• Tidak ada hasil yang ditemukan

LAPORAN AKHIR PENELITIAN UNGGULAN DANA ITS 2020

N/A
N/A
Protected

Academic year: 2021

Membagikan "LAPORAN AKHIR PENELITIAN UNGGULAN DANA ITS 2020"

Copied!
40
0
0

Teks penuh

(1)

LAPORAN AKHIR

PENELITIAN UNGGULAN

DANA ITS 2020

PENGEMBANGAN MATERIAL KOMPOSIT CaCO

3

/TiO

2

DENGAN

CAMPURAN PEROVSKITE CaTiO

3

UNTUK APLIKASI

FOTOKATALISIS DAN SEL SURYA

Tim Peneliti :

Dr.-Ing. Doty Dewi Risanti (Teknik Fisika/FTIRS)

Lizda Johar Mawarani, ST, MT (Teknik Fisika/FTIRS)

Vania Mitha Pratiwi, ST, MT (Teknik Material & Metalurgi/FTIRS)

Dr. rer. nat. Ruri Agung Wahyuono, ST, MT (Teknik Fisika/FTIRS)

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

(2)

Daftar Isi

Daftar Isi ... i Daftar Tabel ... ii Daftar Gambar ... ii Daftar Lampiran ... ii BAB I RINGKASAN ... 1

BAB II HASIL PENELITIAN ... 2

A. Pengumpulan Data ... 2

B. Hasil Analisis Data ... 3

BAB III STATUS LUARAN ... 8

BAB IV KENDALA PELAKSANAAN PENELITIAN ... 9

BAB V RENCANA TAHAPAN SELANJUTNYA ... 10

BAB VI DAFTAR PUSTAKA ... 11

BAB VII LAMPIRAN ... 12

(3)

Daftar Tabel

Tabel 1. Konstanta laju reaksi (K) dari fotodegradasi BG menggunakan CaTiO3 yang berbeda komposisi.

Tabel 2. Konstanta laju reaksi (K) dari fotodegradasi BG menggunakan CaTiO3 (2:7) berbeda dosis.

Tabel 3. Konstanta laju reaksi (K) dari fotodegradasi BG berbeda konsentrasi menggunakan CaTiO3 (2:7).

Daftar Gambar

Gambar 2.1 SEM CaTiO3 disintesis dengan rasio molar CaCO3/TiO2: (a) (1:1), (b) (1:3), (c) (2:5), dan (d)

(2:7).

Gambar 2.2 Spektrum FTIR CaTiO3 disintesis dengan rasio molar CaCO3/TiO2 yang berbeda.

Gambar 2.3 Pola difrasi sinar-X CaTiO3 disintesis dengan beberapa rasio molar CaCO3/TiO2. Segitiga (▲),

kotak ( ▀) dan lingkaran (☻) berturut turut menunjukkan CaTiO3, CaCO3, dan TiO2.

Gambar 2.4 Perubahan temporal spektrum BG akibat terdegradasi oleh CaTiO3 (a) (1:3) dan (b) (2:7).

Gambar 2.5 Fitting kinetika fotodegradasi dengan (a) pseudo second order dan (b) pseudo first order terhadap 10 ppm BG.

Gambar 2.6 Fitting kinetika fotodegradasi 10 ppm BG dengan (a) Pseudo second order dan (b) pseudo first order model menggunakan CaTiO3 (2:7) dengan dosis berbeda.

Gambar 2.7 Fitting kinetika degradasi beberapa konsentrasi BG dengan (a) Pseudo second order dan (b)

pseudo first order menggunakan 50 mg CaTiO3 (2:7).

Gambar 5.1 Diagram alir pelaksanaan penelitian pengembangan komposit CaCO3/TiO2 dan perovskite

CaTiO3.

Daftar Lampiran

Lampiran 1. Daftar Tabel Luaran

(4)

BAB I RINGKASAN

Besarnya potensi energi surya di Indonesia dengan rerata iradiasi tahuanan sebesar 4.8 kWh/m2/hari

membuat pengembangan nanomaterial untuk teknologi sel surya maupun fotokatalisis sebagai bidang riset yang menjanjikan. Khususnya di Indonesia, pengembangan teknologi sel surya generasi ketiga yaitu dye-sensitized solar cell (DSSC) menjadi alternatif yang menarik karena proses fabrikasinya yang mudah dan murah, dimana semikonduktor berbasis ZnO ataupun TiO2 umumnya

digunakan sebagai material anodanya. Namun demikian, efisiensi konversi DSSC masih lebih rendah dibandingkan sel surya Si karena besarnya laju reaksi rekombinasi. Selain itu, material semikonduktor berbasi TiO2 juga jamak digunakan sebagai katalis untuk proses fotodegradasi

limbah organik. Pada penelitian ini, komposit nano CaCO3/TiO2 dengan ekses perovskite CaTiO3

dikembangkan sebagai material penyusun DSSC (untuk lapisan tipis penghambat rekombinasi) dan fotokatalis untuk proses fotodegradasi limbah pewarna organik. Hasil penelitian tahun pertama berfokus pada karakterisasi fisikokimia nanopartikel CaTiO3 perovskit (ortorombik) sebagai

fotokatalisis dan studi kinetik fotodegradasinya terhadap polutan organik, yaitu brilliant green (BG) yang merupakan pewarna turunan azo. Nanopartikel CaTiO3 disintesis menggunakan CaCO3 dari

cangkang telur ayam dan anatase TiO2 dengan perbandingan molar (1:1), (1:3), (2:5), dan (2:7).

Sifat fisik dan mikro CaTiO3 dikarakterisasi dengan difraktometer sinar-X (XRD), SEM, Fourier

Transform Infrared (FTIR) dan spektrometer UV/vis. Pengaruh konsentrasi pewarna awal, komposisi katalis, dan dosis katalis pada mekanisme adsorpsi pewarna pada CaTiO3 diteliti dalam

fotoreaktor berjaket di bawah iradiasi UV. Analisis menunjukkan bahwa molekul BG diserap secara efisien, seperti yang ditunjukkan oleh kinetik pseudo-first order, dan terdegradasi dalam 120 menit. Mempertimbangkan proses persiapan yang sederhana dan kinerja fotokatalitik yang tinggi, CaTiO3

yang dihasilkan selanjutnya dapat digunakan sebagai fotokatalis yang efisien untuk menghilangkan polutan organik dari air limbah industri dan air. Optimasi properti CaTiO3 selanjutnya akan

dilakukan pada tahun kedua untuk digunakan sebagai material pereduksi rekombinasi di dye-sensitized solar cell.

(5)

Ringkasan penelitian berisi latar belakang penelitian,tujuan dan tahapan metode enelitian, luaran yang ditargetkan, kata kunci

BAB II HASIL PENELITIAN

A. Pengumpulan Data

Pengumpulan Data Serbuk CaTiO3 dibuat dengan sintesis kimia basah, dimana kulit telur ayam

sebagai sumber prekursor dikumpulkan dari lahan peternakan di Samboja, Balikpapan, Indonesia. Karakterisasi fisikokimia dilakukan dengan pemindaian mikroskop elektron (SEM), difraktometer sinar-X (XRD), spektrometer Fourier Transform Infrared (FTIR). Data kinetik dievaluasi menggunakan model adsorpsi pseudo-first order dan pseudo-second order. Paramater Data yang

Diperoleh

Parameter pengumpulan data difraktometer sinar-X dioperasikan pada 40 kV, dan 40 mA dengan Cu-Kα sebagai sumber radiasi. Pola difraksi dipindai antara 10 dan 100° (2θ) dengan resolusi 0,05°. Spektrum FTIR dikumpulkan dalam rentang bilangan gelombang antara 400 dan 4000 cm -1. Citra SEM dikumpulkan pada tegangan akselerasi 100 kV dengan

pembesaran 500x. Fotoreaktor UV diisi dengan 10 ppm larutan hijau cemerlang dan dijalankan dengan pengadukan terus menerus (500 rpm) pada suhu 28oC.

Deskripsi Data yang dianalisis

Data Morfologi CaTiO3 diperoleh menggunakan SEM (FEI Inspect 21).

Pola XRD dikumpulkan menggunakan difraktometer (PAN analitis tipe X'Pert Pro). Spektrum FTIR direkam menggunakan spektrometer Thermo Nicolet IS50 pada suhu kamar. Degradasi pewarna BG diuji di bawah fotoreaktor UV menggunakan simulasi radiasi UV (T5-UV7W, 254 nm). Spektrum serapan UV/vis untuk menyelidiki degradasi zat warna hijau cemerlang diukur menggunakan spektrometer UV/vis (Rayleigh UV-9200). Nanomaterial CaTiO3 yang diselidiki di sini menghasilkan fotokatalis berbasis perovskit yang telah terbukti

fungsinya untuk degradasi fotokatalitik turunan pewarna AZO, yaitu brilliant green (BG).

• Data kinetika degradasi larutan BG berguna untuk studi lain yang relevan dengan degradasi pewarna azo secara fotokatalitik menggunakan katalis lain, yang tidak terbatas pada CaTiO3, CaCO3, TiO2

murni atau material komposit.

