• Tidak ada hasil yang ditemukan

STUDI APLIKASI FLYWHEEL ENERGY STORAGE UNTUK MENINGKATKAN DAN MENJAGA KINERJA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH)

N/A
N/A
Protected

Academic year: 2021

Membagikan "STUDI APLIKASI FLYWHEEL ENERGY STORAGE UNTUK MENINGKATKAN DAN MENJAGA KINERJA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH)"

Copied!
13
0
0

Teks penuh

(1)

STUDI APLIKASI FLYWHEEL ENERGY STORAGE UNTUK MENINGKATKAN DAN MENJAGA KINERJA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH)

Moh. Syaikhu Aminudin, Ir. Sarwono, MM, Ridho Hantoro, ST. MT.

Jurusan Teknik Fisika – Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kampus ITS Keputih Sukolilo, Surabaya 60111

E-mail: syai_f40@yahoo.com ABSTRAK

Akibat kebutuhan akan penggunaan energi yang efisien dan Seiring makin dirasakannya krisis sumber daya energi alat penyimpan energi menjadi kian penting. energi yang berlebih dari pembangkit listrik tenaga air seperti mikrohidro harus disimpan dalam bentuk tertentu atau energi tersebut akan terbuang percuma. Salah satu cara yang dilakukan untuk menyimpan energi yang berlebih kemudian menggunakannya kembali saat diperlukan (power on demand) adalah menggunakan roda gaya (flywheel).Flywheel memiliki kepadatan energi yang tinggi serta dapat menyimpan dan melepaskan energi dengan lebih cepat. Dari studi tugas akhir ini dengan metode pengujian menggunakan miniplant pembangkit listrik tenaga mikrohidro, didapat bahwa sepuluh buah flywheel berbentuk cakram pejal bermassa sama yang diaplikasikan pada shaft turbin miniplant mikrohidro tersebut ternyata energi kinetik rotasi dan torsinya meningkat 0,825 sampai 6,212 joule dan 0,009 sampai 0,045 kg.m2/s2 seiring dengan peningkatan variasi jari-jari 0,055 sampai 0,15 m selama flywheel tersebut berputar dengan kecepatan sudut yang sama.

Kata kunci: Mikrohidro, Flywheel, Energi Kinetik Rotasi, Torsi, Massa, Jari-jari, Kecepatan Sudut.

I. PENDAHULUAN

Seiring makin dirasakannya krisis sumber daya energi maka peran dari sebuah alat penyimpan energi menjadi sangat penting akibat kebutuhan akan penggunaan energi yang efisien. Air merupakan salah satu sumber energi yang sangat potensial yang kita miliki, energi yang berlebih dari suatu pembangkit listrik tenaga air harus disimpan dalam bentuk tertentu atau energi tersebut akan terbuang percuma. Dari sekian banyak media penyimpan energi yang ada salah satu media yang dapat menyimpan energi yang berlebih kemudian menggunakannya kembali saat diperlukan adalah menggunakan flywheel (roda gaya).

Flywheel atau sering juga disebut roda

gaya seperti yang kita ketahui adalah sebuah komponen yang terdapat pada semua kendaraan roda empat, merupakan sebuah piringan yang karena beratnya dapat menahan perubahan kecepatan yang drastis sehingga gerak putaran poros mesin menjadi lebih halus. Yang jarang diketahui adalah Flywheel memiliki kepadatan energi hingga ratusan kali lebih banyak dibandingkan dengan baterai yang ada saat ini serta dapat menyimpan dan melepaskan energi dengan lebih cepat.

Pembangkit listrik tenaga mikrohidro menggunakan tenaga air untuk memutar turbin

kemudian turbin menggerakan generator untuk menghasilkan listrik. Dalam kenyataannya air

yang digunakan sebagai sumber tenaga

mengalami debit yang tidak konstan sehingga mengakibatkan perubahan kecepatan putaran

dan torsi pada turbin, hal ini akan

mempengaruhi kualitas listrik yang dihasilkan oleh generator. Selain itu pemakaian listrik yang melebihi beban secara mendadak dari kemampuan generator juga akan menurunkan putaran dari generator tersebut sehingga bisa mengakibatkan padamnya listrik. Perubahan putaran yang terjadi juga bisa merusak turbin dan juga generator karena mendapat tekanan yang tidak stabil, untuk itu diperlukan suatu alat penyimpan energi pada pembangkit yang akan memberikan tambahan energi jika diperlukan sewaktu untuk mempertahankan putaran turbin maupun generator dan meningkatkan torsinya,

Flywheel dapat memperbaiki kualitas daya

listrik yang dihasilkan sehingga mencegah terjadinya pemadaman listrik (black out) akibat beban puncak tidak dapat dipenuhi.

II. PERUMUSAN MASALAH

Berdasarkan latar belakang diatas maka akan timbul permasalahan yang akan di cari solusinya yaitu:

(2)

• Bagaimana mengetahui kinerja dari sebuah

flywheel?

Bagaimana desain model flywheel dan

mekanisme kinerja penyimpanan energinya yang diaplikasikan pada miniplant pembangkit listrik tenaga mikrohidro (PLTMH)?

• Keuntungan apa yang diperoleh dari aplikasi

flywheel energi storage pada miniplant

PLTMH?

III. BATASAN MASALAH

Untuk mempermudah dalam

pengerjaan tugas akhir ini dan menghindari timbulnya serta melebarnya permasalahan yang tidak diinginkana maka pada tugas akhir ini hanya dibatasi pada:

• Dalam tugas akhir ini hanya mempelajari

tentang flywheel energi storage yang akan diaplikasikan pada sebuah miniplant PLTMH untuk meningkatkan kinerjanya.

Desain dan model flywheel energi storage

mengikuti teori yang telah ada, hanya dilakukan modifikasi pada jari-jari.

Variabel dari desain dan model flywheel

diambil bebas mengikuti miniplant PLTMH.

• Pengukuran dan pengujian flywheel

menggunakan miniplant PLTMH.

• Miniplant PLTMH hanya digunakan sebagai

media aplikasi dan tidak dibahas secara mendalam.

• Data yang akan dianalisa adalah hasil

pengukuran perubahan torsi dan energi yang tersimpan dari flywheel.

