ≥0 , j = 2,3, ... z ∈U (3)

Theorem 1 [10] If f A, having the form (3), then the next two assertions are equivalent:

(i)

X

j=2

j·aj ≤1

(ii) f T

(3)

Remark 1 Using the definitions of the Alexander and Bernardi integral op-erators and the previously theorem, we observe that for f T we have

IA(f) T and Ia(f) T. More, we observe that for f T, having the form (3), we have aj ∈

h

0,1 j

i

for all j 2. If we denote T[0,1 j] = (

f(z) =z

X

j=2

aj ·zj , aj ∈

0,1 j

, j = 2,3, ... z U )

, we have T

T[0,1

j]. Also,it is easy to observe that f ∈ T[0,1j] we have IA(f) ∈ T[0,1j] and Ia(f)T[0,1

j].

Definition 2 [2] A functionf is said to be uniformly starlike in the unit disc

U iff is starlike and has the property that for every circular arc γ contained inU, with centerα also inU, the arcf(γ)is starlike with respect tof(α).We let U S∗ denote the class of all such functions. By taking U T=T U Swe define the class of uniformly starlike functions with negative coefficients.

Remark 2 An arc f(γ) is starlike with respect to a point w0 = f(α) if

arg(f(z)w0) is nondecreasing as z traces γ in the positive direction. Theorem 2 [2] Let f S, f(z) = z+P∞

n=2

an·zn, an∈C. If ∞

P

n=2

n· |an| ≤ √

2 2 then f U S∗.

Definition 3 [3] A function f is uniformly convex in the disc U if f SC (convex) and for every circular arc γ contained in U, with center α also in U , the arc f(γ) is also convex. We let U SC denote the class of all such functions. By takingU TC =T

∩U SC we define the class of uniformly convex functions with negative coefficients.

Remark 3 The arc γ(t), a < t < b is convex if the argument of the tangent to γ(t) is nondecreasing with respect to t.

Theorem 3 [11] Let f T, f(z) = z P∞

n=2

an·zn. Then f ∈ U TC if and

only if :

X

n=2

(4)

Remark 4 In [6] the author showed that the Libera integral operator f :

A A defined by f(z) = I1F(z) = 2 z

z

R

0

F(t)dt , z U preserve the class

U T∗. Also, in [1] is showed that the Alexander integral operator, defined by (1), preserve the classes U T∗, U TC and the Bernardi integral operator, defined by (2), preserve the class U TC.

3. Main results

Remark 5 By using the series expansions of the functionsf1, f2, the Theo-rem 1 and the definition of the quasi-convolution product it is easy to observe that for f1 ∈T , f2 ∈T[0,1

j], we have

f1∗f2 ∈T .

Theorem 4 If f1 ∈T , f2, f3 ∈T[0,1

j], then f

1∗f2∗f3 ∈U TC.

Proof. Letf1(z) = z− ∞

X

j=2

a1j ·zj, a1j 0, j 2,f2(z) =z

X

j=2

a2j ·zj,a2 j ∈

h

0,1 j

i

, j 2,f3(z) =z− ∞

X

j=2

a3j ·zj, a 3 j ∈

0,1 j

, j 2, and (f1∗f2∗f3)(z) =z P∞

j=2

cj·zj , where cj =a 1 j ·a

2 j ·a

3

j ≥0, j ≥2. From Remark 5 we have

f1∗f2∗f3 ∈T .

From Theorem 3 we obtain that is sufficient to prove that ∞

X

j=2

j(2j1)·cj ≤1.

From a2 j, a

3 j ∈

h

0,1 j

i

, j 2 we have

j(2j 1)·cj =j(2j−1)a 1 j ·a

2 j ·a

3 j ≤

2j1

j2 ·ja 1 j < ja

1

j. (4) Using Theorem 1 for the function f1 we have

X

(5)

From (4) and (5) we obtain ∞

X

j=2

j(2j 1)·cj ≤1.This mean thatf1∗f2∗f3 ∈

U TC. Similarly, we obtain

Corollary 1 If f1 ∈T , f2, . . . , fp ∈T [0,1

j], p= 3,4, . . ., then f

1∗f2∗ · · · ∗

fp ∈U TC.

