• Tidak ada hasil yang ditemukan

MINIMUM COVERING SEIDEL ENERGY OF A GRAPH | Kanna | Journal of the Indonesian Mathematical Society 234 625 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "MINIMUM COVERING SEIDEL ENERGY OF A GRAPH | Kanna | Journal of the Indonesian Mathematical Society 234 625 1 PB"

Copied!
12
0
0

Teks penuh

(1)

Vol. 22, No. 1 (2016), pp. 71–82.

MINIMUM COVERING SEIDEL ENERGY OF A GRAPH

M. R. Rajesh Kanna

1

, R. Jagadeesh

2

, Mohammad Reza Farahani

3

1

Post Graduate Department of Mathematics, Maharani’s Science College for Women,

J. L. B. Road, Mysore - 570 005, India mr.rajeshkanna@gmail.com

2

Research Scholar,

Research and Development Centre,

Bharathiar University, Coimbatore 641 046, India. jagadeeshr1978@gmail.com

3

Department of Applied Mathematics,

Iran University of Science and Technology (IUST) Narmak, Tehran, 16844, Iran.

mrfarahani88@gmail.com

Abstract. In this paper we have computed minimum covering Seidel energies of a star graph, complete graph, crown graph, complete bipartite graph and cocktail party graphs. Upper and lower bounds for minimum covering Seidel energies of graphs are also established.

Key words and Phrases: Minimum covering set, Minimum covering Seidel matrix, Minimum covering Seidel eigenvalues, Minimum covering Seidel energy of a graph.

Abstrak. Dalam paper ini kami menghitung energi Seidel selimut minimum dari

graf bintang, graf lengkap, graf mahkota, graf bipartit lengkap dan graf cocktail party. Kami juga memperlihatkan batas atas dan bawah untuk energi Seidel selimut minimum dari suatu graf.

Kata kunci: Himpunan selimut minimum, Matriks Seidel selimut minimum, Nilai eigen Seidel selimut minimum, Energi Seidel selimut minimum dari graf.

1. Introduction

The concept of energy of a graph was introduced by I. Gutman [7] in the year 1978. LetGbe a graph withnvertices andmedges and letA= (aij) be the adjacency matrix of the graph. The eigenvalues λ1, λ2,· · ·, λn of A, assumed in

2000 Mathematics Subject Classification: Primary 05C50, 05C69.˙ Received: 27-12-2015, revised: 20-04-2016, accepted: 21-04-2016.

(2)

M. R. Rajesh Kanna,

non increasing order, are the eigenvalues of the graphG. As A is real symmetric, the eigenvalues of G are real with sum equal to zero. The energy E(G) of G is defined to be the sum of the absolute values of the eigenvalues of G. i.e.,E(G) =

n

X

i=1 |λi|.

For details on the mathematical aspects of the theory of graph energy see the reviews [8], papers [4, 5, 9] and the references cited there in.The basic properties including various upper and lower bounds for energy of a graph have been estab-lished in [14, 15] and it has found remarkable chemical applications in the molecular orbital theory of conjugated molecules [6, 10]. Further studies on covering energy and dominating energy can be found in [1, 12].

2. Seidel Energy

LetGbe a simple graph of order nwith vertex set V ={v1, v2, ..., vn} and edge set E. The Seidel matrix ofGis then×nmatrix defined byS(G) := (sij),

wheresij =

−1 if vivj ∈E 1 if vivj ∈/E 0 if vi=vj

The characteristic polynomial of S(G) is denoted by fn(G, λ)= det(λI − S(G)). The Seidel eigenvalues of the graphG are the eigenvalues ofS(G). Since S(G) is real and symmetric, its eigenvalues are real numbers. The Seidel energy

[11] ofGis defined asSE(G) : = n

X

i=1 |λi|

2.1. Minimum Covering Seidel Energy. LetG be a simple graph of ordern with vertex set V = {v1, v2, ..., vn} and edge set E. A subset C of V is called a covering set ofGif every edge ofGis incident to one vertex inC. Any covering set with minimum cardinality is called a minimum covering set. LetC be a minimum covering set of a graph G. The minimum covering Seidel matrix ofGis then×n matrix defined bySC(G) := (sij),

wheresij =

  

  

−1 if vivj ∈E 1 if vivj ∈/E 1 if i=jandvi∈C 0 if i=jandvi∈/C

The characteristic polynomial of SC(G) is denoted by fn(G, λ)= det(λI − SC(G)). The minimum covering Seidel eigenvalues of the graphGare the eigenval-ues ofSC(G). SinceSC(G) is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order λ1 > λ2 > · · · > λn. The minimum

covering Seidel energy ofGis defined asSEC(G) : = n

X

i=1 |λi|

(3)

Example 1: The possible minimum covering sets for the following graph G[Figure 1]are i)C1={v1, v2, v5} ii)C2={v2, v4, v5}.

s

s

s

s

s

s

v1 v2 v3

v4 v5 v6

Figure - 1 Graph G

i) SC1(G) =

      

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 0 1 −1 1

−1 1 1 0 −1 1

−1 −1 −1 −1 1 −1 1 1 1 1 −1 0

      

Characteristic equation isλ63λ512λ4+ 21λ3+ 49λ28λ12 = 0.