IV. TUJUAN

Adapun tujuan dari tugas akhir ini adalah study mempelajari kinerja suatu flywheel

energi storage sehingga bisa diaplikasikan pada

suatu pembangkit listrik tenaga mikrohidro (PLTMH) untuk meningkatkan torsi putaran turbin mikrohidro tersebut dan penyimpanan energinya dalam bentuk energi kinetik rotasi. V. METODOLOGI PENELITIAN

Segala bentuk kegiatan yang dilakukan dalam menyelesaikan dan mencapai tujuan dari tugas akhir ini disusun dalam serangkaian diagram alur metodologi penelitian Tugas Akhir yang dapat ditunjukkan dalam gambar 1.1:

Gambar 1.1 Flowchart penelitian tugas akhir VI. LANDASAN TEORI

Beberapa teori yang dapat menunjang dalam penelitian ini adalah sebagai berikut : 6.1. Penyimpanan Energi Dengan Flywheel / Roda Gaya

Energi yang berlebih dari pembangkit listrik tenaga air harus disimpan dalam bentuk tertentu atau energi tersebut akan terbuang percuma. Salah satu cara yang dilakukan untuk menyimpan energi yang berlebih kemudian menggunakannya kembali saat diperlukan (power on demand) adalah menggunakan

flywheel (roda gaya). flywheel atau sering juga

disebut roda gila seperti yang kita ketahui adalah sebuah komponen yang terdapat pada semua kendaraan roda empat, merupakan sebuah piringan yang karena beratnya dapat menahan perubahan kecepatan yang drastis sehingga gerak putaran poros mesin menjadi lebih halus. Yang jarang diketahui adalah

flywheel memiliki kepadatan energi hingga

ratusan kali lebih banyak dibandingkan dengan baterai yang ada saat ini serta dapat menyimpan dan melepaskan energi dengan lebih cepat.

Gambar 2.1. Flywheel / roda gaya Energi disimpan secara mekanik di

flywheel dengan memutar porosnya sementara

(3)

kimiawi. Flywheel dapat menyimpan energi dengan cara memutarnya pada suatu tempat di mana gesekan yang terjadi relatif kecil. Untuk dapat menyimpan energi yang bermanfaat, poros

flywheel harus berputar sangat cepat. Jika energi

yang tersimpan di flywheel akan digunakan,

sebuah generator dapat mengubah energi

mekanik tersebut menjadi energi listrik. Sistem penyimpanan dengan flywheel beroperasi pada kecepatan sampai 60.000 putaran tiap menitnya.

Berfungsi seperti layaknya baterai,

flywheel dapat diisi (charged) selama waktu

beban listrik rendah dan melepaskan energi tersebut saat beban puncak. Dengan fungsi tersebut, flywheel dapat menghemat biaya energi bagi pemiliknya. Penggunaan flywheel pada perkantoran atau perumahan dapat menghindari keharusan membangun pembangkit listrik baru untuk memenuhi kebutuhan akan energi yang terus meningkat. Sebuah unit flywheel dapat berukuran kecil dan berbobot ringan untuk ditempatkan di lingkungan perumahan. Sebuah unit berkapasitas 50 kilowatt-hour (kWh) yang dapat memberikan daya listrik sebesar 10 kW, suatu daya yang lebih dari cukup untuk sebuah rumah, hanya berukuran sebesar teko air.

Perkembangan teknologi terbaru telah memungkinkan dirancangnya flywheel yang ekonomis, yaitu biaya murah, kontrol elektronik yang ringkas sehingga memperkecil ukuran komponen, serta mengurangi gesekan yang terjadi. Pada penerapannya di daerah komersial dan industri, pemasangan sistem flywheel dilakukan di bawah tanah atau di atas lantai suatu bangunan. Flywheel berumur sepuluh kali lebih lama dibandingkan dengan baterai konvensional.

Tidak menggunakan bahan kimia yang

berbahaya, dapat beroperasi pada suhu

lingkungan yang ekstrem dan mudah dalam perawatan. Umur flywheel dapat mencapai 20 hingga 40 tahun.

6.2. Mekanisme Penyimpanan Energi Pada Flywheel

Flywheel merupakan sebuah benda

dengan berbagai macam bentuk yang berputar terhadap titik pusat massa. Pada umumnya

flywheel berbentuk silinder pejal atau cakram

yang memiliki massa dan jari-jari tertentu.

Mekanisme penyimpanan energinya

menggunakan prinsip gerak rotasi, energi disimpan dalam bentuk energi kinetik rotasi. Besarnya energi yang tersimpan pada flywheel tergantung pada momen inersia dan kecepatannya saat berputar, flywheel akan menyimpan energi saat berputar karena dikenai gaya dalam bentuk

energi kinetik rotasi dan akan melepaskan energi tersebut saat gaya yang mengenainya berkurang atau dihilangkan. Sebuah flywheel bisa berputar sampai puluhan ribu RPM tergantung dari material yang menyusunnya, semakin padat dan keras material suatu flywheel semakin bagus karena dengan volume yang kecil massanya semakin besar dan selain itu juga akan semakin tahan jika diputar dengan kecepatan tinggi.

6.3. Momen Inersia

Momen inersia adalah ukuran

resistansi/ kelembaman sebuah benda terhadap perubahan dalam gerak rotasi.

Berbeda dengan massa benda yang hanya tergantung pada jumlah kandungan zat

didalam benda tersebut, momen inersia

disamping tergantung pada jumlah kandungan zat (masa benda) juga tergantung bagaimana zat-zat atau massa ini terdistribusi. Semakin jauh distribusi massa dari pusat putaran semakin besar momen inersinya.

Momen inersia I suatu benda titik

(partikel) terhadap suatu sumbu putar

didefinisikan sebagai perkalian massa partikel, m dengan kuadrat jarak partikel r dari sumbu putar. 2 2 1 mr I = (2.1)

Dimana I = momen inersia

m = massa partikel

r = jarak partikel dari sumbu putar

Momen inersia dari sistem beberapa partikel dapat dihitung dengan menjumlahkan momen inersia tiap-tiap partikel.

= i i ir m I 2 (2.2)

Momen inersia benda tegar terhadap suatu sumbu putar didefinisikan sebagai jumlah momen inersia setiap partikel dalam benda itu.

2 5 5 2 4 4 2 3 3 2 2 2 2 1 1r m r m r m r m r m I = + + + +

= i i ir m I 2 (2.3)

Karena benda tegar mempunyai struktur kontinu (atom-atom sangat berdekatan sehingga dapat dikatakan saling ber-sambungan) maka rumus jumlah itu boleh diganti dengan rumus integral.