• Data degradasi fotokatalitik menunjukkan bahwa bahan CaTiO3 yang disintesis pada penelitian ini

dapat digunakan sebagai fotokatalis untuk pengolahan air limbah di industri tekstil, industri pengolahan makanan, dan untuk pengolahan air di perusahaan air minum.

• Data fisikokimia sebagai evaluasi rute sintesis mengindikasikan bahwa strategi sintesis pada penelitian ini tidak dapat menghasilkan 100% CaTiO3. Oleh karena itu, optimalisasi komposisi

prekursor dan mekanokimia serta pasca perlakuan panas akan menjadi fokus penelitian selanjutnya. • Pembuatan nanomaterial CaTiO

(6)

B. Hasil Analisis Data

Karakteristik fisikokimia berbagai CaTiO3 dievaluasi dari SEM, pola difraksi sinar-X, dan spektrum

FTIR. Morfologi permukaan dari CaTiO3 yang disintesis menggunakan rasio molar CaCO3/TiO2 yang

berbeda digambarkan pada Gambar 2.1. Fraksi TiO2 yang lebih tinggi memecah agregasi yang terbentuk di

CaTiO3 yang dibuat menggunakan fraksi besar CaCO3 karena energi permukaan TiO2 yang lebih tinggi (1,4

× 107 erg / cm2) dibandingkan dengan CaCO

3 (1,7 × 104 erg/cm2) [1,2]. Karakteristik vibrasi elektronik dan

sifat mikrostruktur masing-masing ditunjukkan oleh spektra FTIR (Gbr. 2.2) dan pola difraksi sinar-X (Gbr. 2.3). Absorpsi IR pada ~ 3630 cm-1 dan ~ 1440 cm-1 dikaitkan dengan karakteristik vibrasi dari gugus

hidroksi (OH) dan vibrasi simetris serta asimetris antara oksida logam [3]. Selain itu, penurunan amplitudo sinyal pada ~ 1150 cm-1 yang terkait dengan vibrasi gugus C-O-Ti setelah peningkatan fraksi mol TiO

2

mungkin menunjukkan interkonversi yang lebih efisien ke dalam Ca-O-Ti yang diindikasikan oleh penyerapan yang lebih tinggi pada ~ 660 cm-1 [4] . Pola XRD menunjukkan pembentukan ortorombik CaTiO

3

dengan adanya kelebihan prekursor yaitu CaCO3 dan TiO2. Puncak difraksi pada 2θ dari 23.2o, 33.1o, 47.5o,

58.8o, dan 59.3o masing-masing menunjukkan bidang kristal (101), (121), (202), (321), dan (123) [5].

Peningkatan perbandingan fraksi TiO2 dari rasio molar CaCO3/TiO2 pada pembuatan nanopartikel CaTiO3

meningkatkan ukuran kristal yaitu 17,7, 22,9, 34,6, dan 37,2 nm berturut-turut untuk (1: 1), (1: 3), (2: 5 ), dan (2: 7). Hal ini menunjukkan bahwa luas permukaan spesifik berkurang dengan meningkatnya fraksi molar TiO2.

Gambar 2.1 SEM CaTiO3 disintesis dengan rasio molar CaCO3/TiO2: (a) (1:1), (b) (1:3), (c) (2:5), dan (d)

(7)

Gambar 2.2 Spektrum FTIR CaTiO3 disintesis dengan rasio molar CaCO3/TiO2 yang berbeda.

(8)

fitting pseudo first order, plot ln(C0/ Ct) vs t (C0 dan Ct masing-masing menunjukkan konsentrasi pada

kondisi awal dan waktu t) menghasilkan kurva linier, di mana kemiringan sama dengan konstanta laju yang diamati (K1) [6]. Sedangkan, pseudo second order fit, off-set plot linier t/qe vs t, dimana qe adalah konsentrasi

pada kondisi kesetimbangan, menghasilkan konstanta laju (K2) [6]. Konstanta laju degradasi fotokatalitik

dengan memvariasikan komposisi katalis, dosis katalis dan konsentrasi polutan dirangkum pada Tabel 1 - Tabel 3. Hasil analisis menunjukkan bahwa peningkatan fraksi TiO2 pada komposisi prekursor yaitu rasio

molar CaCO3 / TiO2 mengubah daya serap dari perilaku dari fisisorpsi (mengikuti reaksi orde dua, R2> 0,9)

ke kemisorpsi (mengikuti reaksi orde pertama, R2> 0,9). Selain itu, peningkatan jumlah katalis CaTiO 3

berimplikasi pada peningkatan molekul BG yang terserap dan reaksi katalitik yang lebih cepat. Meskipun laju degradasi lebih lambat dari hasil penelitian lain yang juga menggunakan CaTiO3 [7-9], laju

fotodegradasi molekul BG menggunakan CaTiO3 dalam penelitian ini (0,0185 ppm⸱min-1) sebanding dengan

laju fotodegradasi pencemar pewarna organik lainnya menggunakan larutan CaTiO3 (0,162 ppm⸱min-1) [8]

dan CaTiO3 yang disiapkan secara hidrotermal (0,05 ppm⸱min-1) [9].

(9)

Tabel 1. Konstanta laju reaksi (K) dari fotodegradasi BG menggunakan CaTiO3 yang berbeda komposisi.

CaCO3/TiO2 Molar Ratio K1 (min-1) R2 K2 (min-1) R2

(1:1) 0.0014 0.5153 0.1301 0.9718

(1:3) 0.0023 0.6834 0.1403 0.9771

(2:5) 0.0176 0.9687 0.7022 0.9322

(2:7) 0.0183 0.9818 0.8185 0.9063

Gambar 2.6 Fitting kinetika fotodegradasi 10 ppm BG dengan (a) Pseudo second order dan (b) pseudo first order model menggunakan CaTiO3 (2:7) dengan dosis berbeda.

Tabel 2. Konstanta laju reaksi (K) dari fotodegradasi BG menggunakan CaTiO3 (2:7) berbeda dosis.

CaTiO3(2:7) (mg) K1 (min-1) R2 K2 (min-1) R2

50 0.0185 0.9502 0.8185 0.9061

100 0.0183 0.9818 0.8032 0.9198

150 0.0178 0.9518 0.8491 0.9247

(10)

Tabel 3. Konstanta laju reaksi (K) dari fotodegradasi BG berbeda konsentrasi menggunakan CaTiO3 (2:7). BG (ppm) K1 (min-1) R2 K2 (min-1) R2 10 0.0183 0.9818 0.8185 0.9061 20 0.0113 0.9696 0.3971 0.8588 30 0.0094 0.9664 0.2984 0.9185 40 0.0076 0.9571 0.2363 0.9394

(11)

BAB III STATUS LUARAN

Pada usulan penelitian unggulan, luaran yang diharapkan dari penelitain ini adalah sebagai berikut. 1. Diperoleh komposisi campuran komposit CaCO3/TiO2 dan perovskite CaTiO3 yang optimal untuk

dijadikan material penghambat rekombinasi pada sel surya serta untuk aplikasi fotokatalisis pendegradasi pewarna organik.

2. Publikasi hasil penelitian pada seminar internasional dan jurnal internasional terindeks scopus (Q1). Berdasarkan hasil pelaksanaan penelitian pada tahun pertama adalah sebagai berikut:

1. Publikasi hasil penelitian di:

a. Seminar internasional: Borneo 3rd International Conference On Aplied Mathematics And

Engineering (BICAME) 2020 (terlampir)

(12)

BAB IV KENDALA PELAKSANAAN PENELITIAN

Kendala pelaksanaan penelitian antara lain:

Sulitnya diperoleh rasio molar yang tepat antara CaCO3 dan TiO2 menggunakan metode sintesis kimia

basah hingga diperoleh CaTiO3 murni.

Tertundanya dan terhambatnya kelancaran proses pengujian beberapa karakteristik material seperti karakteristik fisika dan juga pengujian menggunakan mikroskop elektron dikarenakan situasi pandemi COVID-19.

(13)

BAB V RENCANA TAHAPAN SELANJUTNYA

Sesuai dengan rencana pelaksanaan penelitian yang telah diusulkan (Gbr. 5.1), maka pada tahapan selanjutnya adalah dilakukan optimasi karakteristik optik dan fisikokimia dari CaTiO3 yang akan digunakan

dalam aplikasi sel surya. Adapun sel surya yang dikembangkan adalah jenis dye-sensitized solar cell dimana CaTiO3 akan digunakan sebagai lapisan pemblokir reaksi rekombinasi untuk meningkatkan efisiensi sel surya.