By using the Remark 4 and the Theorem 4 we obtain: Corollary 2 If f1 ∈ T , f2, f3 ∈ T[0,1

j], then

IA(f1 ∗f2 ∗f3) ∈ U TC and

Ia(f1∗f2 ∗f3)∈U TC.

Theorem 5 If f1 ∈T , f2 ∈T[0,1

j], then

IA(f1∗f2)∈U TC.

Proof. Letf1(z) = z− ∞

X

j=2

a1 j ·z

j, a1

j ≥0, j ≥2,f2(z) =z− ∞

X

j=2

a2 j ·z

j,a2 j ∈

h

0,1 j

i

, j 2, and IA(f1∗f2)(z) = z− ∞

X

j=2

cj ·zj , where cj = 1 j ·a

1 j ·a

2 j ≥

0, j 2. From Remark 5 we havef1∗f2 ∈T, and from Remark 1 we obtain

IA(f1∗f2)∈T.

From Theorem 3 we obtain that is sufficient to prove that ∞

X

j=2

j(2j1)·cj ≤1.

From a2 j ∈

h

0,1ji , j 2 we have

j(2j1)·cj =j(2j −1)· 1

j ·a

1 j ·a

2 j ≤

2j 1

j2 ·ja 1 j < ja

1

j. (6) Using Theorem 1 for the function f1 we have

X

j=2

ja1

j ≤1. (7)

From (6) and (7) we obtain ∞

X

j=2

j(2j 1)·cj ≤1. This mean that IA(f1 ∗

(6)

Corollary 3 If f1 ∈ T , f2, . . . , fp ∈ T[0,1

j], p = 2,3, . . ., then IA(f

1∗f2 ∗

· · · ∗fp)U TC.

Theorem 6 If f1 ∈T , f2 ∈T[0,1

j], then

IA(f1)∗IA(f2)∈U TC.

Proof. Letf1(z) = z− ∞

X

j=2

a1j ·zj, a1j 0, j 2,f2(z) =z

X

j=2

a2j ·zj,a2 j ∈

h

0,1ji , j 2, andIA(f1)∗IA(f2)(z) =z− ∞

X

j=2

cj ·zj , wherecj = 1 j2·a

1 j·a

2 j ≥

0, j 2. From Remarks 1 and 5 we obtainIA(f1)∗IA(f2)∈T. From Theorem 3 we obtain that is sufficient to prove that

X

j=2

j(2j1)·cj ≤1.

From a2

j ∈[0,1), j ≥2 we have

j(2j1)·cj =j(2j−1)· 1

j2 ·a 1 j ·a

2 j ≤

2j1

j2 ·ja 1 j < ja

1

j. (8) Using Theorem 1 for the function f1 we have

X

j=2

ja1j 1. (9)

From (8) and (9) we obtain ∞

X

j=2

j(2j1)·cj ≤1. This mean that IA(f1)∗

IA(f2)∈U TC. Similarly, we obtain

Corollary 4 If f1 ∈ T , f2, . . . , fp ∈ T[0,1 j],

p = 2,3, . . ., then IA(f1) ∗

IA(f2)∗ · · · ∗IA(fp)∈U TC. Theorem 7 If f1 ∈T , f2 ∈T[0,1

j], then f

(7)

Proof. Letf1(z) =z− ∞

X

j=2

aj ·zj, aj ≥0, j ≥2,f2(z) =z− ∞

X

j=2

bj ·zj, bj ∈

h

0,1 j

i

, j 2, and (f1∗f2)(z) =z− ∞

X

j=2

cj ·zj, cj =aj ·bj ≥0, j ≥2. From Remark 5 we havef1∗f2 ∈T. In this conditions, from Theorem 2, we obtain that is sufficient to prove that

X

j=2

2·j·cj ≤1. Using f1 ∈T, from Theorem 1 we have

X

j=2

j·aj ≤1. (10)

Using bj ∈

h

0,1 j

i

, j 2, we have

2·j·cj =

2·j·aj ·bj ≤j·aj ·

2

j < j·aj. (11)

From (10) and (11) we obtain ∞

X

j=2

2·j·cj ≤1.This mean thatf1∗f2 ∈

U T∗.Similarly, we obtain

Corollary 5 If f1 ∈T , f2, . . . , fp ∈T[0,1 j],

p= 2,3, . . ., then f1∗f2∗ · · · ∗

fp ∈U T∗.