= r dm

I 2 (2.4)

Dengan dm menyatakan elemen kecil dari benda yang terletak pada jarak r dari sumbu puatar.

(4)

6.4. Gaya, Torsi dan Energi Kinetik

Kalau dalam gerak lurus, gerakan benda dipengaruhi oleh gaya, maka dalam gerak rotasi, gerakan benda dipengaruhi oleh torsi. Semakin besar torsi, semakin cepat benda berotasi. Sebaliknya semakin kecil torsi, semakin lambat benda berotasi. misalnya mula-mula benda diam (kecepatan sudut = 0). Jika pada benda itu dikerjakan torsi, benda itu berotasi dengan kecepatan sudut tertentu. Dalam hal ini benda mengalami perubahan kecepatan sudut (dari diam menjadi berotasi).

Perubahan kecepatan sudut = percepatan sudut Semakin besar torsi, semakin besar percepatan sudut. sebaliknya semakin kecil torsi, semakin kecil percepatan sudut. Dengan kata lain, torsi sebanding alias berbanding lurus dengan percepatan sudut. secara matematis, hubungan antara torsi dan percepatan sudut dinyatakan dengan persamaan :

τ

a

keterangan:

a

= percepatan sudut

τ

= momen gaya/torsi

Gambar 2.9. Momen inersia flywheel yang berputar

Gambar melukiskan partikel bermassa m yang diberi gaya F gaya tegak lurus jari-jari menurut hukum Newton benda akan di percepat dengan percepatan searah dengan gaya percepatan. Percepatan ini dinamakan hubungan gaya dan percepatan ini adalah:

ma F = (2.5) mar F = (2.6) rF =

τ

(2.7)

Untuk memperoleh hubungan antara momen gaya

dengan percepatan sudut ) (ar rm rF = a mr2 =

τ

(2.8)

Karena momen inersia partikel adalah : 2 mr I = Ia =

τ

(2.9) Keterangan:

τ

= torsi I = momen inersia

a

= percepatan sudut

Rumus diatas mirip dengan Newton II . Disini torsi berperan seperti gerak translasi dan percepatan sudut berperan sebagai percepatan

pada gerak translasi, bagaimana dengan I? I mempunyai peran seperti massa, semakin besar I semakin besar benda berputar (mirip dengan gerak translasi). Benda bermassa besar sukar digerakkan/dipercepat. kita peroleh rumus energi kinetik partikel ini

2 2 1 mv Ek = (2.10) 2 2 2 1

ω

mr = (2.11) 2 2 1

ω

I Ek = (2.12)

Keterangan: Ek = energi kinetic rotasi

I = momen inersia

ω

= kecepatan sudut

Dalam kasus ini partikel hanya bergerak melingkar saja, sehingga rumus energi diatas adalah rumus energi kinetik untuk gerak rotasi. Satuan energi kinetik rotasi adalah joule. Rumus diatas dapat diperluas untuk suatu benda tegar. Pada waktu benda tegar diputar dengan kecepatan sudut maka seluruh partikel yang menyusun benda itu bergerak dengan kecepatan sudut . Energi kinetic rotasi benda tegar merupakan penjumlahan energi kinetik tiap partikel.

6.5. Pembangkit Listrik Tenaga Mikrohidro

Gambar 2.11. Pembangkit listrik tenaga mikrohidro

Mikrohidro adalah istilah yang

digunakan untuk instalasi pembangkit listrik yang mengunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai sumber daya (resources) penghasil listrik adalah memiliki kapasitas aliran dan ketiggian tertentu dari instalasi. Semakin besar kapasitas aliran maupun ketinggiannya dari istalasi maka semakin besar energi yang bisa dimanfaatkan untuk menghasilkan energi listrik. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan hidro artinya air. Dalam, prakteknya istilah ini tidak merupakan sesuatu yang baku namun bisa dibayangkan bahwa Mikrohidro,

(5)

pasti mengunakan air sebagai sumber energinya. Yang membedakan antara istilah Mikrohidro dengan Minihidro adalah output daya yang dihasilkan. Mikrohidro menghasilkan daya lebih rendah, sekitar 100 W, sedangkan untuk minihidro daya keluarannya berkisar antara 100 sampai 5000 W. Secara teknis, Mikrohidro memiliki tiga komponen utama yaitu air (sumber energi), turbin dan generator. Air yang mengalir

dengan kapasitas tertentu disalurkan clan

ketinggian tertentu menuju rumah instalasi (rumah turbin). Di rumah instalasi air tersebut akan menumbuk turbin dimana turbm' sendin, dipastikan akan menerima energi air tersebut dan mengubahnya menjadi energi mekanik berupa berputamya poros turbin. Poros yang berputar tersebut kemudian ditransmisikan ke generator dengan mengunakan kopling. Darl generator akan dthaslikan energi listrik yang akan masuk ke sistem kontrol arus listrik sebelum dialirkan ke rumah-rumah atau keperluan lainnya (beban). Begitulah secara ringkas proses Mikrohidro merubah energi aliran dan ketinggian air menjadt energi listrik.

VII. FABRIKASI FLYWHEEL 7.1. Fabrikasi Flywheel

Flywheel yang dibuat merupakan piringan cakram dengan massa, jari-jari dan ketebalan tertentu yang disesuaikan dengan ukuran miniplant. Dalam sebuah literature disebutkan bahwa:

“Kinetic energy is roughly equal to mass times velocity squared. So doubling mass doubles energy storage, but doubling the rotational speed quadruples energy storage.”

Hal ini sesuai dengan persamaan 2.1 dan 2.12: 2 2 1

ω

I Ek = 2 2 1 mr I =

Keterangan: Ek = energi kinetik rotasi

I = momen inersia

ω

= kecepatan sudut

I = momen inersia

m = massa partikel

r = jarak partikel dari sumbu

putar

Dari persamaan diatas dapat dilihat bahwa momen inersia tidak hanya sebanding lurus dengan massa tapi juga sebanding dengan kuadrat jari-jari dari flywheel. Maka dari itu,

dalam tugas akhir ini akan dilakukan uji coba dengan membuat beberapa flywheel dengan massa yang tetap tetapi jari-jarinya dibuat bervariasi. Dengan pertimbangan jika massa yang dibuat bervariasi maka massa yang semakin besar akan semakin membebani

putaran dari mikrohidro, termasuk

komponennya seperti shaft dan bearing.