Minimum covering Seidel eigenvalues areλ1≈0.537401577025226,

λ2≈ −0.472833908995256, λ3≈ −2.000000000000006, λ4≈ −2.000000000000006, λ5≈3.000000000000075, λ6≈3.935432331969967.

Minimum covering Seidel energy,SEC1(G)≈11.94566781799054.

ii)SC2(G) =

      

0 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 0 1 −1 1

−1 1 1 1 −1 1

−1 −1 −1 −1 1 −1 1 1 1 1 −1 0

      

Characteristic equation isλ63λ512λ4+ 21λ3+ 45λ216λ16 = 0.

Minimum covering Seidel eigenvalues areλ1≈0.720326520785057,

λ2≈ −0.50038699625876, λ3≈ −1.824896034283096, λ4≈2.707249041791971, λ5≈ −2.195240160148165,λ6≈4.092947628112992

Minimum covering Seidel energy,SEC2(G)≈12.04104638138004.

∴Minimum covering Seidel energy depends on the covering set.

3. Minimum Covering Seidel Energy of Some Standard Graphs

Theorem 3.1. Forn≥2, the minimum covering Seidel energy of complete graph Kn is2(n−2) +

(4)

M. R. Rajesh Kanna,

Proof. Kn is complete graph with vertex set V ={v1, v2, ..., vn}. The minimum covering set isC={v1, v2, v3, ..., vn1}. Then

SC(Kn) =

         

1 −1 −1 . . . −1 −1 −1 −1 1 −1 . . . −1 −1 −1 −1 −1 1 . . . −1 −1 −1

..

. ... ... . .. ... ... ... −1 −1 −1 . . . 1 −1 −1 −1 −1 −1 . . . −1 1 −1 −1 −1 −1 . . . −1 −1 0

         

n×n

Characteristic equation is (−1)n(λ

−2)n2[λ2+ (n3)λ(n1)] = 0.

Minimum covering Seidel Spec(Kn)

=

2 (n−3)+√2n2−2n+5 (n−3)−√2n2−2n+5

n−2 1 1

Minimum covering Seidel energy is,SEC(Kn)

=|2|(n−2) +

(n−3) +√n22n+ 5

2

+

(n−3)−√n22n+ 5

2

=2(n−2) +√n22n+ 5.

Definition 3.2. The Cocktail party graph is denoted byKn×2,is a graph having the

vertex set V = n

[

i=1

{ui, vi} and the edge set E ={uiuj, vivj : i6=j}S{uivj, viuj :

1≤i < j≤n}.

Theorem 3.3. The minimum covering Seidel energy of cocktail party graphKn×2,

(5)

Proof. LetKn×2 be the cocktail party graph with vertex setV =

n

[

i=1

{ui, vi}. The

minimum covering set isC= n1

Minimum covering Seidel energy,SEC(Kn×2)

=|0|(n−1)+|−1|(1)+|4|(n−2)+(2n−7) +

(6)

M. R. Rajesh Kanna,

Minimum covering Seidel energy is,

SEC(K1,n1) =| −1|(n−2) +

Definition 3.5. The Crown graph S0

n for an integern≥2is the graph with vertex

set {u1, u2, ..., un, v1, v2, ..., vn} and edge set {uivj : 1 ≤ i, j ≤ n, i 6= j}. ∴ Sn0

coincides with the complete bipartite graph Kn,n with horizontal edges removed.

Theorem 3.6. Forn≥2, the minimum covering Seidel energy of the crown graph S0

n is equal to n( √

17 + 2)−(√17 + 1).