By using Remark 1 and Theorem 7 we obtain Theorem 8 If f1 ∈T , f2 ∈T[0,1

j], then IA(f

1)∗IA(f2)∈U T∗ and Ia(f1)∗

Ia(f2)∈U T∗.

Corollary 6 If f1 ∈ T , f2, . . . , fp ∈ T[0,1 j],

p = 2,3, . . ., then IA(f1) ∗

IA(f2)∗ · · · ∗IA(fp)∈U T∗ and Ia(f1)∗Ia(f2)∗ · · · ∗Ia(fp)∈U T∗. By using Remark 4 and Theorem 7 we obtain

Theorem 9 If f1 ∈T , f2 ∈T[0,1

j], then

(8)

Corollary 7 If f1 ∈ T , f2, . . . , fp ∈ T[0,1

j], p = 2,3, . . ., then IA(f

1∗f2 ∗

· · · ∗fp)U T∗.

References

[1] M. Acu,Some preserving properties of certain integral opeartors, Gen-eral Mathematics, Vol. 8(2000), no. 3-4, 23-30.

[2] A.W.Goodman,On uniformly Starlike Functions, Journal of Math.Anal. and Appl., 364-370, 155(1991).

[3] A.W.Goodman, On uniformly Convex Functions , Annales Polonici Matematici, LVIII, 86-92, 1991.

[4] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl., 113(1986), 230.

[5] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl., 126(1987), 70.

[6] I.Magda’s, An integral operator which preserve the class of uniformly starlike functions with negative coefficients, Mathematica Cluj, 41(64), 1(1999).

[7] A.K. Misra, Quasi-Hadamard product of analytic functions related to univalent functions, The Mathematics Student, 64(1995), 221.

[8] S. Owa,On the classes of univalent functions with negative coefficients, Math. Japan, 27(4)(1982), 409.

[9] S. Owa, On the Hadamard products of univalent functions, Tamkang J. Math., 14(1)(1983), 15.

[10] G.S.Sˇalˇagean,Geometria Planului Complex, Ed.Promedia Plus, Cluj-Napoca, 1997.

[11] K.G.Sumbramanian, G.Murugudusundaramoorthy, P.Balasubrahman-yam, H.Silvermen, Subclasses of uniformly convex and uniformly starlike functions , Math.Japonica, (3)1996, 517-522.

Author:

Mugur Acu

Department of Mathematics

University ”Lucian Blaga” of Sibiu Sibiu

Romania

Referensi

Dokumen terkait

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Ruang Perpustakaan SDN Batuah Kec.. Hasanuddin Rt.VI Desa

Berdasar hasil diagram analisis SWOT terlihat bahwa posisi pengembangan usahatani “minapadi kolam dalam” pada kelompok binaan berada pada wilayah I yang berarti terdapat peluang

Mendukung penelitian sebelumnya yang dilakukan oleh Nasrul Wathon dan Zulian Yamit(2005) yang menyatakan bahwa variabel perilaku kerja berpengaruh signifikan terhadap

Realisasi KWH PSA P3B Listrik Swasta Pembangkit Transfer APJ Laporan Realisasi Energi Laporan Pengiriman Energi Laporan Realisasi Susut Laporan Konsolidasi Susut Laporan Prediksi

[r]

Dari tabel 3.12 diketahui nilai R-Square yang dihasilkan sebesar 0,425, memiliki arti bahwa kemampuan kepuasan akan gaji, motivasi mencapai target penjualan, usia, serta

Berdasarkan Surat Penetapan Pemenang Pelelangan Pelaksana Pekerjaan Pengadaan Alat Kesehatan Puskesmas, Kegiatan Pengadaan Sarana Kesehatan (DPPID) Dinas

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pengadaan Hand Tractor pada Dinas Pertanian dan Peternakan Kabupaten Tanah Bumbu Nomor : 209.c/PPBJ/HTDD/XI/2011