Dengan variasi jari-jari pada flywheel diharapkan sesuai persamaan 2.1 dan 2.12 kinerja flywheel akan semakin baik khususnya dalm hal penyimpanan energi kinetik rotasinya dan diharapkan juga torsi dari mikrohidro akan meningkat.

Untuk membuat beberapa flywheel dengan massa yang sama tetapi jari-jari bervariasi maka dapat dengan menggunakan persamaan volume silinder yaitu:

t r

V =

ρ

.

π

. 2. (3.1)

Keterangan: V = volume silinder

ρ

= massa jenis bahan

r = jari-jari silinder

t = ketebalan silinder

Flywheel yang dibuat memakai bahan

yang terbuat dari besi biasa dengan

pertimbangan besi itu mudah didapat, memiliki kepadatan dan kekerasan yang cukup baik serta mudah dalam proses pembentukan flywheel-nya.

Ukuran flywheel yang dibuat dimulai dengan jari-jari 5,5 cm dan tebal 1,5 cm kemudian untuk variasinya dibuat sebanyak 10 buah flywheel dengan ukuran jari-jari yang terus membesar sebesar 1 cm yaitu:

No flywheel Jari-jari (cm) 1 5.5 2 6.5 3 7.5 4 8.5 5 9.5 6 10.5 7 11.5 8 12.5 9 13.5 10 15

Tabel 3.1 variasi ukuran jari-jari flywheel Dengan menggunakan persamaan 3.1 maka bisa diulis: t r V1 =

ρ

.

π

. 2. =

ρ

(3,14)(5,5cm)2(1,5cm) =

ρ

(3,14)(30,25cm2)(1,5cm) =

ρ

(141,3cm3) = 141,3

ρ

cm2

(6)

Nilai volume yang telah didapat tadi

kemudian dibuat sebagai patokan untuk

menentukan nilai ketebalan flywheel yang lain. Dari table 3.1 untuk flywheel berikutnya flywheel

2 yaitu dengan jari-jari 6 cm maka dengan

memasukkan nilai volume flywheel 1 pada perhitungan sebelumnya didapat nilai ketebalan untuk flywheel 2 adalah:

2 1

V

V

=

141,3

ρ

cm3 =

ρ

.

π

.r2.t 141,3cm3 =

π

.r2.t 141,3cm3 =(3,14)(6,5cm)2t t cm cm (3,14)(42.25 ) 3 , 141 3 = 2 t cm cm (132,665 ) 3 , 141 3 = 2 2 3

665

,

132

3

,

141

cm

cm

t

=

t=1,1cm

Jadi dengan flywheel 1 yang berjari-jari 5,5 cm dan ketebalan 1,5 cm supaya volumenya sama maka flywheel 2 yang berjari-jari 6,5 cm harus memiliki ketebalan 1,1 cm. dengan catatan bahan yang digunakan adalah bahan yang sama, sedangkan untuk nilai massa jenis bahan sengaja tidak dimasukkan dengan pertimbangan massa jenis bahan besi dari literature belum tentu sama persis dengan bahan besi yang digunakan dimana nantinya hal ini akan sangat mempengaruhi hasil perhitungan.

Untuk mencari massa dapat dengan langsung melakukan penimbangan menggunakan timbangan biasa. Dengan perhitungan yang sama maka didapatkan ketebalan dari flywheel yang lainnya yaitu:

No Flywheel Jari-jari(cm) Ketebalan (cm)

1 5.5 1.5 2 6.5 1.1 3 7.5 0.8 4 8.5 0.6 5 9.5 0.5 6 10.5 0.4 7 11.5 0.35 8 12.5 0.3 9 13.5 0.25 10 15 0.2

Tabel 3.2 variasi flywheel dengan massa yang sama

Gambar 3.1. variasi ukuran flywheel Teknik pembuatan flywheel dalam tugas akhir ini yaitu dengan melakukan pembubutan dari besi, tentu saja tidak hanya bisa dilakukan dengan teknik ini saja, tp bisa dilakukan dengan teknik-teknik yang lain jika lebih baik.

7.2. Fabrikasi Miniplant Mikrohidro

Miniplant mikrohidro yang akan

dijadikan sebagai media uji adalah sebuah miniplant dengan perbandingan 2:1, maksudnya miniplant tersebut berukuran setengah kali dari plant yang sebenarnya.

Miniplant mikrohidro ini bertipe

crossflow. pertimbangan ini diambil karena

mikrohidro tipe ini sudah banyak terdapat di indonesia yang salah satunya terdapat di daerah seloliman kabupaten mojokerto, Sebagaimana kami telah mengadakan studi lapangan terlebih dahulu di sana.

Gambar 3.2. desain aplikasi flywheel pada turbin mikrohidro

Karena miniplant mikrohidro ini hanya sebagai media aplikasi saja, jadi tidak akan dibahas secara mendalam dalam penelitian ini seperti yang telah disebutkan pada bab 1 mengenai batasan masalah sebelumnya.

Gambar 3.3. komponen turbin miniplant mikrohidro

(7)

Gambar 3.4. komponen rumah miniplant mikrohidro

Gambar 3.5. miniplant mikrohidro 7.3. Penimbangan Massa flywheel

Untuk mengetahui massa dari masing-masing flywheel yang telah dibuat dapat dilakukan dengan menimbangnya.

Gambar 3.6. penimbangan massa flywheel VIII. UJI PERFORMANSI FLYWHEEL

Uji performansi dari flywheel yang akan dilakukan meliputi pengukuran energi store atau energi sisa dan torsi dari masing-masing flywheel 8.1. pengukuran kecepatan rotasi (RPM)

Pengukuran ini untuk mengetahui berapa kecepatan rotasi dari masing-masing flywheel dengan perubahan terhadap jari-jari. Alat ukur yang dipakai adalah stroboscobe yang merupakan alat ukur kecepatan rotasi permenit.

Gambar 3.8. stroboscobe

Gambar 3.9. pengujian mengukur kecepatan rotasi flywheel pada miniplant mikrohidro

Gambar 3.10. pengukuran kecepatan rotasi

flywheel pada miniplant mikrohidro

Cara kerja stroboscobe yaitu dengan cara menyamakan frekuensi dari kedipan lampu dari stroboscobe terhadap tanda yang ada pada poros mikrohidro. Jika tanda yang ikut berputar tersebut sudah kelihatan seolah-olah berhenti maka frekuensi kedipan lampu dari stroboscobe sudah tepat yang nilainya dapat dilihat pada indikator angka digital.