Gambar 5.1 Diagram alir pelaksanaan penelitian pengembangan komposit CaCO3/TiO2 dan perovskite

(14)

BAB VI DAFTAR PUSTAKA

[1] W. Dong, G. Zhao, Q. Bao, X. Gu, Effect of morphologies on the photocatalytic properties of CaTiO3

nano/microstructures, J. Ceramic. Soc. Japan 124 (2016) 475-479. http://dx.doi.org/10.2109/jcersj2.15272

[2] W. Dong, B. Song, W. Meng, G. Zhao, G. Han, A simple solvothermal process to synthesize CaTiO3

microspheres and its photocatalytic properties, Appl. Surf. Sci. 349 (2015) 272-278. https://doi.org/10.1016/j.apsusc.2015.05.006

[3] D. Croker, M. Loan, B. K. Hodnett, Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species, Cryst. Growth Des. 9 (2009) 2207-2213. https://doi.org/10.1021/cg8009223 [4] M. M. Rusu, R. A. Wahyuono, C. I. Fort, A. Dellith, J. Dellith, A. Ignaszak, A. Vulpoi, V. Danciu, B.

Dietzek, L. Baia, Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye-sensitized solar cells, J. Sol-Gel. Sci. Technol. 81 (2017) 693-703. https://doi.org/10.1007/s10971-016-4237-3

[5] C. Han, J. Liu, W. Yang, Q. Wu, H. Yang, X. Xue, Photocatalytic activity of CaTiO3 synthesized by

solid state, sol-gel and hydrothermal methods, J. Sol-Gel. Sci. Technol. 81 (2017) 806-813. https://doi.org/10.1007/s10971-016-4261-3

[6] L. Ernawati, R. A. Wahyuono, I. K. Maharsih, N. Widiastuti, H. Widiyandari, Mesoporous WO3/TiO2

Nanocomposites Photocatalyst for Rapid Degradation of Methylene Blue in Aqueous Medium, Int. J. Eng. TRANSACTION A: Basics 32 (2019) 1345–1352. https://doi.org/ 10.5829/ije.2019.32.10a.02. [7] M. L. Moreira, E. C. Paris, G. S. Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B,

Bernardi J. Andrés, J. A. Varela, E. Longo, Structural and optical properties of CaTiO3

perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight, Acta Mater. 57 (2009) 5174-5185. https://doi.org/10.1016/j.actamat.2009.07.019 [8] Y. S. Huo, H. Yang, T. Xian, J. L. Jiang, Z. Q. Wei, R. S. Li, W. J. Feng, A polyacrylamide gel route

to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation, J.

Sol-Gel Sci. Technol. 71 (2014) 254–259. https://doi.org/10.1007/s10971-014-3366-9

[9] H. Yang., C. Han, X. Xue, Photocatalytic activity of Fe-doped CaTiO3 under UV-visible light, J.

Environ. Sci. 26 (2014) 1489-1495. https://doi.org/10.1016/j.jes.2014.05.015

[10] M. C. Fajrah, N. Marfuah, Identification of Calcium Carbonate (CaCO3) Characteristics from Different

Kinds of Poultry Eggshells Using X-Ray Diffraction (XRD) and Fourier Transformation Infra-Red (FTIR), Proceeding of the 7th International Conference on Physics and its Applications (2014) 138-142. https://doi.org/10.2991/icopia-14.2015.27

[11] L. Ernawati, R. A. Wahyuono, I. K. Maharsih, A. W. Yusariarta, A. D. Laksono, C. W. Kartikowati, A. B. D. Nandiyanto, Photodegradation of Textile Dye (Rhodamine B) Using CaTiO3 Composite-Based Adsorbent, J. Teknik Kimia 14 (2020) 32-39. https://doi.org/10.1007/s10971-016-4237-3

(15)

BAB VII LAMPIRAN

LAMPIRAN 1 Tabel Daftar Luaran

Program : Penelitian Unggulan

Nama Ketua Tim : Dr.-Ing. Doty Dewi Risanti, ST, MT

Judul : Pengembangan Material Komposit CaCO3/TiO2 dengan

Campuran Perovskite CaTiO3 untuk Aplikasi Sel Surya dan

Fotokatalisis 1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*) 1 Experimental Data of CaTiO3

Photocatalyst for Degradation of Organic Pollutants (Brilliant Green Dye) – Green Synthesis,

Characterization and Kinetic Study

Data in Brief published

*) Status kemajuan: Persiapan, submitted, under review, accepted, published 2. Artikel Konferensi

No Judul Artikel Nama Konferensi (Nama Penyelenggara, Tempat,

Tanggal)

Status Kemajuan*)

1 Kinetic Studies of Methylene Blue Degradation using CaTiO3

Photocatalyst from Chicken Eggshells

BICAME 2020 presented

*) Status kemajuan: Persiapan, submitted, under review, accepted, presented 3. Paten

No Judul Usulan Paten Status Kemajuan

*) Status kemajuan: Persiapan, submitted, under review 4. Buku

(16)

5. Hasil Lain

No Nama Output Detail Output Status Kemajuan*) *) Status kemajuan: cantumkan status kemajuan sesuai kondisi saat ini

6. Disertasi/Tesis/Tugas Akhir/PKM yang dihasilkan

No Nama Mahasiswa NRP Judul Status*) *) Status kemajuan: cantumkan lulus dan tahun kelulusan atau in progress

(17)

Data in Brief 32 (2020) 106099 ContentslistsavailableatScienceDirect

Data in Brief

journalhomepage:www.elsevier.com/locate/dib

Data Article

Experimental

data

of

CaTiO

3

photocatalyst

for

degradation

of

organic

pollutants

(Brilliant

green

dye)

– Green

synthesis,

characterization

and

kinetic

study

Lusi Ernawatia,∗, Ruri Agung Wahyuonob,∗,Hendri Widiyandaric,

Doty Dewi Risantib, Ade Wahyu Yusariartad, Rebekaa,

Virginia Sitompula

a Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia b Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia c Department of Physics, Universitas Sebelas Maret, Surakarta 57126, Indonesia

d Department of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan, Balikpapan 76127,

Indonesia a rt i c l e i n f o Article history: Received 28 April 2020 Revised 17 July 2020 Accepted 23 July 2020 Available online 31 July 2020

Keywords: Perovskite Calcium titanate Chicken eggshells Anatase TiO 2 UV photoreactor Kinetics a b s t r a c t

The data presented here focuses on the physicochemi-cal characterization ofperovskite CaTiO3 nanoparticles

(or-thorhombic)as photocatalytsandthe kineticstudyoftheir photodegradationperformance towardorganicpollutant,i.e. brilliantgreen(BG)whichisazoderivativesdye.TheCaTiO3

nanoparticleswassynthesizedusingchickeneggshell-derived CaCO3 and anatase TiO2 with molar ratio of (1:1), (1:3),

(2:5), and (2:7). The physical and microstructural proper-ties of CaTiO3 were characterized by X-ray diffractometer

(XRD), scanning electronmicroscope (SEM), Fourier Trans-form Infrared (FTIR) and UV/vis spectrometer. The effect ofinitialdyeconcentration, catalystcomposition,and cata-lystdosage ontheadsorption mechanismofdyeonCaTiO3

was investigated injacketed photoreactor under UV irradi-ation.Theanalysis revealsthat BGmoleculesareefficiently

(18)

2 L. Ernawati, R.A. Wahyuono and H. Widiyandari et al. / Data in Brief 32 (2020) 106099

tantCaTiO3canfurtherbeusedasanefficientphotocatalyst

for organic pollutant removal from aqueous and industrial wastewater.

© 2020 The Authors. Published by Elsevier Inc. ThisisanopenaccessarticleundertheCCBYlicense. (http://creativecommons.org/licenses/by/4.0/)

SpecificationsTable

Subject Materials Chemistry Specific subject area Photocatalysis Type of data Table, Image, Graph

How data were acquired CaTiO 3 powder was prepared using wet chemical synthesis, in which chicken eggshells as precursor source were collected from the farm field in Samboja, Balikpapan, Indonesia. Physicochemical characterizations were carried out by scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier Transform Infrared (FTIR) spectrometer. The kinetic data was fitted using both

pseudo first order and pseudo second order adsorption model. Data format Raw and Analyzed

Parameters for data collection X-ray diffractometer was operated at 40 kV, and 40 mA with Cu-K αas a radiation source. Diffraction patterns were scanned between 10 and 100 ° (2 θ) with resolutions of 0.05 ° FTIR spectra were collected in wavenumber range between 400 and 4000 cm −1 . SEM images were collected at 100 kV accelerating voltage with 500 × magnification. UV photoreactor was filled with 10 ppm of brilliant green solution and run under continuous stirring (500 rpm) at 28 °C.

Description of data collection Morphology of CaTiO 3 was assessed using SEM (FEI Inspect 21). XRD patterns were collected using a diffractometer (PAN analytical type X’Pert Pro). FTIR spectra were recorded using Thermo Nicole is50 spectrometer at room temperature. Degradation of aqueous brilliant green (BG) dyes was probed under UV photoreactor using simulated UV irradiation (T5-UV7W, 254 nm). UV/vis absorption spectra to probe degradation of brilliant green dye were measured using UV/vis spectrometer (Rayleigh UV-9200).

