• Tidak ada hasil yang ditemukan

DIFFERENCE OF STUDENTS MATHEMATICAL CONNECTION ABILITY USING REALISTIC MATHEMATICS EDUCATION APPROACH AND PROBLEM POSING APPROACH IN SMP SWASTA KATOLIK ASSISI MEDAN ACADEMIC YEAR 2014/2015.

N/A
N/A
Protected

Academic year: 2017

Membagikan "DIFFERENCE OF STUDENTS MATHEMATICAL CONNECTION ABILITY USING REALISTIC MATHEMATICS EDUCATION APPROACH AND PROBLEM POSING APPROACH IN SMP SWASTA KATOLIK ASSISI MEDAN ACADEMIC YEAR 2014/2015."

Copied!
25
0
0

Teks penuh

(1)

DIFFERENCE OF STUDENTS′ MATHEMATICAL CONNECTION ABILITY USING REALISTIC MATHEMATICS EDUCATION

APPROACH AND PROBLEM POSING APPROACH IN SM P SWASTA K ATOL IK ASSISI M EDAN

ACAD EM IC YE AR 2014/20 15

by:

Petra Surya Daniel IDN 4103312022

Mathematics Education Study Program

Thesis

Submitted in Fulfilment of The Requirements for Degree of Sarjana Pendidikan

DEPARTMENT OF MATHEMATICS FACULTY OF MATHEMATICS AND SCIENCE

UNIVERSITAS NEGERI MEDAN MEDAN

(2)
(3)

DIFFERENCE OF STUDENTS′ MATHEMATICAL CONNECTION ABILITY USING REALISTIC MATHEMATICS EDUCATION

APPROACH AND PROBLEM POSING APPROACH IN SMP SWASTA KATOLIK ASSISI MEDAN

ACADEMIC YEAR 2014/2015

Petra Surya Daniel (IDN 4103312022)

ABSTRACT

This research is quasi-experiment. The purpose of this research was to know if students’ mathematical connection ability in RME class is different with students’ mathematical connection ability in Problem Posing class at SMP Swasta Katolik Assisi Medan Academic Year 2014/2015.

Population of this research was all students of SMP Swasta Katolik Assisi Medan. As sample for this research choosen two class in eighth grade. Class VIII-4 as experimental class I which taught with RME approach and class VIII-2 as experimental class II which taught with Problem Posing approach. Each class consist of 31 students. Collecting data technique of this research was mathematical connection ability test that was given in the end of learning.

Based on normality test and homogenity test that already done, the data sample was taken from normal distributed and homogeneous population. From the data analysis by using t-test with significance level  = 0.05, it was obtained that tcalculated = -1.785 and ttable = 1.670. It means that tcalculated < -ttable, then H0 is rejected and Ha is accepted.

(4)

iv

PREFACE

Praise and gratitude to the God Almighty for all the blessings of His

grace so this thesis that entitled "Difference of Students’ Mathematical

Connection Ability Using Realistic Mathematics Education Approach and

Problem Posing Approach in SMP Swasta Katolik Assisi Medan Academic Year

2014/1015" can be completed. This thesis is submitted in partial fulfillment of the

requirements for the degree of Sarjana Pendidikan in Mathematics Department,

Mathematics and Natural Science Faculty in Universitas Negeri Medan.

Special gratitude especially from the author goes to the beloved family,

Papi, Dj. D. Matondang (+) and Mami, A. Marpaung, brother Brastian Matondang

and sister Eva Pardede and also for Evan and Cinta for everlasting support,

patience, love, and pray. This thesis dedicated for them.

The author is also grateful to Prof. Dr. Edi Syahputra, M.Pd. as thesis

supervisor which has a lot of spare time and thoughts to assist the author writing

in completing this thesis. Thank you also for Dr. E. Elvis Napitupulu, M.S., Dr.

Izwita Dewi, M.Pd., and Drs. Zul Amry, M.Si. as examiners who gave

constructive suggestion untill this thesis compilation was done. And also for Prof.

Dr. Asmin, M.Pd. as academic counselor that already guide and help the author

for lecture period.