Proof. For the crown graph S0

n with vertex set V = {u1, u2, ..., un, v1, v2, ..., vn}

Minimum covering Seidel Spec(S0

n) is

Minimum covering Seidel energySEC(Sn) is0

(7)

Theorem 3.7. The minimum covering Seidel energy of the complete bipartite graph imum covering set. Then

SC(Km,n) =

Minimum covering Seidel Spec(Km,n) is 0 −1 (m+n−1)+

Minimum covering Seidel energySEC(Km,n) is

|0|(m−1) +| −1|(n−1) +(

4. Properties of Minimum Covering Seidel Eigenvalues

Theorem 4.1. Let Gbe a simple graph with vertex set V ={v1, v2, ..., vn}, edge

set E andC ={u1, u2, ..., uk} be a minimum covering set. If λ1, λ2, ..., λn are the

eigenvalues of minimum covering Seidel matrixSC(G)then (i)

(8)

M. R. Rajesh Kanna,

(ii)Similarly the sum of squares of the eigenvalues ofSC(G) is trace of [SC(G)]2

n

X

i=1 λ2i =

n

X

i=1

n

X

j=1 aijaji

= n

X

i=1

(aii)2+X

i6=j aijaji

= n

X

i=1

(aii)2+ 2X i<j

(aij)2

=|C|+2hm(−1)2+n

2n

2 −m

(1)2i

=|C|+n2−n.

5. Bounds for Minimum Covering Seidel Energy

Similar to McClelland’s [15] bounds for energy of a graph, bounds forSEC(G) are given in the following theorem.

Theorem 5.1. Let Gbe a simple graph with n vertices and m edges . If C is the minimum covering set andP = |detSC(G)|then

q

(n2n+|C|) +n(n1)P2

n ≤SE

C(G)≤

p

n(n2n+|C|).

Proof.

Cauchy Schwarz inequality is n

X

i=1 aibi

2

≤ n

X

i=1 a2i

Xn

i=1 b2i

If ai= 1, bi =|λi|then

Xn

i=1 |λi|

2

≤ n

X

i=1

1 n

X

i=1 λ2i

By using Theorem 3.1 we have

[SEC(G)]2n(n2n+|C|)

(9)

Since arithmetic mean is not smaller than geometric mean we have

1 n(n−1)

X

i6=j

|λi||λj | ≥

hY

i6=j

|λi||λj|

i

1 n(n−1)

=h n

Y

i=1

|λi |2(n−1)

i

1 n(n−1)

=h n

Y

i=1 |λi |

i2n

=

n

Y

i=1 λi

2

n

=|detSC(G)|2n =P

2

n

∴X

i6=j

|λi||λj | ≥n(n−1)P 2

n (1)

Now consider, [SEC(G)]2= n

X

i=1 |λi|

2

= n

X

i=1

|λi|2+

X

i6=j

|λi||λj|

∴ [SEC(G)]2≥(|C|+n2−n) +n(n−1)P2n [From (4.1)]

i.e., SEC(G)≥

q

(|C|+n2n) +n(n1)P2

n

Theorem 5.2. If λ1(G) is the largest minimum covering Seidel eigen value of SC(G), thenλ1(G)≥

n2n+|C|

n .

Proof. LetX be any nonzero vector .Then by [2] ,We haveλ1(A) = max

X6=0

nX′AX

X′X o

∴λ1(A)≥ J′AJ

J′J =

n2n+|C|

n whereJ is a unit matrix [1,1,1, ...,1]′.

(10)

M. R. Rajesh Kanna,

Theorem 5.3. If Gis a graph with nvertices and medges and(n2n+|C|)n then

SEC(G)≤n

2n+|C|

n +

s

(n−1)h(n2n+|C|)n

2n+|C| n

2i .

Proof.

Cauchy-Schwartz inequality ish n

X

i=2 aibi

i2

≤ n

X

i=2 a2i

Xn

i=2 b2j

Put ai= 1, bi=|λi|then

Xn

i=2 |λi|

2

= n

X

i=2

1 n

X

i=2 λ2i

⇒[SEC(G)−λ1]2≤(n−1)(n2−n+|C| −λ21)

⇒SEC(G)≤λ1+ q

(n−1)(n2n+|C| −λ2 1)

Let f(x) =x+p(n−1)(n2n+|C| −x2)

For decreasing function f′(x)≤0⇒1−p x(n−1)

(n−1)(n2n+|C| −x2) ≤0

⇒x≥

r

n2n+|C| n

Since (n2n+|C|)n,we have r

n2n+|C|

n ≤

n2n+|C|

n ≤λ1

∴f(λ1)≤f

n2−n+|C|

n

i.e., SEC(G)≤f(λ1)≤f

n2−n+|C|

n

i.e., SEC(G)≤fn 2

−n+|C| n

i.e., SEC(G)≤ n

2n+|C|

n +

r

(n−1)hn2n+|C| −n2−n+|C| n

2i

.