Data source location Department of Chemical Engineering, Institut Teknologi Kalimantan, Balikpapan, East Kalimantan, Indonesia

( −1.135330, 116.858093)

Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia

( −7.283395, 112.795727)

Central Laboratory, State University Malang, East Java, Indonesia ( −7.961229, 112.618759)

Data accessibility Data are available within the article

(19)

L. Ernawati, R.A. Wahyuono and H. Widiyandari et al. / Data in Brief 32 (2020) 106099 3

Table 1

Reaction rate constants (K) derived from both pseudo first order (K 1 ) and pseudo second order (K 2 ) as well as the corresponding coefficient of determination (R 2 ) obtained for photodegradation of BG using different CaTiO

3 com position. CaCO 3 /TiO 2 Molar Ratio K1 (min −1 ) R 2 K2 (min −1 ) R 2

(1:1) 0.0014 0.5153 0.1301 0.9718 (1:3) 0.0023 0.6834 0.1403 0.9771 (2:5) 0.0176 0.9687 0.7022 0.9322 (2:7) 0.0183 0.9818 0.8185 0.9063

• Thephysicochemicaldatahighlightsthecurrentsynthesisroutecouldnotyield100%CaTiO3

andhence,optimizationofprecursorcompositionandmechanochemicalaswellaspostheat treatmentwillbethefocusoffurtherresearch.

• ThepreparationofCaTiO3 nanomaterialinvestigatedhereisconsideredlow costandgreen

sincethewetchemicalsyntheticroutedidn’trequiresophisticatedapparatuswhilethe pre-cursoremployedchickeneggshells(wasteorby-productoffarmingactivities).

1. DataDescription

PhysicochemicalcharacteristicsofvariousCaTiO3areevaluatedfromtherawdata,including

scanningelectronmicrograph,X-raydiffractionpatternandFTIRspectra(availableinthe Supple-mentaryMaterial). The surfacemorphology ofdifferentnanostructuredCaTiO3 preparedusing

differentCaCO3/TiO2 molarratioare depictedinFig.1.Higher TiO2 fractionbreaks the

aggre-gationformedinCaTiO3preparedusinglargefractionofCaCO3 duetohighersurfaceenergyof

TiO2 (1.4× 107erg/cm2)thanthatofCaCO3 (1.7× 104erg/cm2)[1,2].Electronicvibrational

char-acteristicsandmicrostructuralpropertiesareindicatedbyFTIRspectra(Fig.2)andX-ray diffrac-tionpattern(Fig.3),respectively.ThedecreasingIRbandsat∼3630cm−1and∼1440cm−1are associatedwiththevibrationcharacteristicsofthehydroxy(OH) groupandsymmetricaswell asasymmetricvibrationbetweenmetaloxides,respectively[3].Inaddition,thedecreasing sig-nalamplitudeat∼1150cm−1 associatedwithC–O-TigroupvibrationuponincreasingTiO2 mol

fractionmight indicate themore efficientinterconversion intoCa-O-Ti reflected by higher ab-sorptionat∼660cm−1[4].XRDpatternsindicatetheformationorthorhombicCaTiO3 withthe

presence ofexcessprecursors, i.e.CaCO3 andTiO2.The diffractionpeaksat2θ of 23.2°,33.1°,

47.5°,58.8°,and59.3° areassignedtothecrystalplanesof(101),(121),(202),(321),and(123), respectively[5].IncreasingtheTiO2fractionfromCaCO3/TiO2 molarratiointhepreparationof

CaTiO3 nanoparticlesinreasesthecrystallitesize,i.e.17.7,22.9,34,6,and37.2nmfor(1:1),(1:3),

(2:5),and(2:7),respectively.Thisimpliesthatthespecificsurfaceareadecreasesupon increas-ingTiO2molarfraction.

Havingcharacterizedthephysicochemicalproperties,thephotocatalyticdegradationof aque-ous BG dyes using the resulting CaTiO3 catalyst were investigated by probing the temporal

changeofUV/visabsorptionspectra(Fig.4,representative/selectedrawdataisavailableinthe Supplementary Material).Kineticofdegradationmechanismtounderstandtheadsorption pro-cess of dye molecules toward catalyst surface is evaluated using both pseudo first order and

(20)

4 L. Ernaw a ti, R.A . W a h y uono and H. Wi d iy a nd a ri et al. / Dat a in Brief

(21)

L. Ernawati, R.A. Wahyuono and H. Widiyandari et al. / Data in Brief 32 (2020) 106099 5

Fig. 2. FTIR spectra of CaTiO 3 prepared with different CaCO 3 /TiO 2 molar ratio.

Table 2

Reaction rate constants (K) derived from both pseudo first order (K 1 ) and pseudo second order (K 2 ) as well as the corresponding coefficient of determination (R 2 ) obtained for photodegradation of BG using different amount of CaTiO

3 (2:7).

CaTiO 3 (2:7) Dosage (mg) K1 (min −1 ) R 2 K2 (min −1 ) R 2

50 0.0185 0.9502 0.8185 0.9061 100 0.0183 0.9818 0.8032 0.9198 150 0.0178 0.9518 0.8491 0.9247 200 0.0176 0.9626 0.9802 0.95153

Table 3

Reaction rate constants (K) derived from both pseudo first order (K 1 ) and pseudo second order (K 2 ) as well as the corresponding coefficient of determination (R 2 ) obtained for photodegradation of various BG concentration using 50 mg of CaTiO 3 (2:7).

BG Concentration (ppm) K1 (min −1 ) R 2 K2 (min −1 ) R 2

10 0.0183 0.9818 0.8185 0.9061 20 0.0113 0.9696 0.3971 0.8588 30 0.0094 0.9664 0.2984 0.9185 40 0.0076 0.9571 0.2363 0.9394

BGmoleculesandfastercatalyticreaction.Eventhoughthedegradationrateisslowerthanthe highestreportedinliteratureusingCaTiO3[7–9],thephotodegradationrateofBGmolecules

(22)

6 L. Ernawati, R.A. Wahyuono and H. Widiyandari et al. / Data in Brief 32 (2020) 106099

Fig. 3. X-ray diffraction pattern of CaTiO 3 prepared using different CaCO 3 /TiO 2 molar ratio. Triangle (  ), square ( ▀) and circle ( ☻ ) denote CaTiO 3 , CaCO 3 , and TiO 2 , respectively.

thedriedeggshellswere groundedfor30minintofine particles.The finepowderwastreated with0.1MHClfor1h andthenwashed withdistilledwaterpriorheattreatmentat100°Cfor 3h.Theheat-treatedsampleswerethen sieved(300mesh)toyield finedCaCO3 nanoparticles

(upto86.6%).TheinitialstepforCaTiO3 synthesiswastoprepareamixtureofCaCO3 andTiO2

indifferentCaCO3/TiO2molarratioof(1:1),(1:3),(2:5),and(2:7),whichwasdissolvedin100ml

(23)

L. Ernaw a ti, R.A . W a h y uono and H. Wi d iy a nd a ri et al. / Dat a in Brief 32 (2020)

(24)

8 L. Ernaw a ti, R.A . W a h y uono and H. Wi d iy a nd a ri et al. / Dat a in Brief

(25)

L. Ernaw a ti, R.A . W a h y uono and H. Wi d iy a nd a ri et al. / Dat a in Brief 32 (2020)

(26)

10 L. Ernaw a ti, R.A . W a h y uono and H. Wi d iy a nd a ri et al. / Dat a in Brief

(27)

L. Ernawati, R.A. Wahyuono and H. Widiyandari et al. / Data in Brief 32 (2020) 106099 11

through the absorption change(300nm < λ < 800nm)measured using UV/vis spectrometer. ThedecreaseofBGopticaldensitywasusedtodeterminethedecreasingBGconcentrationdue tothecatalyticactivityofCaTiO3,whichwaslaterusedtoevaluatetheadsorptionkinetics.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancialinterestsorpersonal rela-tionshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.

Acknowledgments

We gratefullyacknowledge tothe financial supportby Lembaga PenelitiandanPengabdian Masyarakat ofInstitut Teknologi Kalimantan (LPPM-ITK) through Research Grant Contract No. 2798/IT10.II/PPM.01/2020 and Direktorat Riset dan Pengabdian kepada Masyaakat of Institut Teknologi SepuluhNopember (DRPM-ITS). Theauthors alsothank totechnicalassistance from CentralMineralandAdvanced MaterialLaboratory ofMalangState University (UNM) for sam-plescharacterization.

Supplementarymaterials

Supplementary material associatedwiththisarticle canbe found, inthe onlineversion, at doi:10.1016/j.dib.2020.106099.

References

[1] W. Dong, G. Zhao, Q. Bao, X. Gu, Effect of morphologies on the photocatalytic properties of CaTiO 3 nano/microstructures, J. Ceram. Soc. Jpn. 124 (2016) 475–479, doi: 10.2109/jcersj2.15272 .

[2] W. Dong, B. Song, W. Meng, G. Zhao, G. Han, A simple solvothermal process to synthesize CaTiO 3 microspheres and its photocatalytic properties, Appl. Surf. Sci. 349 (2015) 272–278, doi: 10.1016/j.apsusc.2015.05.006 .