The author would like to say thank you to Prof. Dr. Ibnu Hajar, M. Si. as

rector of Universitas Negeri Medan and employee staff in office of university

head, Prof. Drs. Motlan, M.Sc., Ph.D as Dean Faculty of Mathematics and Natural

Sciences and to coordinator of bilingual Prof. Dr. rer.nat. Binari Manurung, M.Si.,

Drs. Syafari, M.Pd. as Chief of Mathematics Department, Drs. Zul Amry, M.Si. as

Chief of Mathematics Education Study Program, Drs. Yasifati Hia, M.Si as

Secretary of Mathematics Education, and all of employee staff who have helped

the author.

The author also want to thank Dra. Restia Situmorang as School

(5)

and R. Sidauruk, S. Pd. as mathematics teacher in eighth grade and also for all

teachers and staff for helping and guidance as research.

Special thanks for great family of BilMath ’10, Abdul, Anggi, Dian, Dwi, Elfan, Erlin, Kiki, Falni, Lia, Mila, Maria, Meiva, Martyanne, Melin, Nelly,

Surya, Riny Oktora Purba, Rully, Sartika, Sheila, Siti, Wulida, Kak Mimi for all

togetherness during college. And for Josua and Windy as best friends for author.

Special thanks also for friends of PPLT in Pandan, and all partner of SM POUK

Tj.Sari Medan, Kak Melda, Hendro, Sela, Moniq, Lady, Amon, and Deli and for

all friends and people that not mention for their support and pray throughout this

process.

The author realized that this thesis has its shortcomings either in

contents, grammar, or technical writing. Therefore, author hope for constructive

criticism and suggestion from the reader for perfection of this thesis. Hope this

thesis could be useful for further researcher and useful in enrichment the

knowledge.

Medan, September , 2014

The author,

(6)

vi

CONTENTS

Page

Authentication Sheet i

Biography ii

Abstract iii

Preface iv

Contents vi

List of Figure viii

List of Table ix

List of Appendices x

CHAPTER I INTRODUCTION 1

1.1. Background 1

1.2. Problem Identification 8

1.3. Problem Limitation 8

1.4. Problem Formulation 8

1.5. Research Objectives 8

1.6. Research Significance 9

1.7. Operational Definition 9

CHAPTER II LITERATURE REVIEW 11

2.1. Theoretical Framework 11

2.1.1. Mathematical Connection Ability 11

2.1.2. Realistic Mathematics Education Approach 13

2.1.3. Advantages and Drawbacks of Realistic

Mathematics Education 18

2.1.4. Learning Theory Which Underlies Realistic Mathematics

Education 20

2.1.5. Problem Posing Approach 20

2.1.6. Problem Posing Strategies 21

(7)

2.2. Conceptual Framework 23

2.3. Hypothesis 24

CHAPTER III RESEARCH METODOLOGY 25

3.1. Location and Time of Research 25

3.2. Population and Sample 25

3.3. Variable and Research Instrument 25

3.3.1 Research Variable 25

3.3.1.1 Independent Variable 25

3.3.1.2 Dependent Variable 26

3.3.2 Research Instrument 26

3.3.3 Instrument Trial 29

3.4. Design Research 30

3.5. Technique of Data Collection 31

3.6. Technique of Data Analysis 33

3.6.1 Normality Test 33

3.6.2 Homogenity Test 33

3.6.3 Hypothesis Test 33

CHAPTER IV RESULT AND DISCUSSION 35

4.1 Research Result Description 35

4.1.1 Mathematical Connection Ability Test 35

4.1.2 The Description of Mathematical Connection Ability Test 36

4.2 Analysis of Research Data 37

4.2.1 Normality Test 37

4.2.2 Homogenity Test 38

4.2.3 Hypothesis Test 39

4.3 Research Discussion 41

CHAPTER V CONCLUSION 45

5.1 Conclusion 45

5.2 Suggestion 45

(8)

ix

LIST OF TABLES

Page

Table 2.1 Step of Realistic Mathematics Education Approach 17

Table 3.1 The Lattice Test of Mathematical Connection Ability 26

Table 3.2 The Scoring Guidelines Test of Mathematical Connection

Ability 26

Table 3.3 Instrument Validiy Result 29

Table 3.4 Criteria of Reliability 30

Table 3.3 Posttest Only Group Design 31

Table 4.1 Descriptive Statistic of Experimental Class I and II 35

Table 4.2 Mean of Mathematical Connection Ability Indicators 36

Table 4.3 Normality Test of Mathematical Connection Ability in

Both Experiment Class 38

Table 4.4 Homogeneity Test of Mathematical Connection Ability

in Both Experiment Class 39

(9)