8.2. Pengukuran Energi Store/Energi Sisa Pengukuran ini untuk mengetahui besarnya energi yang terkandung atau yang

tersimpan dalam flywheel yang dapat

diindikasikan dengan lamanya flywheel untuk berhenti dari kecepatan stabil setelah gaya inputan dihilangkan.

“Semakin lama waktu untuk berhenti semakin baik karena semakin besar energi yang tersimpan”.

8.3. Pengukuran Torsi

“bagaimana pengaruh perubahan jari-jari pada

flywheel terhadap torsi yang dihasilkan”

Perlu diketahui torsi yang dimaksud adalah torsi saat turbin yang diberi flywheel berputar pada kecepatan stabil. Metode yang dilakukan yaitu dengan memberikan beban secara tiba-tiba pada shaft turbin saat sedang berputar. dari situ dapat diketahui percepatan beban yang bergerak mengikuti shaft.

(8)

Gambar 3.11. metode pengukuran torsi flywheel pada miniplant mikrohidro

Dengan menggunakan hukum newton II: 1 2

m

m

m

=

(3.2) 2 2 t S a= (3.3) ma F = (3.4) Fr =

τ

(3.5)

Dimana:

m

= massa beban (kg)

a

= percepatan beban (m/s2)

S = jarak yang beban selama waktu t (cm)

t = waktu yang dibutuhkan beban untuk

menempuh jarak sejauh S (detik)

F = gaya yang menarik beban (kg.cm/s2)

r = jari-jari shaft (cm)

τ

= torsi yang terjadi pada shaft (kg.cm2/s2)

kg

m

1

=

0

.

25

kg m2a =0.5 kg m2b =0.7 m S =0.27 m rpulley =0.0325

Gambar 3.12. pengukuran uji torsi flywheel pada miniplant

XI. ANALISA DATA DAN PEMBAHASAN HASIL UJI PERFORMANSI

9.1. Analisa Hasil Penimbangan massa Flywheel

Setelah dilakukan penimbangan massa dari masing-masing flywheel didapat hasil sebagai berikut:

No Jari-jari Flywheel (m) Massa (kg)

1 0.055 1.08 2 0.065 1.08 3 0.075 1.08 4 0.085 1.11 5 0.095 1.06 6 0.105 1.06 7 0.115 1.13 8 0.125 1.13 9 0.135 1.10 10 0.150 1.11 Rata-rata 1.09

Tabel 4.1 Hasil penimbangan massa flywheel Massa yang diharapkan dari setiap

flywheel itu adalah sama tetapi dari hasil

penimbangan didapatkan massa dari setiap

flywheel berkisar 1.06-1.13 kg. hal ini

diakibatkan karena faktor fabrikasi khususnya pembubutan pada flywheel yang kurang tepat dan presisi yang benar-benar diluar perkiraan sewaktu proses perancangan. Akan tetapi, karena selisih massanya sangat kecil maka semua dianggap sama jadi untuk untuk

perhitungan-perhitungan hasil pengujian

menggunakan massa rata-rata.

9.2. Analisa Hasil Uji Kecepatan Rotasi

Flywheel ini diujikan pada miniplant

mikrohidro yang diletakkan pada shaft-nya turbin. pengujian dilakukan dengan cara setelah sistem dijalankan kemudian dibiarkan beberapa saat sampai berputar pada kecepatan yang stabil baru dilakukan pengukuran. dari hasil uji performansi untuk pengukuran kecepatan rotasi dari masing-masing flywheel pada miniplant mikrohidro didapat hasil sebagai berikut:

No Jari-jari Flywheel (m) Kecepatan Rotasi (RPM) 1 tanpa flywheel 304.25 2 0.055 302.33 3 0.065 304.41 4 0.075 303.59 5 0.085 304.10 6 0.095 303.49 7 0.105 303.44 8 0.115 303.95 9 0.125 303.85 10 0.135 303.95 11 0.150 304.10

Tabel 4.2. Hasil pengukuran kecepatan rotasi

(9)

304.2 5 30 2.33 304.4 1 30 3.59 30 4.1 30 3.49 303.4 4 30 3.95 303.85 30 3.95 30 4.1 301 301.5 302 302.5 303 303.5 304 304.5 305 TF 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) K e c e p a ta n R o ta s i (R P M )

Grafik 4.1. Perubahan kecepatan Rotasi terhadap perubahan jari-jari flywheel dari pengujian

Catatan: - TF adalah singkatan dari ”Tanpa

Flywheel”

Dari pengujian kecepatan rotasi diatas dapat diketahui hasilnya kecepatan rotasi tidak mengalami penurunan yang signifikan, dapat dilihat dari nilai flywheel dengan jari-jari paling kecil sampai flywheel dengan jari-jari paling besar Penurunan dan kenaikan grafik kecepatan rotasinya intervalnya hanya 1,92 RPM hal ini tentulah sangat kecil jika dibandingkan dengan hasil pengukuran yang nilai maksimumnya mencapai 304,25 RPM. Bisa diartiakan bahwa

pengaplikasian flywheel pada miniplant

mikrohidro tidak menimbulakn dampak yang merugikan bagi putaran turbin mikrohidro tersebut. Hasil pengukuran yang diharapkan adalah kecepatan rotasi miniplant mikrohidro yang konstan antara sebelum dan sesudah diberi

flywheel dengan variasi jari-jari yang berbeda.

akan tetapi, Penjelasan kenapa dalam grafik diatas hasilnya naik-turun atau fluktuatif salah satunya adalah dimungkinkan karena fabrikasi atau proses pembuatan yang kurang tepat dan presisi yang benar-benar diluar perkiraan sewaktu

proses perancangan, ataupun bisa juga

disebabkan oleh karakteristik dari miniplant mikrohidro itu sendiri yang tidak dibahas dalam penelitian ini sesuai batasan masalah pada bab 1 pendahuluan.