[3] D. Croker, M. Loan, B.K. Hodnett, Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species, Cryst. Growth Des. 9 (2009) 2207–2213, doi: 10.1021/cg8009223 .

[4] M.M. Rusu, R.A. Wahyuono, C.I. Fort, A. Dellith, J. Dellith, A. Ignaszak, A. Vulpoi, V. Danciu, B. Dietzek, L. Baia, Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye-sensitized solar cells, J. Sol-Gel Sci. Technol. 81 (2017) 693–703, doi: 10.1007/s10971- 016- 4237- 3 .

[5] C. Han, J. Liu, W. Yang, Q. Wu, H. Yang, X. Xue, Photocatalytic activity of CaTiO 3 synthesized by solid state, sol-gel and hydrothermal methods, J. Sol-Gel Sci. Technol. 81 (2017) 806–813, doi: 10.1007/s10971- 016- 4261- 3 .

[6] L. Ernawati, R.A. Wahyuono, I.K. Maharsih, N. Widiastuti, H. Widiyandari, Mesoporous WO 3 /TiO 2 nanocomposites photocatalyst for rapid degradation of methylene blue in aqueous medium, Int. J. Eng. Trans. A Basics 32 (2019) 1345–1352, doi: 10.5829/ije.2019.32.10a.02 .

[7] M.L. Moreira, E.C. Paris, G.S. Nascimento, V.M. Longo, J.R. Sambrano, V.R. Mastelaro, M.I. B, B.J. Andrés, J.A. Varela, E. Longo, Structural and optical properties of CaTiO 3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight, Acta Mater. 57 (2009) 5174–5185, doi: 10.1016/j. actamat.2009.07.019 .

[8] Y.S. Huo, H. Yang, T. Xian, J.L. Jiang, Z.Q. Wei, R.S. Li, W.J. Feng, A polyacrylamide gel route to different-sized CaTiO 3 nanoparticles and their photocatalytic activity for dye degradation, J. Sol-Gel Sci. Technol. 71 (2014) 254–259, doi: 10.

(28)

Directorate of Research and Community Service Institut Teknologi Kalimantan (LPPM-ITK)

3rd Borneo International Conference on Applied Mathematics and Engineering

ENERGY TRANSITION, SMART TECHNOLOGY AND ENVIRONMENT FOR SUSTAINABLE

Virtual Conference (VC) via ZOOM Webinar, 09 September 2020

LETTER OF ACCEPTANCE

Balikpapan, 07 August 2020 Dear Prof/Dr/Sir/Madam,

We are pleased to inform you that your full paper with: First Author : Lusi Ernawati

Email : lusiernawati@lecturer.itk.ac.id Affiliation : Institut Teknologi Kalimantan

Paper Title (Code) : Kinetic Studies of Methylene Blue Degradation using CaTiO3

Photocatalyst from Chicken Eggshells (BICAME2020-Paper 011)

has been Accepted to be presented for oral presentation in the 3rd Borneo International

Conference on Applied Mathematics and Engineering 2020 (BICAME), organized by Directorate of Research and Community Service- Institut Teknologi Kalimantan (LPPM-ITK). On behalf of the Conference Committee, I would like to formally invite you to attend virtually the 3rd BICAME 2020 to present your paper. All submissions are peer reviewed and acceptance

will be based on quality, relevance, and originality. Presenters will be given the opportunity to have their submissions included in the on-line conference proceeding (Scopus Indexed by IOP Conference Series or International Index by Trans Tech).

After receiving this Letter of Acceptance (LoA), you need to:

1. Submit your full revised paper to BICAME’s 2020 EC system by visiting our website (www.bicame.itk.ac.id.) and follow the online revision Guidelines. The manuscript recommended for publishing on Trans Tech uses the system reviewer tool from Scientific Net.

2. Notify BICAME 2020 committee about how you will do the presentation (preferably by asynchronous system via recorded presentation or by synchronous system via zoom on the day of conference). Please also send your recorded presentation no later than 30 August 2020 by fill the form https://intip.in/qHDo

3. For papers with multiple authors, please ensure that at least one author registers to attend virtually the conference (via email/through online registration system available in the conference website) to avoid being withdrawn from the conference. All presenters MUST register no later than 30 August 2020 to avoid automatic withdrawal of paper from the conference proceedings. Please note that Presenter MUST present their paper, otherwise the paper will not be published

4. Early bird registration fees are IDR 1.600.000 and Normal registration fees are IDR 1.800.000

Should you have any questions concerning registration, conference program, and paper publication, please do not hesitate to contact us by e-mail to bicame@itk.ac.id and andromeda@lecturer.itk.ac.id for EC system. For the most updated information of the conference, kindly refer to the official website at www.bicame.itk.ac.id. We look forward to meeting you virtually on September 09, 2020.

Best Regards,

Elin Diyah Syafitri, S.T., M.Sc

(29)

Directorate of Research and Community Service Institut Teknologi Kalimantan (LPPM-ITK)

3rd Borneo International Conference on Applied Mathematics and Engineering

ENERGY TRANSITION, SMART TECHNOLOGY AND ENVIRONMENT FOR SUSTAINABLE

Virtual Conference (VC) via ZOOM Webinar, 09 September 2020

Balikpapan, 07 August 2020 Lusi Ernawati

Institut Teknologi Kalimantan Re: INVOICE

Dear Prof/Dr/Sir/Madam, Lusi Ernawati

In order for you to be officially registered, please make the necessary payment and email us bicame@itk.ac.id and back the scanned copy of your proof of payment. Details are as follows: Registration Type Before 2 September 2020 After 2 September 2020 Author as Presenter IDR 1.600.000 IDR 1.800.000 Presenter Registration including facilities: Paper Publishing on IOP Conference Series Scopus Indexed or Trans Tech Series International Indexed, Certificate, Virtual conference material and video.

PAYMENT

For registration payment, please transfer to the following Virtual Account: Bank Name : Bank Negara Indonesia

Account Number : 6102014335

Account Holder : RPL 047 PS ITK UNTUK TUKIN, KEMAHASISWAAN DAN PENELITIAN

We look forward to meeting you virtually on September 09, 2020.

Best Regards,

Elin Diyah Syafitri, S.T., M.Sc

Conference Chair, Organizing Committee BICAME 3rd Institut Teknologi Kalimantan

(30)

Kinetic Studies of Methylene Blue Degradation using CaTiO

3

Photocatalyst from Chicken Eggshells

Lusi Ernawatia*, Ade Wahyu Yusariartab, Andromeda Dwi Laksonob, Ruri Agung Wahyuonoc,

Hendri Widiyandarid, Rebeka Rebekaa, Virginia Sitompula

aDepartment of Chemical Engineering, Institut Teknologi Kalimantan,76127 Balikpapan

bDepartment of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan, 76127 Balikpapan cDepartment of Engineering Physics, Institut Teknologi Sepuluh Nopember, 60111 Surabaya

dDepartment of Physics, Universitas Sebelas Maret, 57126 Surakarta *E-mail Corresponding Author: lusiernawati@lecturer.itk.ac.id

Keywords: calcium titanate, chicken eggshell, photocatalytic degradation, organic pollutant

Abstract. This study details the kinetic of photodegradation of methylene blue in aqueous medium

using CaTiO3 photocatalyst. The CaTiO3 catalyst was prepared by sol-gel reaction using CaCO3

derived from chicken eggshell and anatase TiO2 powder. The CaTiO3 particles were prepared using

a mixture of starting materials in of (1:1); (1:3); (2:5) and (2:7) CaCO3/TiO2 molar ratio at T = 900oC.

The physical and microstructural properties of CaTiO3 microstructural were characterized by X-ray

diffractometer (XRD), scanning electron microscope (SEM), Fourier Transform Infrared (FTIR) and UV/vis spectrometer. As prepared CaTiO3 particles with various composition of CaCO3/TiO2 were

then applied for removal of dye molecules under simulated UV irradiation. The effect of initial dye concentration, catalyst composition, and degradation time on the adsorption property of CaTiO3 was

systematically investigated. The results reveal that methylene blue (MB) molecules are efficiently adsorbed and degraded within 120 min using CaTiO3 catalysts. Considering the low-cost preparation

process and considerably high photocatalytic performance obtained in this work, CaTiO3 can further

be used as an efficient photocatalyst for organic pollutant removal from industrial wastewater.

Introduction

The textile industry is growing fast in developing countries as it supports the economic growth [1]. Indonesia’s textile industry has recorded growth, which is expected to continue its positive trend in 2018 [2]. This increasing textile production in consequent implies a higher amount of waste from the textile processing. Generally, industrial textile wastewater contains aromatic components, halogenated hydrocarbons, and metals [3]. The aromatic components are mainly caused by the dyes used for coloring and can be barely seen at the concentration > 1 mgL-1. However, the dye

concentration in the wastewater can exceed 1 mg L-1 since 10-15% of the dye is dissolved in

wastewater during the coloring process [4]. It is known that the dye waste from the textile industry is a non-biodegradable organic compound causing several environmental pollutions, especially for the aquatic environment. The wastewater containing dye molecules is also harmful to human health [5,6].