LIST OF FIGURE

Page

Figure 1.1 Ilustration of City A, B, and C 4

Figure 1.2 Variations in Students' Answers to the Connection

with Physics 4

Figure 1.3 Variations in Students' Answers to the Connection

with Real Life 5

Figure 1.4 Variation of Students' Answers to the Connections

Between Mathematical Topics 5

Figure 2.1 Horizontal Mathematization and Vertical Mathematization 15

Figure 3.1 Flow Chart of Research Procedure 32

Figure 4.1 Histogram of Minimum Score, Maximum Score, and

(10)

x

LIST OF APPENDICES

Page

Appendix 1 Lesson Plan 1 Experiment Class I (RME) 50

Appendix 2 Lesson Plan 2 Experiment Class I (RME) 55

Appendix 3 Lesson Plan 1 Experiment Class II (PP) 60

Appendix 4 Lesson Plan 2 Experiment Class II (PP) 64

Appendix 5 Students Activity Sheet 1 Experiment Class I (RME) 68

Appendix 6 Students Activity Sheet 2 Experiment Class I (RME) 75

Appendix 7 Students Activity Sheet 1 Experiment Class II (PP) 79

Appendix 8 Students Activity Sheet 1 Experiment Class II (PP) 82

Appendix 9 Lattice of Mathematical Connection Ability Test 85

Appendix 10 Test of Mathematical Connection Ability 86

Appendix 11 Guidelines for Scoring of Mathematical Connection

Ability 88

Appendix 12 Posttest Score 91

Appendix 13 Instrument Validity 92

Appendix 14 Instrument Reliability 96

Appendix 15 Step Using SPSS in Normality Test 98

Appendix 16 Normality Test 100

Appendix 17 Step Using SPSS in Homogeneity Test 101

Appendix 18 Homogeneity Test 103

Appendix 19 Step Using SPSS in Compare Mean Test 104

Appendix 20 Compare Mean Test 106

Appendix 21 r-table Value of Product Moment 107

Appendix 22 t-table Value of t-distribution 108

(11)

1 CHAPTER I INTRODUCTION

1.1.Background

Mathematics is one of the science that has many important roles and

close to human life. Therefore, mathematics became one of the principal subjects

taught in formal education since elementary school level. By learning

mathematics from an early age, students are trained to think critically, systematic,

logical, and creative.

In the book Standar Isi untuk Sekolah Menengah Pertama (BSNP,

2006:140) stated that the aim of mathematical subjects so that students have the

ability to: (1) understanding math concepts, explains the relationship between

concepts and apply the concepts and algorithms, flexibly, accurately, efficiently,

and appropriately, in solving the problem, (2) using the pattern and nature of

reasoning, mathematical manipulation in making generalizations, compile

evidence, or explain mathematical ideas and statements; (3) solving problems that

include the ability to understand the problem, devised a mathematical model,

solve the model and interpret the obtained solution; (4) communicate ideas with

symbols, tables, diagrams, or other media to clarify the situation or problem; (5)

has the respect usefulness of mathematics in life, namely to have curiosity,

concern, and interest in studying mathematics, as well as a tenacious attitude and

confidence in solving problems.

In line with the above, Fauzan and Yerizon (2013) stated:

(12)

2

Sumarmo (2006) classifies basic math skills in five standards, there are

the ability: (1) to know, understand and apply the concepts, procedures, principles,

and mathematical ideas, (2) mathematical problem solving, (3) mathematical

reasoning; (4) mathematical connection, and (5) mathematical communication.

Mathematical connection ability is one of the basic skills that are

important for students. Widarti (2013) revealed that the mathematical connection

is a skill that must be developed and studied, contextual problem solving activities

are activities that help students to be able to determine the relationship of various

concepts in mathematics and applied mathematics in everyday life.

Most of students usually forget their previous mathematics learning

material. They think that any mathematics material has no connection each other.

In fact, every topic in mathematics has connections and some of them as a

prerequisite for studying other topics. Students are still having trouble connecting

knowledge they have learned previously with their newly learned knowledge. In

other cases, students are lazy to learn math because they assume some

mathematical topics that they studied only a theory and has no use in daily life. In

fact, every subject taught in school mathematics has its benefits and immediate

application in daily life that they may not realize. With connection ability,

students are able to view mathematics as a unified whole. Students will realize

that every mathematical ideas do not stand alone and isolated. NCTM (2000: 64)

argues "when students can connect mathematical ideas, their understanding is

deeper and more lasting". So the connection ability can increase students'

understanding and make that understanding last longer.