9.3. Analisa Hasil Uji Energi Kinetik

Jika dikenakan gaya maka flywheel akan menyimpan energi dalam bentuk energi kinetik rotasi dan flywheel tersebut akan melepaskan

energi yang tersimpan saat gaya yang

mengenainya dihilangkan, gaya yang dimaksud adalah gaya dorong debit air pada turbin dari miniplant mikrohidro. Untuk mengetahui energi kinetik rotasi dari flywheel dapat dilakukan melalui perhitungan dengan memakai data yang telah didapat dari pengujian kecepatan rotasi sebelumnya Hasil perhitungan energi kinetik rotasi dari hasil pengujian dengan menggunakan persamaan 2.12. dapat dilihat pada tabel berikut:

No Jari-jari Flywheel (m) Energi kinetik (Joule) 1 0.055 0.825 2 0.065 1.169 3 0.075 1.548 4 0.085 1.995 5 0.095 2.482 6 0.105 3.030 7 0.115 3.647 8 0.125 4.306 9 0.135 5.026 10 0.150 6.212

Tabel 4.3. Hasil perhitungan energi kinetik

terhadap perubahan jari-jari

flywheel dari pengujian

Catatan: Proses perhitungan dapat dilihat pada lampiran 0.825 1.169 1.548 1.995 2.482 3.03 3.647 4.306 5.026 6.212 0 1 2 3 4 5 6 7 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) E n e rg i K in e ti k R o ta s i (j o u le )

Grafik 4.2. Perubahan energi kinetik terhadap perubahan jari-jari flywheel dari pengujian

Dari tabel 4.3. dan grafik 4.2. diatas dapat diketahui bahwa energi kinetik dari pengujian flywheel hasilnya adalah energi kinetik terus berubah semakin besar seiring dengan bertambahnya jari-jari pada flywheel. Hasil pengujian ini akan di bandingkan dengan perhitungan secara teoritis dari persamaan 2.12. dengan mengasumsikan kecepatan rotasi dari

flywheel adalah konstan pada 304,25 RPM

perhitungannya didapat: No Jari-jari Flywheel (m) Energi kinetik (Joule) 1 0.055 0.836 2 0.065 1.168 3 0.075 1.554 4 0.085 1.997 5 0.095 2.494 6 0.105 3.047 7 0.115 3.655 8 0.125 4.318 9 0.135 5.036 10 0.150 5.810

Tabel 4.4. Hasil perhitungan energi kinetik

terhadap perubahan jari-jari

flywheel secara teoritis dengan

(10)

Catatan: Proses perhitungan dapat dilihat pada lampiran 0.836 1.168 1.554 1.997 2.494 3.047 3.655 4.318 5.036 5.81 0 1 2 3 4 5 6 7 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) E n e rg i K in e ti k R o ta s i (j o u le )

Grafik 4.3. Perubahan energi kinetik terhadap perubahan jari-jari flywheel secara teoritis dengan kecepatan konstan Antara grafik 4.2. yang merupakan perhitungan dari hasil pengujian dan grafik 4.3. yang merupakan perhitungan secara teoritis memiliki karakteristik yang sama yaitu energi

kinetiknya sama-sama meningkat seiring

bertambahnya ukuran jari-jari dari flywheel, untuk lebih jelasnya dapat dilihat pada grafik berikut: 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.150 Jari-jari Flywheel (m) E n e rg i K in e ti k R o ta s i D a ri P e n g u ji a n ( jo u le ) 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 E n e rg i K in e ti k R o ta s i S e c a ra T e o ri ti s ( jo u le )

Energi kinetik rotasi dari pengujian Energi Kinetik Rotasi secara teoritis

Grafik 4.4. Perbandingan perubahan energi

kinetik rotasi terhadap perubahan jari-jari flywheel dari pengujian dan perhitungan secara teoritis

Catatan: yang dilihat dalam perbandingan ini adalah perubahan garis grafiknya bukan nilainya.

Dari grafik 4.4. diatas dapat diartikan bahwa putaran turbin dari miniplant mikrohidro yang diberi flywheel kinerjanya menunjukan peningkatan yaitu pada energi kinetik yang disimpan saat berputar. Dengan meningkatnya energi kinetik maka putaran turbin miniplant mikrohidro akan lebih terjaga dari gangguan-gangguan yang menyebabkan gaya putar turbin menurun karena saat gaya putar turbin menurun maka energi kinetik yang tersimpan akan dilepaskan untuk menggantikan penurunan gaya putar tersebut sehingga gaya putar akan tetap terjaga.

9.4. Analisa Hasil Uji Energi Sisa

Seperti dijelaskan pada bab 3, uji energi sisa ini dimaksudkan untuk mengetahui berapa lama energi yang tersimpan dalam flywheel dapat

digunakan oleh turbin miniplant mikrohidro setelah gaya untuk memutar turbin dihentikan. di indikasikan dengan lamanya waktu yang dibutuhkan oleh flywheel untuk berhenti berputar. Hasil pengujiannya dapat dilihat pada table berikut: No Jari-jari Flywheel (m) Lama Waktu Untuk Berhenti (s) 1 tanpa flywheel 1.35 2 0.055 4.25 3 0.065 5.65 4 0.075 7.14 5 0.085 8.39 6 0.095 10.87 7 0.105 13.69 8 0.115 15.39 9 0.125 16.15 10 0.135 17.11 11 0.150 18.09

Tabel 4.5. Lamanya waktu yang dibutuhkan untuk berhenti berputar terhadap perubahan jari-jari flywheel dari pengujian 1.35 4.25 5.65 7.14 8.39 10.87 13.69 15.39 16.15 17.1118.09 0 2 4 6 8 10 12 14 16 18 20 TF 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) W a k tu u n tu k b e rh e n ti ( s )

Grafik 4.5. Perubahan lamanya waktu yang dibutuhkan untuk berhenti berputar

terhadap perubahan jari-jari

flywheel dari pengujian

Dari tabel 4.5. dan grafik 4.5. diatas didapat nilai dari waktu yang dibutuhkan oleh

flywheel untuk berhenti dari berputar semakin

besar seiring semakin besarnya jari-jari. Pada pengujian ini selain dimaksudkan untuk mengetahui berapa lama energi yang tersimpan dalam flywheel dapat digunakan oleh turbin miniplant mikrohidro setelah gaya untuk

memutar turbin dihentikan. Juga untuk

membuktikan bahwa semakin lama waktunya berarti semakin besar energi kinetik rotasinya. Sehingga antara grafik 4.2. dan grafik 4.5. jika diplotkan dalam satu grafik diperoleh:

(11)

1.35 4.25 5.65 7.14 8.39 10.87 13.69 15.39 16.15 17.11 18.09 0.825 1.169 1.548 1.995 2.482 3.03 3.647 4.306 5.026 6.212 0 2 4 6 8 10 12 14 16 18 20 TF 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) W a k tu U n tu k B e rh e n ti ( s ) 0 1 2 3 4 5 6 7 E n e rg i K in e ti k ( jo u le )

Waktu Untuk Berhenti (s) Energi Kinetik (joule)

Grafik 4.6. Perbandingan perubahan energi

kinetik rotasi dan lamanya waktu yang dibutuhkan untuk berhenti terhadap perubahan jari-jari flywheel dari pengujian

Catatan: - TF singkatan dari ”tanpa flywheel” - Yang dilihat dalam perbandingan ini

adalah perubahan garis grafiknya bukan nilainya.