Particularly, the dye waste bearing aromatic structures is difficult to degrade. This problem arises since the most of dyes are designed to have higher resistance toward environmental influences such as pH and temperature [7]. Among those various commercial dye available, methylene blue (MB) is the one often used in the textile industry as it is considerably cheap and abundant. MB is hazardous if exposed directly through the skin, eyes or swallowed. High exposure of MB to human might lead

(31)

the accumulated adsorbates that create new problems: After a long time use the adsorbent is biologically degraded and the dye molecules are resistant toward its degraded form [11].

To address the above-mentioned disadvantages, an alternative photodegradation method using perovskite materials have gained significant interest due to their facile availability, eco-friendly characteristic, and low-cost preparation process. Recent studies on the use of CaTiO3 perovskite have

attracted considerable attention due to its wide band gap (3.5 eV), high absorptivity, and high surface-active area [12]. In addition, the conduction band (CB) and valence band (VB) level are energetically favorable for H+/H

2 reduction and O2/H2O oxidation, respectively, which is critical for efficient

photocatalytic degradation of organic pollutant [13]. Several studies, the development method, and modification of CaTiO3-based perovskite material have also been reported. Xian, et.al. reported the

synthesis of CaTiO3-graphene composite by thermal dying towards the degradation of methyl orange

(MO) [14]. Kumar, et.al reported bifunctional composite (RGO-N-doped CaTiO3), prepared by the

hydrothermal method for the photocatalytic removal of methylene blue (MB) and thiabendazole (TBZ)

[15]. A similar method was also used by Yan, et.al., to synthesis of rod-like CaTiO3 with enhanced

charge separation efficiency and photocatalytic activity toward MO degradation [12]. As mentioned, most of the past work has focused on the use of synthesized CaTiO3 for organic pollutants removal

with relying on complex method, more expensive adsorbent materials, and long degradation time. In this study, we present a facile approach to synthesize CaTiO3 as efficient photocatalysts for MB

degradation. Particularly, we have exploited chicken eggshells as by-product materials to extract the calcium carbonate (CaCO3) as starting material for synthesis of CaTiO3 together with anatase titanium

oxide (TiO2). Compared with others adsorbent material that usually requires toxic raw materials,

high-cost process, and rigorous conditions, herein, our CaTiO3 powder can be produced using a

low-cost sol-gel method yet show high adsorption efficiency in short time, which makes it attractive for practical applications. The effects of adsorption parameters such as initial dye concentration, degradation time, and catalyst loading on the photocatalytic performance of MB degradation are investigated. Finally, the kinetic and adsorption mechanism of the CaTiO3 photocatalyst are discussed.

Material and Method

Materials and Synthesis. Chicken eggshells as the CaCO3 source were collected from the chicken

farm in Samboja District, Balikpapan, Indonesia. Anatase TiO2 powder (MTI, 99%) was used as

precursor of CaTiO3. The organic dye molecule was methylene blue (MB, Merck Millipore). Solvents

used were analytical grade of ethanol 96%, hydrochloric acid (HCl, 15 %), and distilled water. CaCO3

was prepared from chicken eggshells. The collected chicken eggshells were thoroughly washed with distilled water and dried it in open air for 48 h. Then, the eggshells were crushed, and the resultant fine powders was heat-treated at 700°C for 3 h to form CaCO3 particles. To synthesis CaTiO3,

mixtures of CaCO3 and TiO2 powders with CaCO3/TiO2 molar ratio of (1:1); (1:3); (2:5) and (2:7),

at T = 900oC were prepared. Each mixture was dissolved in 100 ml of ethanol and homogenized by

continuous stirring at 300 rpm for 2 h at room temperature. Afterward, the solution was washed with distilled water several times and dried at 100°C for 2 h yielding white powder. The resulting white powder was subsequently ground into fine and homogeneous granules. Finally, the powder was annealed at 900°C for 4 h.

Characterization of CaTiO3. X-ray diffraction (XRD) pattern was obtained using a

diffractometer (PAN analytical type X'Pert Pro) operated at 40 kV, and 40 mA with Cu-Kα as the radiation source. Diffraction patterns were scanned between 10 and 100° (2θ) with a resolution of 0.05°. Micromorphology of CaTiO3 powder was assessed by scanning electron microscopy (SEM,

(32)

Photodegradation of Methylene Blue. Initial investigation of MB photodegradation was carried

out by utilizing different amounts of CaTiO3 (i.e., 50, 100 and 150 mg). The CaTiO3 powder was

soaked into aqueous MB solution. The solution was then transferred into a home-built photoreactor and irradiated under ultraviolet (T5-UV7W,  = 254 nm) exposure for several times, i.e. every 5 min for 1 h. In addition, the reactor was isolated from ambient light so that the photodegradation was driven only by UV irradiation. The solution was then continuously stirred to increase contact between CaTiO3 photocatalyst and MB molecules and hence, driving a rapid photodegradation.

Photodegradation of MB was monitored through the absorption change measured using UV/vis spectrometer (Rayleigh UV-9200). The absorption of MB was measured in the wavelength range of 300 to 800 nm. The decrease of MB optical density was used to determine the decreasing MB concentration due to the catalytic activity of CaTiO3. Eventually, the photocatalytic efficiency was

calculated.

Results and Discussion

Eggshell is mainly consists of calcium carbonate (CaCO3, 94%), calcium phosphate

(Ca3(PO4)2, 1%), organic matter (4%) and magnesium carbonate (MgCO3, 1%), [16-18]. To analyze

the material composition, energy-dispersive x-ray spectroscopy (EDX) was performed. The elemental analysis of chemically treated eggshell samples with diluted HCl showed that the original chicken eggshell mainly consisted of Ca, C, O, P and Mg as listed in Table 1.

Table 1. Elemental analysis of chemically treated eggshell samples with diluted HCl Element Wt (%) At (%)

C K 21.04 33.23

O K 51.64 55.11 Mg K 00.91 00.65 Ca K 26.42 11.01

The carbon content (21.04 %) was lower than calcium content (26.42 %). This was due to the release of CO2 and dissolution of organic components during the chemical reaction. Chlorine did not

appear in the results of EDX spectrum, because CaCl2 precipitated out in the solution. The reaction

equation of eggshell with HCl is given by equation (1):

𝐶𝑎𝐶𝑂3+ 2𝐻𝐶𝑙 → 𝐶𝑎𝐶𝑙2+ 𝐻2𝑂 + 𝐶𝑂2 (1) When HCl was reacting with eggshell, CO2 was being released at the same time and bubbles were

formed. The bubbles prevented the physical contact between certain areas of the eggshell surface and HCl for a specific time. These bubble prevention process allowed the uneven chemical etching of the eggshell surface which led the surface to have a nano-structured at the end [19].

Morphology and Crystallite Structure of Synthesized CaTiO3. SEM micrographs depict the

morphology of CaTiO3 prepared by the different CaCO3/TiO2 molar ratios (Fig.1), for example,

sample with (2:5) and (2:7) CaCO3/TiO2 compositions, after annealing at 900oC. Apparently, lower

molar concentration of TiO2 during CaTiO3 preparation yields aggregated particles with nonuniform

structure. A higher concentration of TiO2 results in a denser structure yet porous surface with smaller

particle sizes. Larger particle obtained at (2:5) CaCO3/TiO2 molar ratio might stem from

agglomeration facilitated by diffusion of nuclei along with particle growth resulting in a decrease in free energy and an increase in total entropy [20]. Upon annealing at high temperature, the surface

(33)

Fig.1. Scanning electron micrographs of CaTiO3 prepared using different CaCO3/TiO2 molar ratios.

(a) 2:5 (T= 900 oC) and (b) 2:7 (T=900 oC). Both samples were annealed for 4 h.

Characteristic of the functional group of CaTiO3 is reflected by the IR spectra and shown in Fig.

2. The IR bands at 3630 cm-1 and 3642 cm-1 are assigned to a vibration characteristic of the hydroxy

(OH) group [25]. The IR spectra also exhibit vibrational band at 1442 cm-1 which decreases with

increasing TiO2 fraction. This band indicates the asymmetrical and symmetrical vibrations between

metal oxide [26]. Hence, it indicates the residual interaction of CaCO3 functional group, which is the

bond vibration between C-O of CO32- ions. Higher fraction of TiO2 during synthesis increases the

absorption area that leads to a more surface interaction between TiO2 and CaCO3. This interaction is

reflected by the vibrational band at 1166 cm-1 assigned for the bond vibration between C-O-Ti groups

and the IR peaks around 800-900 cm-1 attributed to the existence of Ti-O-Ti bond vibration. In

(34)

Photocatalytic Degradation of Methylene Blue. The effect of photocatalyst dosage to the

degradation of MB was first assessed. As expected, higher amount of CaTiO3 leads to a higher amount

of degraded MB, as shown in Fig. 3. This result is plausible since at higher amount of CaTiO3 the

number of MB chemisorbed at the catalyst surface increases and hence, MB is significantly photo-reduced. Nonetheless, the temporal reduction of MB indicates that both 100 and 150 mg of CaTiO3

exhibit similar reduced value of MB except the first 15 min, where 150 mg of CaTiO3 facilitates faster

catalytic activity (higher rate of MB reduction). Therefore, it can be deduced that all active sites provided in 150 mg of CaTiO3 sufficiently reduce an amount of 100 ppm of MB.