Mathematical ideas are not only connected in the mathematics itself, but

also connected to the outside of mathematics. Without realizing it, many human

activities are carried out based on mathematical ideas. Many people who do the

math without realizing that they are working on math. With connection ability,

students will be able to understand and appreciate the useful of mathematics in

their daily life.

In addition there is term known as mahtematics as queen of science and

(13)

mathematics has an important role in the development and progress of science.

Mathematics is used as a tool or as a way of thinking in science to another. With

connection ability, students will be able to see and understand the connection

between the mathematical ideas with other sciences.

From the above explanation can be seen that with mathematical

connection ability, students can build his understanding of mathematics itself. In

addition they can also find patterns and relationships between mathematics well

with others and with the science or daily life. Upon learning of these relationships,

students can learn math more meaningful. In fact on the field, there are many

students who have the low ability to connect. In a study conducted Yunita (2013)

as well as Nainggolan (2013) showed that the ability of junior high school

students the connection is still low. Nainggolan (2013) stated that students still

have difficulty formulating the connection between math with other subjects.

Initial tests of the eighth grade students of SMP Assisi Medan show

unsatisfactory results. Many students are still having trouble connecting

mathematics in dailly life. In addition they are also still difficulties in making

connections with other subjects, especially physics.

Here are the questions and answers of students to the questions given by

researchers in order to find out the mathematical connection ability students in the

school items, namely:

1. A rectangular field with a length of 25m and has an area of 200m2. One

afternoon Steven and Joni exercise running around the field.

a. When Steven ran at a constant speed of 1m / s, how many minutes the time

it takes Steven to circumnavigate the field twice?

b. Joni rest after circling the field one time. After checking his watch Johnny

realizes that he may take a minute to circumnavigate the field. What is the

average speed of Joni when running?

c. From the information above, if Joni and Steven collided run the same

(14)

4

2.

Figure 1.1 Ilustration of City A, B, and C

In the figure 1.1, city A and city C is 130 km, while the city A and city B is

50 km. Andy plans toward the city C from city A to drive a car. Because the

bridge that connects the city A and 'city C' was broken, Andi rotate past the

'city' B '. Because in all the way to the 'city C' there is no gas station Andi had

to refuel from 'A town'. If Andi’s car spent 1 liter of premium to travel as far

as 15 km, at least how many liters of premium to be charged to his car Andi? Variance of student’ answer:

1.

Figure 1.2 Variations In Students' Answers To The Connection With Physics

From the results of the figure 1.2 it can be seen that the students

have difficulty in connecting mathematics with physics in determining

the relationship of distance, speed, and time. Total percentage of

students in the class that have difficulty to connect mathematics with

physics is 66.67%. A

(15)

2.

Figure 1.3 Variations In Students' Answers To The Connection With Real Life

From the results of the figure 1.3 it can be seen that the students

have difficulty in connecting math to the daily life, that is determining

the race winner based on information about the runner's speed. Total

percentage of students in the class that have difficulty to connect

mathematics with daily life is 40%.

3.

Figure 1.4 Variation Of Students' Answers To The Connections Between Mathematics Topics

From the results of the figure 1.4 it can be seen that students are

have difficulty connecting Pythagorean theorem to calculate length of

(16)

6

connect mathematics with daily lifebetween mathematics topics is

46.67%.

Based on the results of interviews with one of the teachers of

mathematics in eighth grade, it is known that most students are able to write down

the information that is known from contextual problem into mathematical form.

But in the settlement, they have difficulty. They did not complete the

mathematical models they have made, but rather to answer questions based on

their daily experiences. It can be said the students have difficulties to connect

math to everyday life.

According to constructivist learning theory, knowledge can not simply

transferred from teacher to the students. Students need to build their own

knowledge. Learning approach that could make active learning and develop students’ mathematical connection ability are Realistic Mathematics Education approach and Problem Posing approach. Both of these learning approach use real

context which could help students build their own knowledge.

To develop students’ mathematical connection ability, Realistic mathematics education have an unique characteristics that is intertwinement.