Dari grafik 4.6. diatas dapat dilihat bahwa perbandingan antara perubahan energi

kinetik rotasi dan lamanya waktu yang

dibutuhkan untuk berhenti adalah sama-sama cenderung naik seiring dengan bertambahnya ukuran jari-jari flywheel. Jadi terbukti bahwa semakin lama waktu yang dibutuhkan oleh

flywheel untuk berhenti berarti semakin besar

energi kinetik rotasinya. 9.5. Analisa Hasil Uji Torsi

Pada bab 3 telah dibahas bagaimana metode pengujian torsi yang dilakukan. torsi yang yang dimaksud adalah torsi dari aplikasi flywheel pada miniplant mikrohidro. dimana, karakteristik torsi dari flywheel itu sendiri adalah saat sedang berputar pada kecepatan maksimumnya. Jadi torsi yang diukur tersebut adalah torsi saat sistem dari miniplant mikrohidro yang diberi flywheel sudah berputar. hasil perhitungan dari pengujian tersebut didapatkan hasil sebagai berikut:

No Jari-jari Flywheel (m) Torsi (kg.m 2 /s2) 1 tanpa flywheel 0.009 2 0.055 0.017 3 0.065 0.018 4 0.075 0.019 5 0.085 0.023 6 0.095 0.025 7 0.105 0.027 8 0.115 0.029 9 0.125 0.030 10 0.135 0.034 11 0.150 0.045

Tabel 4.6. Hasil perhitungan torsi terhadap perubahan jari-jari flywheel dari pengujian

Catatan: Proses perhitungan dapat dilihat pada lampiran 0.009 0.017 0.0180.019 0.023 0.025 0.027 0.029 0.03 0.034 0.045 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 TF 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) T o rs i (k g .m 2 /s 2 )

Grafik 4.7. Perubahan torsi terhadap perubahan jari-jari flywheel dari pengujian Dari tabel 4.6. dan grafik 4.7. diatas dapat diketahui bahwa torsi dari pengujian

flywheel pada miniplant mikrohidro hasilnya

adalah torsi terus berubah semakin besar seiring dengan bertambahnya jari-jari pada flywheel.

Hasil diatas akan di bandingkan

dengan perhitungan secara teoritis dari

persamaan 2.9. dengan mengasumsikan

percepatan rotasi dari flywheel adalah konstan

yang nilainya diambil 5 rad/s2. Hasil

perhitungan teoritisnya didapat:

No Jari-jari Flywheel (m) Torsi (kg.m 2 /s2) 1 0.055 0.008 2 0.065 0.012 3 0.075 0.015 4 0.085 0.020 5 0.095 0.025 6 0.105 0.030 7 0.115 0.036 8 0.125 0.043 9 0.135 0.050 10 0.150 0.057

Tabel 4.7. Hasil perhitungan torsi terhadap perubahan jari-jari flywheel secara teoritis dengan percepatan konstan Catatan: Proses perhitungan dapat dilihat pada

lampiran 0.055 0.0650.075 0.0850.095 0.105 0.115 0.1250.135 0.15 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) T o rs i (k g .m 2 /s 2 )

Grafik 4.8. Perubahan torsi terhadap perubahan jari-jari flywheel secara teoritis dengan percepatan konstan

Perbandingan antara grafik 4.7. yang merupakan perhitungan dari pengujian dan grafik 4.8. yang merupakan perhitungan secara

(12)

teoritis memiliki karakteristik yang sama yaitu

torsinya sama-sama meningkat seiring

bertambahnya ukuran jari-jari dari flywheel, untuk lebih jelasnya dapat dilihat pada grafik berikut: 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 TF 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125 0.135 0.15 Jari-jari Flywheel (m) T o rs i H a s il P e n g u ji a n (k g .m 2 /s 2 ) 0.000 0.010 0.020 0.030 0.040 0.050 0.060 T o rs i S e c a ra T e o ri ti s (k g .m 2 /s 2 )

Torsi Hasil Pengujian (kg.m2/s2) Torsi Secara Teoritis (kg.m2/s2)

Grafik 4.9. Perbandingan perubahan torsi dari pengujian dan secara teoritis terhadap perubahan jari-jari flywheel

Catatan: - TF adalah singkatan dari ”tanpa flywheel”

- Yang dilihat dalam perbandingan ini adalah perubahan garis grafiknya bukan nilainya.

Dari grafik 4.9. diatas dapat diartikan bahwa putaran turbin dari miniplant mikrohidro yang

diberi flywheel kinerjanya menunjukan

peningkatan yaitu pada torsi saat berputar. keuntungannya dengan torsi yang besar maka penurunan dan fluktuasi kecepatan rotasi turbin miniplant mikrohidro akibat gangguan akan semakin kecil dan dengan torsi yang besar pula suatu turbin miniplant mikrohidro tidak akan mudah down ketika mendapat beban berlebih. Atau bahkan bisa memutar generator dengan kapasitas yang lebih besar sehingga daya listrik yang dihasilkan juga semakin besar.

X. KESIMPULAN DAN SARAN 10.1 Kesimpulan

Setelah serangkaian penelitian tugas akhir yang telah dilakukan mulai awal sampai akhir, dapat disimpulkan beberapa hal yang sangat bermanfaat bagi perkembangan flywheel

energy storage antara lain yaitu:

Penggunaan flywheel energy storage yang

berbentk cakram/silinder pejal dapat

meningkat energi kinetik rotasi serta torsi putaran turbin dari miniplant mikrohidro.

• Energi kinetik rotasi dan torsi dari turbin

miniplant mikrohidro terus meningkat 0,825 sampai 6,212 joule dan 0,009 sampai 0,045

kg.m2/s2 seiring dengan peningkatan variasi

jari-jari 0,055 sampai 0,15 m selama flywheel tersebut massanya sama dan berputar dengan kecepatan sudut yang sama.