Fig. 3. Time dependent MB concentration in the presence of CaTiO3 (2:7) after exposure to UV

irradiation under various catalyst doses.

The degradation efficiency of MB increases quite significantly when the amount of catalyst increases. Under irradiation condition, the increasing amount of CaTiO3 provides a higher surface

area which generates more •OH, a radical species enables degradation of MB. Hence, degradation efficiency increases when using a larger quantity of CaTiO3. The photodegradation efficiency of MB

using different loading of CaTiO3 is summarized in Table 2. It is shown that the average degradation

efficiency of 74.61% and 78.59% is obtained for 100 mg and 150 mg of CaTiO3, respectively.

However, catalyst dosages higher than 100 mg (i.e., 200 mg) tends to have slower degradation rate. This results may be attributed to the scattering effect due to a higher turbidity of catalyst-containing solution which decreases the penetration depth of irradiation [27].

Table 2. Photocatalytic degradation efficiency of 100 mg MB using low and high loading of

CaTiO3 with ratio of 2:5. Reaction was carried out under UV irradiation for 120 min

CaTiO3 (CaCO3/TiO2=2:7) dosage (mg) MB Removal (%) 50 63.45 100 78.61 150 74.59 200 67.43

(35)

photodegraded products, which leads to a reduced and slow photocatalytic MB degradation. In general, amongst various amount of CaTiO3, 150 mg of the photocatalyst is already enough to drive

an efficient photodegradation of 100 mg MB under UV irradiation. This result is assured after the reproducibility test of photodegradation.

Having characterized the effect of CaTiO3 on the MB degradation efficiency, the discussion is

now focused on the efficiency of CaTiO3 to catalyze the photodegradation of MB. Similar behavior

is also reported in the literature where rapid photo-oxidation occurs when a low concentration of dye is considered [30]. Higher concentration of MB in solution leads to a concentrated solution and this significant number of molecules also absorbs the light hindering direct photoexcitation of CaTiO3

catalysts. Consequently, the formation of radical •OH is less efficient and hence, it results in a significantly lower photodegradation efficiency.

3.3 Kinetics of MB Photodegradation

The photocatalytic degradation reaction for MB in this study is investigated based on heterogeneous CaTiO3 catalysts, whose reaction rates depend on the adsorption of target compound on the active

site of the catalyst. Nonetheless, in this study, the reaction rate constant k can also be approached and determined using the homogeneous system following first-order reaction (n=1). Kinetics of photodegradation using a different amount of CaTiO3 catalyst is therefore evaluated following pseudo-first-order kinetics with respect to the MB concentration in the bulk solution (C):

𝑟 = −𝑑𝐶

𝑑𝑡 = 𝑘𝑜𝑏𝑠𝐶 (2)

Integrating the equation (1) yields a linear relation of ln (C0/C) vs t:

𝑙𝑛𝐶𝑜

𝐶 = 𝑘𝑜𝑏𝑠𝑡 (3)

where Co is being the initial concentration in the bulk solution, t is the reaction time and kobs is the

observed pseudo-first-order rate constant affected by MB concentration. A plot of ln(Co/Ct) vs t for

all the experiment and leads to a linear curve with a slope kobs. For the pseudo–second order kinetics,

the model can be expressed by the following linear form [31]:

𝑡 𝐶𝑡= 1 𝑘2𝐶𝑒2+ ( 1 𝐶𝑒) 𝑡 (4)

where Ct (mg g-1) is the amount of MB adsorbed at time t, k2 (g mg-1 min-1) is the pseudo-second order rate constant and Ce (mg g-1) is the amount of MB adsorbed at equilibrium.

(36)

Fig.5. (a) pseudo-first order and (b) pseudo-second order kinetic of methylene blue degradation with

various CaTiO3 dosage.

Fig.6. (a) pseudo-first order and (b) pseudo-second order kinetic of methylene blue degradation with

various initial MB concentration.

The rate coefficient from the pseudo-second order kinetic k1 for MB dye was found to decrease

with increasing initial dye concentration as shown in Table 2. This is due to greater competition for the adsorbent site at higher dye initial concentration. Besides, the electrostatic interaction also decreases on the adsorbent site as the initial concentration increased. Thus, the dye affinity towards adsorbent reduced. The result is in good agreement with the other the previous study on MB removal by titanate nanotube [32].

Table 2. Reaction rate constants (k) and the coefficient of determination (R2) obtained for

photodegradation of MB using pseudo-first order kinetic

Photocatalyst k1obs (min-1) R12

CaCO3/TiO2=(1:1) 1.44 ×10-3 0.6153 CaCO3/TiO2=(1:3) 2.21 × 10-3 0.6834 CaCO3/TiO2=(2:5) 17.12 × 10-3 0.9687 CaCO3/TiO2=(2:7) 18.32 × 10-3 0.9818 CaTiO3(2:7)=50 mg 10.71 × 10-3 0.9253 CaTiO3(2:7)=100 mg 13.94 ×10-3 0.9766

(37)

In the case of pseudo first-order kinetics, the lower R12 value of CaTiO3 was obtained at the

different CaCO3/TiO2 molar ratios of (1:1) and (1:3), suggested that it is somewhat inappropriate to

use pseudo-first order kinetic model to explain the sorption of MB onto CaTiO3. the kinetic

parameters k2 (obs) were further calculated from the slope and intercept and listed in Table 3 together

with the corresponding linear regression correlation coefficient, R2. Such high correlation coefficients

indicate that experimental data exhibit a good compliance with pseudo-second order kinetic model. The compliance with the pseudo-second-order model suggested that chemical sorption involving valence forces through sharing or exchange of electrons between adsorbent and adsorbate might be significant [29, 30]. Different rate constants for the samples imply greater difference in affinity of MB toward the investigated sample.

Table 3. Reaction rate constants (k) and the coefficient of determination (R2) obtained for

photodegradation of MB using pseudo-second order kinetic

Photocatalyst k2obs (min-1) R22

CaCO3/TiO2=(1:1) 12.21 × 10-2 0.9982 CaCO3/TiO2=(1:3) 13.23 × 10-2 0.9921 CaCO3/TiO2=(2:5) 24.18 × 10-2 0.9409 CaCO3/TiO2=(2:7) 41.11 × 10-2 0.8971 CaTiO3(2:7)=50 mg 45.37 × 10-2 0.9068 CaTiO3(2:7)=100 mg 41.17 × 10-2 0.8989 CaTiO3(2:7)=150 mg 41.88 × 10-2 0.9416 CaTiO3(2:7)=200 mg 34.85 × 10-2 0.9663 CaTiO3(2:7); MB=10 mg L-1 24.36 × 10-2 0.9751 CaTiO3(2:7); MB=20 mg L-1 12.81 × 10-2 0.9749 CaTiO3(2:7); MB=30 mg L-1 10.29 × 10-2 0.9898 CaTiO3(2:7); MB=40 mg L-1 8.533 × 10-2 0.9885

In general, it should also be noted that the rate of photocatalytic degradation is controlled by several parameters, i.e. morphology of catalyst, the molecular structure of dye, chemisorbed dye on the catalyst surface, and intensity of irradiation intensity. In this study, only the dye-loading, i.e. number of MB molecules chemisorbed on the catalyst, is varied. It can be deduced that photodegradation reaction of MB using CaTiO3 apparently follows the first-order reaction indicated

by a linear fit (Fig. 6) with a coefficient of determination beyond 0.8. In addition, it can be explained that increasing amount of CaTiO3 catalysts implies on the increasing chemisorbed MB and faster

catalytic reaction. Even though the photocatalytic degradation rate is slower than the highest reported in literature using CaTiO3 [33], the photodegradation rate of MB using sol-gel prepared CaTiO3 in

this work (0.0187 ppm⸱min-1) is found comparable to the photodegradation rate of MB using

solvothermal prepared CaTiO3 (0.162 ppm⸱min-1) and hydrothermally prepared CaTiO3 (0.05

ppm⸱min-1) [34].

Conclusions

Calcium titanate (CaTiO3) as photocatalyst was synthesized using calcium titanate (CaCO3) and

titanium dioxide (TiO2) through sol-gel method. The resultant CaTiO3 prepared at CaCO3/TiO2 molar

(38)

CaTiO3 for MB photo-decolorization. Nonetheless, optimization of the synthetic condition to obtain

high purity and crystallinity of CaTiO3 will be of interest for future studies.

Acknowledgement

The author would like to thank Central Mineral and Advanced Material Laboratory of Malang State University (UNM) for samples characterization. This research is supported by Directorate of Research and Community Service, Institut Teknologi Kalimantan (LPPM-ITK) through Research Grant Contract No. 314/IT10.II/PPM.04/2020.

References

[1] J. O. Kim, C. Warfield, M. K. Traore, The textile and apparel Industry in Developing Countries,

Textile Progress. 2006. 38(3), pp. 1-64.