Realistic mathematics education puts intertwinement between mathematical

concepts as things to be considered in the learning process (Wijaya, 2010: 23).

Further Wijaya (2010) said "through this connection, the study of mathematics is

expected to introduce and build more than one at the same mathematical concepts

(although there is a dominant concept)”. With intertwinement as the main

characteristic of realistic mathematics education, then the mathematical

connection ability of students could be better.

Characteristics of realistic mathematics education, namely: (1) the use of

context, (2) the use of a model for progressive mathematization, (3) utilization of

students' construction, (4) interactivity, and (5) intertwinement. The use of context

means the learning process comes from contextual problems. The use of models in

realistic mathematics education means the use of models and models for. Model

of used in horizontal mathematization, ie to connect to the real problems in the

(17)

ie to change the form of the mathematical form of formal or informal to formal

form to the form of formal higher.

Furthermore, in realistic mathematics education students are required to

construct their own knowledge of the problems faced. Because the students

construct their own ideas, then they have the various answers. It can be used to

compare the response of teachers and draw conclusions. The results of the

research Yunita (2013) showed that students’ mathematical connection ability in realistic mathematics class is better than students’ mathematical connection ability in conventional class. It means that realistic mathematics education could increase students’ mathematical connection ability.

Problem posing is learning approach which is the development of

problem solving. In this learning approach, students require to pose problem and

also the solution based on the given situation. The problem that can pose by the

students could be problem from daily life, new problem from given problem, or

problem that similar to given problem. The problem may be worded or re-worded

either before its solution or during the solving process or after it. Problem posing affects both students’ learning and teachers’ teaching of mathematics (Barlow & Cates, 2006). Problem posing enable students to reflect their mathematical

perceptions. Problem solving also allows students to connect their mathematical

knowledge and abilities to each other, which helps them develop reasoning and

communicating skills (Kilic, 2013). The result of research by Ramdhani (2012)

showed that problem posing approach could increase mathematical connection

ability of students. This means that problem posing approach has positive impact to students’ mathematical connection ability.

(18)

8

1.2.Problem Identification

Based on the background of the problems described above, we can

identify issues that are relevant to the study include:

1. Students are still difficulties in connecting between concepts in

mathematics.

2. Students are still difficulties in connecting mathematical concepts

with other subjects.

3. Students are still difficulties in connecting concept mathematics in

daily life.

1.3.Problem Limitation

Seeing the wide scope of the problems identified than the time and ability

to research, the investigator felt the need to limit the issues to be studied in order

to analyze the results of this research can be conducted more in-depth and

focused. Issues that will be examined in this study is limited to mathematical

connection ability of eight grade junior high school students academic year

2014/2015 who are taught with Realistic Mathematics Education approach and

Problem Posing approach.

1.4.Problem Formulation

Based on the background that has been disclosed, the formulation of the

problem in this research are:

Is there any difference of students’ mathematical connection ability

taught using Realistic Mathematics Education approach and Problem Posing

Approach?

1.5.Research Objectives

(19)

1.6.Research Significance

After doing this research study is expected to provide significant benefits,

namely:

1. As an input for teachers and prospective teachers of mathematics concerning

the application of realistic mathematics instruction to increase student

capacity of the mathematical connections.

2. As hint and enthusiasm for students to increase mathematical connection

ability in mathematics learning.

3. For information and comparisons to other writers or readers who are

interested in doing similar research.

1.7.Operational Definition

1. The indicators of students’ mathematical connection ability which will be

measured are:

a. To use connection between mathematical topics

b. To use connection of mathematics to other subject (Physics)

c. To use connection of mathematics to daily life

2. The syntax of Realistic Mathematics Education approach as follows:

a. Understanding contextual problem

Teacher giving SAS that contain contextual problem and ask the student

to understand the problem

b. Solving contextual problem

Students discuss in their own group to solve the contextual problem.

c. Comparing or discussing answer

Students present their group answer and the other group giving opinion

and choose the best solution.

d. Concluding

Students make summary and conclusion from their activities.

3. The syntax of Realistic Mathematics Education approach as follows:

a. Giving facts (situation)

(20)

10

b. Discover problem

Students discover problem that they can met based on given situation in

SAS.

c. Understanding problem

Students doing management of information got from situation and pose

question.

d. Meditate solution

Students discuss alternative solution of their own question.

e. Solving problem

(21)

45 CHAPTER V

CONCLUSION AND SUGGESTION

5.1 Conclusion

Based on the analysis and discussion of research results, then it can be

concluded that there is significant difference of student’s mathematical connection

ability which taught by Realistic Mathematics Education approach (experimental

class I) with Problem Posing approach (experimental class II) at SMP Swasta

Katolik Assisi Medan Academic Year 2014/2015.