Flywheel energy storage dapat

diaplikasikan pada suatu miniplant

mikrohidro sehingga dapat dipastikan bisa diaplikasikan juga pada pembangkit listrik tenaga mikrohidro (PLTMH) dengan skala yang sebenarnya.

10.2 Saran

Beberapa hal yang dapat disarankan dari hasil penelitian tugas akhir ini untuk kelanjutan pengembangannya ini antara lain:

• Jika memungkinkan, untuk meningkatkan

kinerja flywheel energy storage yang berbentuk cakram/silinder pejal sebaiknya dilakukan modifikasi pada jari-jari karena jika dilakukan modifikasi pada massa dikuwatirkan hal ini dapat menambah beban putaran turbin karena shaft-nya juga harus diperbesar untuk mengimbangi pertambahan beban dari flywheel tersebut sehingga pengaruh koefisien gesek akan lebih besar lagi akibat beban yang bertambah dari flywheel dan juga shaft.

• Dalam fabrikasi atau pembuatan suatu

flywheel harus dilakukan dengan teliti dan

tepat karena jika tidak dapat menimbulkan vibrasi atau gerakan putaran flywheel jadi oleng. Hal ini justru akan membahayakan sistem yang diberi flywheel tersebut.

Untuk pengujian kinerja flywheel energy

storage pada suatu miniplant mikrohidro

sebaiknya debit air dari mikrohidro tersebut dibuat sesuai dengan kondisi

idealnya sehingga pengujian bisa

dilakukan lebih mudah serta hasil

pengujian juga akan lebih baik lagi.

• Untuk pengembangan penelitian

selanjutnya dapat dibuat suatu alat ukur yang berintegrasikan komputer sehingga lebih mudah untuk memonitoring kinerja

dari flywheel energy storage pada

(13)

DAFTAR PUSTAKA

[1] Dosen-dosen Fisika. 2006. “ Fisika I

Kinematika Dinamika Getaran

Panas”. Surabaya: Yanasika.

[2] Sutrisno. 1984. “ Fisika Dasar 2

Mekanika”. Bandung : ITB Bandung.

[3] Tipler, Paul A. 1998. “ Fisika untuk Sains

dan Teknik”, jilid 1. Jakarta:

Erlangga.

[4] Giancoli. 2001. “Fisika”, edisi ke lima, jilid

1. Jakarta: Erlangga

[5] Pasaman Saiyo, Situs Resmi Pemerintah

Kabupaten Pasaman Sumatra Barat

Pembangkit Listrik tenaga

Microhydro, Copyright © 2007 -

2008 Dinas Komunikasi dan

Informatika Kabupaten Pasaman, Sumatera Barat – Indonesia

[6] <URL:http://www.eere.Energy.gov/femp

(federal energy management

program)

[7] <URL:http://en.wikipedia.org/wiki/

flywheel>

[8] <URL:http://en.wikipedia.org/wiki/

flywheel_ energy_ storage>

[9] Jaja Kustija, M.Sc. “FISIKA DASAR I

Modul XII dan XIV Fisika Mekanika

dan Momen Inersia”, Pusat

Pengembangan Bahan Ajar-UMB [10] <URL:http:www.activepower.com>

“Understanding Flywheel Energy Storage: Does High-Speed Really Imply a Better Design?” © ® TM 2008 Active Power, Inc. All rights reserved.

[11] <URL:http://www.hydro.php.htm> PT.

Bekade Prima Energi> [12] <URL:http://en.wikipedia.org/wiki/

energi_alternatif

_dunia_bagian_1_.htm>

BIODATA PENULIS

Nama : Moh. Syaikhu Aminudin

TTL : Mojokerto, 27 Agustus 1986

Alamat : Dsn. Kedung Bendo Ds. Gemekan Kec. Sooko Kab. Mojokerto Prov. Jawa Timur

Mahasiswa S-1 Jurusan Teknik Fisika (NRP: 2405.100.092) Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya

Gambar

Gambar 1.1 Flowchart penelitian tugas akhir  VI.  LANDASAN TEORI
Tabel 3.1 variasi ukuran jari-jari flywheel  Dengan menggunakan persamaan 3.1 maka bisa  diulis:  trV 1 = ρ
Tabel 3.2 variasi  flywheel  dengan  massa  yang  sama
Tabel 4.1 Hasil penimbangan massa flywheel  Massa  yang  diharapkan  dari  setiap  flywheel  itu  adalah  sama  tetapi  dari  hasil  penimbangan  didapatkan  massa  dari  setiap  flywheel  berkisar  1.06-1.13  kg
+5

Referensi

Dokumen terkait

Penelitian ini terbagi menjadi dua, penulis membahas pemanfaatan flywheel magnet sepeda motor dengan 12 rumah belitan sebagai generator pada Pembangkit Listrik Tenaga

Berdasarkan hal tersebut dilakukan simulasi optimasi diameter pipa pesat pada Pembangkit Listrik Tenaga Mikrohidro agar diperoleh daya yang maksimum dengan biaya yang

Pembuatan pembangkit listrik tenaga mikrohidro ini bertujuan untuk mengetahui keluaran tegangan yang dihasilkan dari pemanfaatan kincir tipe overshot pada pemandian umum di

ANALISA KAJIAN SIMULASI PROTOTYPE PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) TURBIN PELTON DITINJAU DARI. POSISI ARAH NOSEL TERHADAP DAYA

Bertitik tolak dari keadaan tersebut maka perlunya diadakan penelitian dan pengembangan tentang pemasangan pembangkit listrik tenaga mikrohidro yang tentunya dengan

Dari hasil penelitian Analisa Potensi Daya Listrik pada Bendungan Colo di Sukoharjo untuk Pembangkit Listrik Tenaga Mikrohidro, didapati rataan debit air pada tahun 2016 53,5

Untuk miniatur pembangkit tenaga listrik mikrohidro (PLTMH) yang penulis tertarik akan cara kerja pembangkit listrik sederhana yang langsung dapat dipergunakan dan

Analisis Potensi Pembangkit Listrik Tenaga Mikrohidro di Sungai Patihan Kabupaten Madiun 178 PENDAHULUAN Menurut [1], topografi yang berbentuk perbukitan dengan adanya beda tinggi