[2] Indonesia’s Garment and Textile Sector: Remain Optimistic Amid Mounting Pressure. Global

Business Guide Indonesia, 2018.

[3] S. S. Arbuj, R. R. Hawaldar, S. Varma, S. B. Waghmode, B. N. Wani, Synthesis and characterization of ATiO3 (A = Ca, Sr, and Ba) perovskite and their photocatalytic activity under

solar irradiation, Sci. Adv. Mater. 2012. 4(56), pp. 568-572.

[4] I. Fatimah, Y. Rahmadianti, R. A. Pudiasari, Photocatalyst of perovskite CaTiO3 nanopowder

synthesized from CaO derived from snail shell in comparison with the use of CaO and CaCO3, IOP Conf. Ser. Mater. Sci. Eng. 2018. 349, pp. 1 -7.

[5] P. Kanhere, Z. Chen, Review on visible light Active perovskite-based photocatalysts, Molecules. 2014. 19(12), pp. 19995-20022.

[6] A. Kumar, S. Kumar, V. Krishnan, Perovskite Based Materials for Photocatalytic Environmental-Remediation, Springer Nature Switzerland. 2019, pp. 139-165.

[7] J. M. Herrmann, Heterogenous Photocatalys: Fundamental and Applications to The Removal of Various Types of Aqueous Pollutans, Catalysis Today. 1999. 54, pp. 115-129.

[8] T. Kimijima, K. Kanie, M. Nakaya, A. Muramatsu, Hydrothermal synthesis of size-and shape-controlled CaTiO3 fine particles and their photocatalytic activity, Cryst. Eng. Comm. 2014. 16(25),

pp. 5591 -5597.

[9] T. Alammar, I. Hamm, A. V. Mudring, M. Wark. Low-temperature route to metal titanate Perovskite nanoparticles for photocatalytic applications, Appl. Catal. B. 2015. 178, pp. 20 -28. [10] S. S. Gaikwad, A. V. Borhade, V. B. Gaikwad, A Green chemistry approach for synthesis of CaTiO3 photocatalyst: its effects on degradation of methylene blue, phytotoxicity and microbial study, Der Pharma Chemica. 2012. 4(1), pp. 184-193.

[11] A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive

photocatalyst for environmental remediation, Mater. Chem. Front. 2017. 1, pp. 2391-2404.

(39)

[14] M. Ramamoorthy, D. Vanderbilt, R. D. King-Smith, First-principle calculation of the energetics of stochiometrics TiO2 surface, Phys. Rev. B Condensed Matter. 1994. 49(23), pp. 16721 -16727.

[15] M. Bruno, F. R. Massaro, M. Prencipe, Theoretical structure and surface energy of the reconstructed {01.2} form of calcite (CaCO3) crystal, Surface Sci. 2008. 602, pp. 2774-2782.

[16] Y. Nys, J. Gautron, J. M. Garcia-Ruiz, M. T. Hincke. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins C.R. Palevol. 2004. 3(6), pp. 549-562

[17] P. Hunton. Research on eggshell structure and quality: an historical overview. Rev. Bras. Cienc.

Avic. 2005. (7), pp. 67-71

[18] D. S. R. Krishna, A. Siddharthan, S. K.Seshadri, T.S. Sampath Kumar. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J. Mater. Sci., Mater. Med. 2007. 18, pp. 1735-43

[19] W.Asghar, T. K. Young, A. Ilyas, J. Sankaran, Y. Wan, S. M Iqbal. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells. IOP Publishing: Nanotechnology. 2012, 23(9), 475601

[20] R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil, Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water, ACS. Sust. Chem. Eng. 2015, 3, pp. 1117-1124.

[21] W. Dong, G. Zhao, Q. Bao, X. Gu, Effect of morphologies on the photocatalytic properties of CaTiO3 nano/microstructures, J. Ceramic Soc. Japan. 2016. 124(4), pp. 475-479.

[22] W. Dong, B. Song, W. Meng, G. Zhao, G. Han, A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties, Appl. Surface Sci. 2015. 349, pp. 272- 278.

[23] L. Ernawati, R. A. Wahyuono, I. K. Maharsih, A. W.Yusariarta, A. D. Laksono, C. W. Kartikowati, A. B. D. Nandiyanto. Photodegradation of Textile Dye (rhodamine B) using CaTiO3 composite-based adsorbent. Jurnal Teknik Kimia. 2020. 14(2), pp. 32-39.

[24] A.A.A. Torimtubun, A. C. Augusty, E. Maulana, L. Ernawati. Affordable and sustainable new generation of solar cells: Calcium Titanate (CaTiO3)- based perovskite solar cells. E3S Web of

Conference, International Tropical Renewable Energy Conference (ITREC). 2018. 67, 01010.

[25] L. Ernawati, R. A. Wahyuono, A. A. Muhammad, A. R. Nurislam Sutanto, I. K. Maharsih, N. Widiastuti, H. Widiyandari, Mesoporous WO3/TiO2 Nanocomposites Photocatalyst for Rapid

Degradation of Methylene Blue in Aqueous Medium, International J. Engineering (IJE),

TRANSACTIONS A: Basics. 2019. 32(10), pp. 1345-1352.

[26] C. Han, J. Liu, W. Yang, Q. Wu, H. Yang, X. Xue, Photocatalytic activity of CaTiO3 synthesized

by solid state, sol-gel and hydrothermal methods, J. Sol-Gel. Sci. Tech. 2017. 81, pp. 806-813. [27] H. Yang., C. Han, X. Xue, Photocatalytic activity of Fe-doped CaTiO3 under UV-visible light, J. Environmental Sciences. 2014. 26(7), pp. 1489-1495.

[28] D. Croker, M. Loan, B. K. Hodnett, Kinetics and mechanisms of the hydrothermal crystallization of calcium titanate species, Cryst Growth. 2009. 9, pp. 2207-2213.

(40)

[31] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen doped titanium oxides, Science. 2001. 293, pp. 269 271

[32] Xiong, L., Yang, Y., Mai, J., Sun, W., Zhang, C., Wei, D., Chen, Q., Nia, J, Adsorption behavior of methylene blue onto titanate nanotubes, Chem. Eng. J. 2010. 156(2), pp. 313-320.

[33] M. L. Moreira, E. C. Paris, G. S. Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B, Bernardi J. Andrés, J. A. Varela, E. Longo, Structural and optical properties of CaTiO3

perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight, Acta Mater. 2009. 57, pp. 5174-5185.

[34] Y. S. Huo, H. Yang, T. Xian, J. L. Jiang, Z. Q. Wei, R. S. Li, W. J. Feng, A polyacrylamide gel route to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation, J. Sol-Gel Sci Techn. 2014. 71, pp. 254-259

Gambar

Gambar 2.1 SEM CaTiO 3  disintesis dengan rasio molar CaCO 3 /TiO 2 : (a) (1:1), (b) (1:3), (c) (2:5), dan (d)  (2:7)
Gambar 2.2 Spektrum FTIR CaTiO 3  disintesis dengan rasio molar CaCO 3 /TiO 2  yang berbeda
Gambar 2.4 Perubahan temporal spektrum BG akibat terdegradasi oleh CaTiO 3  (a) (1:3) dan (b) (2:7)
Tabel 1. Konstanta laju reaksi (K) dari fotodegradasi BG menggunakan CaTiO 3  yang berbeda komposisi
+7

Referensi

Garis besar

Dokumen terkait

Pembuatan Sistem Pendukung Keputusan Inventory Spare Part Dengan Metode Simple Additive Weighting, yaitu metode pembobotan yang mencari penjumlahan terbobot dari rating kinerja

Perancangan sistem yang digunakan adalah Hierarchy Input Proces Output(HIPO), Diagram Kontek, Data Flow Diagram(DFD), Desain Input dan Output, Desain Database,

Hasil penelitian menunjukkan bahwa rata-rata persentase pembagian hasil yang diterima nelayan pemilik sebesar 64% dan nelayan penggarap sebesar 36%, sedangkan kondisi ketahanan

Berdasarkan pernyataan-pernyataan di atas, lemahnya citra teh celup dalam negeri diduga karena harga konsumen produk teh celup itu sendiri lebih rendah dari pada

Adanya variasi waktu penahanan yang diberikan pada briket batok kelapa muda pada proses pirolisis fluidisasi bed menggunakan media gas argon, mampu memperbaiki

Dengan mengucapkan syukur Alhamdulillah kehadirat Allah Yang Maha Kuasa karena dengan rahmat dan karunia-Nya tesis yang berjudul “ANALISIS TENTANG KONSOLIDASI TANAH PADA DESA

Berangkat dari permasalahan di atas maka peneliti bermaksud mengadakan penelitian tindakan kelas dengan judul “Meningkatkan Kemampuan Membaca Permulaan melalui

Setelah melalui proses evaluasi dan analisa mendalam terhadap berbagai aspek meliputi: pelaksanaan proses belajar mengajar berdasarkan kurikulum 2011, perkembangan