For indicator to use connection between mathematical topics and to use

connection of mathematics to other subject, students’ mathematical connection

ability taught using problem posing approach is higher than using realistic

mathematics education approach. For indicator to use connection of mathematics to daily life, students’ mathematical connection ability taught using realistic mathematics education approach is higher than using problem posing approach.

5.2 Suggestion

Based on the results of research, then researcher submits some

suggestions, as follows:

1. Based on mathematical connection indicator that will be achieved, problem

posing approach is more effective than realistic mathematics education

approach with requirement that teacher should be able to manage time

effectively.

2. Contextual problem that used in realistic mathematics education class should

ask students to do real activity and situation that given in problem posing

class should contain many information that could used by students.

3. Learning process of mathematics by using Realistic Mathematics Education

approach and Problem Posing approach needs longer time since in its

learning, students receive information from teacher indirectly, so that is

(22)

46

4. For further researcher, result and instrument of this research can be used as

consideration to implement Realistic Mathematics Education approach and

(23)

REFERENCES

Alam, B. I., 2012, Peningkatan Kemampuan Pemahaman dan Komunikasi Matematika Siswa SD Melalui Pendekatan Realistic Mathematics Education (RME), Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY

Best, J W. And James V. Kahn, 2007, Research In Education: Ninth Edition, New Delhi: Prentice-Hall of India

BSNP, 2006, Standar Isi Untuk Satuan Pendidikan Dasar dan Menengah, Jakarta

Cai, J, 1995, A Cognitive Analysis of U.S and Chinese Students’ Mathematical Performance On Tasks Involving Computation, Simple Problem Solving, and Complex Problem Solving, Journal for Research in Mathematics Education Monograph series 7, Reston, VA: NCTM

, 2005, U.S and Chinese Teachers’ Knowing, Evaluating, and Constructing Representation in Mathematics Instruction, Mathematical thinking and Learning 7(2): 135-169

Daryanto, 2013, Inovasi Pembelajaran Efektif, Bandung: Yrama Widya

Fauzan, A. dan Yerizon, 2013, Pengaruh Pendekatan RME dan Kemandirian Belajar Terhadap Kemampuan Matematis Siswa, Semirata FMIPA Universitas Lampung, 7-14

FMIPA UNIMED, 2012, Pedoman Penulisan Proposal dan Skripsi Mahasiswa Program Studi Kependididkan, FMIPA, Medan

Ghasempour, et.al., 2013, Innovation In Teaching and Learning through Problem Posing Tasks and Metacognitive Strategies, International Journal of Pedagogical Innovations 1(1): 53-62

Jaelani, A., 2012, Standar Isi dan Standar Proses Dalam Pembelajaran Matematika, Seminar Nasional Pendidikan Matematika

(24)

48

Nainggolan, A.C., 2013, Peningkatan Kemampuan Pemecahan Masalah dan Koneksi Matematis Siswa Kelas VIII SMP Rayon VII Kotamadya Medan Melalui P-Pendekatan Matematika Realistik, Thesis, Pascasarjana, Unimed, Medan

Nainggolan, P., 2009, Pengaruh Pendekatan Matematika Realistik Dan Motivasi Belajar Siswa Terhadap Kemampuan Pemodelan Matematika Siswa SMP di Lubuk Pakam TP.2008/2009, Thesis, Pascasarjana, Unimed, Medan

Nalole, M., 2008, Pembelajaran Pengurangan Pecahan Melalui Pendekatan Realistik Di Kelas V Sekolah Dasar, INOVASI 5(3): 136-147

Nasution, A.V., 2013, Pengaruh Pendekatan Matematika Realistik Terhadap Kemampuan Penalaran dan Kemampuan Koneksi Matematis Siswa SD Negeri Medan, Thesis, Pascasarjana, Unimed, Medan

Nasution, W., 2012, Peningkatan Kemampuan Pemecahan Masalah Matematika Siswa Sekolah Menengah Pertama Melalui Pendekatan Matematika Realistik, Thesis, Pascasarjana, Unimed, Medan