Recently Milovanovi´c [16] et al. gave a sharper lower bounds for energy of a graph. In this paper similar bounds for minimum covering Seidel energy of a graph are established

Theorem 5.4. Let G be a graph withn vertices and m edges. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λn| be a non-increasing order of minimum covering Seidel eigenvalues of SC(G)andCis minimum covering set thenSEC(G)≥pn(n2n+|C|)α(n)(|λ

1| − |λn|)2

whereα(n)= n[n

2](1− 1

n[ n

(11)

Proof. Let a, a1, a2, . . .an, Aand b, b1, b2, . . .bn, B be real numbers such thata ≤ following inequality holds.[Theorem 2, [16]]

n

(12)

M. R. Rajesh Kanna,

Theorem 5.6. Let Gbe a graph with a minimum covering set C.If the minimum covering Seidel energySEC(G)is a rational number,thenSEC(G)≡ |C|(mod 2).

Proof. The proof is similar to the theorem 5.4 of [12]

Acknowledgments:The authors thank the referees for their helpful comments and suggestions, which have improved the presentation of this paper. The First author is thankful to the University Grants Commission, Government of India for the financial support under the grant MRP(S)-0535/13-14/KAMY004/UGC-SWRO.

References

[1] Adiga, C., Bayad, A., Gutman, I., and Srinivas, S.A., ”The minimum covering energy of a graph”,Kragujevac J. Sci.,34(2012), 39 - 56.

[2] Bapat, R.B.,Graphs and Matrices, page no. 32, Hindustan Book Agency, 2011.

[3] Bapat R.B., and Pati, S., ”Energy of a graph is never an odd integer”,Bull. Kerala Math. Assoc.1(2011), 129 - 132.

[4] Cvetkovi´c, D., and Gutman, I., (eds.),Applications of Graph Spectra, Mathematical

Institu-tion, Belgrade, 2009.

[5] Cvetkovi´c, D., and Gutman, I., (eds.), Selected Topics on Applications of Graph Spectra,

Mathematical Institute, Belgrade, 2011.

[6] Graovac, A., Gutman, I., and Trinajsti´c, N.,Topological Approach to the Chemistry of

Con-jugated Molecules, Springer, Berlin, 1977.

[7] Gutman, I., ”The energy of a graph”,Ber. Math-Statist. Sekt. Forschungsz.Graz,103(1978), 1-22 .

[8] Gutman, I., Li, X., and Zhang, J.,Graph Energy,ed. by M.Dehmer, F.Emmert - Streib. Analysis of Complex Networks. From Biology to Linguistics, pp. 145 174, Wiley - VCH, Weinheim, 2009.

[9] Gutman, I., The energy of a graph: Old and New Results,ed.by A. Betten, A. Kohnert, R. Laue and A. Wassermann. Algebraic Combinatorics and Applications, pp. 196 - 211, Springer, Berlin, 2001.

[10] Gutman, I., and Polansky, O.E., Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

[11] Haemers, W.H., ”Seidel Switching and Graph Energy”,MATH Commun. Math. Comput. Chem,68(2012), 653-659.

[12] Kanna, M.R.R, Dharmendra, B.N., and Sridhara, G., ”Minimum dominating energy of a graph”,International Journal of Pure and Applied Mathematics, 85:4(2013), 707-718.

[13] Koolen, J.H., and Moulton, V., ”Maximal energy graphs”,Adv.Appl. Math.,26(2001), 47 -52.

[14] Liu, H. , Lu, M., and Tian, F., ”Some upper bounds for the energy of graphs”,Journal of Mathematical Chemistry,41:1(2007).

[15] McClelland, B.J., ”Properties of the latent roots of a matrix: The estimation ofπ-electron

energies”,J. Chem. Phys.,54(1971), 640 - 643.

Gambar

Figure - 1 Graph G

Referensi

Dokumen terkait

[r]

Data yang diperoleh dari penelitian ini adalah data pengaruh perubahan kecepatan pemakanan terhadap kekasaran permukaan dengan dalam pemakanan 0,25(mm), dengan

sedangkan high development countries dan low development countries menunjukkan gejala bahwa indikator kerusakan lingkungan terus meningkat dan belum mencapai titik balik,

[r]

Sehubungan butir 1 (satu) diatas, maka Saudara diundang untuk mengadakan verifikasi Dokumen untuk Pengadaan Pekerjaan Pengadaan Alat Fungsional Kapal Kantor Pangkalan

[r]

Selain itu, hasil penelitian Pradipta dan Purwaningsih (2012) mengindikasikan bahwa investor masih dapat mempertimbangkan informasi tanggung jawab sosial dan lingkungan

Sedangankan Tabel VI, dapat disimpulakn bahwa pengaruh interaksi Z*X 2 terhadap Y hasilnya adalah negatif yang berarti bahwa moderasi dari pengawasan kerja memperlemah