NCTM, 2010, Principles and Standards for School Mathematics, Reston, VA: NCTM

Ramdhani, S, 2012, Pembelajaran Matematika Dengan Pendekatan Problem Posing Untuk Meningkatkan Kemampuan Pemecahan Masalah dan Koneksi Matematis Siswa, Thesis, Pascasarjana, UPI, Bandung

Saragih, R. M. B., 2011, Peningkatan Kemampuan Pemecahan Masalah Matematika Siswa Melalui PendekatanMatematika Realistik, Thesis, Pascasarjana, Unimed, Medan

Sfard, A., 2012, Why Mathematics? What Mathematics?, The Mathematics Educator 22(1): 3-16

Silver, E. A, 1995, On mathematical problem posing, For the Learning of Mathematics 14(1): 19-28

Singer, et.al., 2011, Problem Posing In Mathematics Learning and Teaching: A Research Agenda, Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (1): 137-166

(25)

Stoyanova, E, 2003, Extending students understanding of mathematics via problem posing, Mathematics Teacher 59(2): 32-40

Supardi U., 2013, Aplikasi Statistika Dalam Penelitian: Konsep Statistika yang Lebih Komprehensif, Jakarta: Smart

Sumarmo, U., 2006, Pembelajaran Keterampilan Membaca Matematika Pada Siswa Sekolah Menengah, FPMIPA UPI

Sumarmo, U, 2010, Berpikir dan Disposisi Matematik: Apa, Mengapa, dan Bagaimana Dikembangkan Pada Peserta Didik, FPMIPA UPI

Suryadi, D. dan Turmudi, 2011, Kesetaraan Didactical Design Research (DDR) Dengan Matematika Realistik Dalam Pengembangan Pembelajaran Matematika, Seminar Nasional Matematika dan Pendidikan Matematika UNS 2011, 1-12

Suryanto, et.al, 2010, Sejarah PMRI, Departemen Pendidikan Nasional, Jakarta

Trianto, 2011, Mendesain Model Pembelajaran Inovatif-Progresif, Jakarta: Kencana

Warwick, J., 2007, Some Reflections on the Teaching of Mathematical Modeling, The Mathematics Educator 17(1): 32-41

Widarti, A., 2012, Kemampuan Koneksi Matematis Dalam Menyelesaikan Masalah Kontekstual Ditinjau dari Kemampuan Matematis Siswa, [Online], Available: http://ejurnal.stkipjb.ac.id/index.php/AS/article/view File/205/141

Wijaya, A., 2010, Pendidikan Matematika Realistik: Suatu Alternatif Pendekatan Pembelajaran Matematika, Yogyakarta: Graha Ilmu

Gambar

Table 2.1 Step of Realistic Mathematics Education Approach
Figure 1.1 Ilustration of City A, B, and C
Figure 1.2 Variations In Students' Answers To The Connection  With Physics
Figure 1.3  Variations In Students' Answers To The Connection With Real Life

Referensi

Dokumen terkait

Menyajikan hasil penerapan fitur aplikasi pengolah simulasi visual tahap produksi. Aplikasi pengolah simulasi visual

Sanggahan dapat diberikan secara elektronik melalui aplikasi SPSE atau secara tertulis ditujukan Kepada Kelompok Kerja (Pokja) POKJA YUDISTIRA Unit Layanan Pengadaan

Tujuan dari penelitian ini adalah untuk mengetahui apakah metode discovery: (1) dapat mengaktifkan siswa kelas X di SMA Stella Duce 1 Yogyakarta dalam

[r]

the teacher’s perspective of the importance of teacher talk in classroom and how it impacts on the learner talk based on her teaching experience, without figuring out. the

Dalam penulisan tugas akhir ini akan dibahas tentang pengaruh blower elektrik sebagai supercharger terhadap performansi mesin dua bahan bakar ( dual fuel ) pada mesin

Surat Pernyataan bahwa perusahaan yang bersangkutan dan manajemennya tidak dalam pengawasan pengadilan, tidak bangkrut dan tidak sedang dihentikan kegiatan usahanya dibubuhi

LrNI\GRSITAS NEGERI YOGYAKART{ dipandang perlu untuk dilaksanakan ujian Tugas Akhir D-3 dengan tertib dan lancar serta penentuan hasilnya dapat.. dinilai secara