• Tidak ada hasil yang ditemukan

art. rev 2REZ. 135KB Jun 04 2011 12:08:21 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "art. rev 2REZ. 135KB Jun 04 2011 12:08:21 AM"

Copied!
8
0
0

Teks penuh

(1)

UNIVALENCE FOR INTEGRAL OPERATORS

by

Daniel Breaz, Nicoleta Breaz

Abstract: We study in this paper two integral operators and we determine the conditions for univalence for these integral operators.

Let A be the class of the functions f, which are analytic in the unit disc

{

∈ ; <1

}

= z C z

U and f(0)= f'(0)−1=0 and denote by S the class of univalent functions.

Teorema 1 [4] If fS, α∈C and α ≤1/4 then the function:

[ ]

′ =z f t dt z

G

0

) ( )

( α

α

is univalent in U.

Teorema 2 [3] If the function gS,α∈C,α ≤1/4n, then the function defined by

[ ]

′ =z n

n z f t dt

G

0

, ( ) ( )

α α

is univalent in U for

n

N

*. Teorema 3 [2]

Let α,aC ,Reα>0 and fA. If

U z z

f z zf z

∈ ∀ ≤ −

) ( 1 ) ( '

) ( " Re

1 2Re α

α

then (∀)β∈C, Reβ ≥Reα , the function

( )

β β

β β

/ 1

0 1

) ( '

  

 

=

ztf t

z F

(2)

Teorema 4 [1] If the function g is holomorphic in U and g(z)<1 in U then

U

∈ ∀)ξ

( and zU the following inequalities hold:

2 2

1 ) ( 1 ) ( '

) 1 ( , 1 ) ( ) ( 1

) ( ) (

z z g z

g

z z g

z g

z g g

− − ≤

− − ≤ −

ξ ξ ξ ξ

the equalities hold in case , where 1 1

) ( )

( =

+ +

=ε ε

z t

t z z

g and u <1.

Remark 5 [1]

For z = 0, the inequalities (1) are the form: ξ ξ

ξ

− (−0) ( ) 1

) 0 ( ) (

g g

g g

and

ξ ξ

ξ

⋅ +

+ =

) 0 ( 1

) 0 ( )

(

g g

g .

Considering g(0) = a and z U

z a

a z z g

z ∀ ∈

⋅ +

+ ≤ ⇒

= ( )

1 ) (

ξ .

Lemma 6 (Schwartz)

If the function g is holomorphic in U, g(0) = 0 and g

( )

z ≤1 (∀)zU, then: U

)z ( )

(zz ∀ ∈

g and g'(0) ≤1

the equalities hold in case g(z) = z, where =1.

Theorem 7. Let α, , , , complex number with the properties Reδ = a >0, f,g

A ...,

z b z g z

a z

f = + 2 2 +... , = + 2 2 +

, ) ( , 1 ) ( '

) ( "

, ) ( , 1 ) ( '

) ( "

U z n z g

z g

U z n z f

z f

∈ ∀ ≤

∈ ∀ ≤

(2)

2 2

2 2a

n

n a n a n

   

  + ⋅ + ≤

(3)

and

1 1 1

< + β

α . (4)

Then (∀)γ ∈C,Reγ ≥athe function:

[ ] [ ]

α β γ

γ γ

β

α γ

/ 1

0 1 ,

,

, ( ) '( ) '( )

   

=

zn n

n z t f t g t dt

D

is univalent (∀)nN* \

{}

1 .

Proof: We consider the function:

′ ′

= z n n

dt t g t f z h

0[ ( )] [ ( )]

)

( α β (5)

The function

) ( '

) ( " 1 ) (

z h

z h z

p = ⋅

αβ (6)

where αβ satisfies the conditions (3). We obtain:

{

}

=

′ ⋅ ′

′ ′ ⋅ ′ ⋅ = ′′′ ⋅

= αβ αβ αα ββ

)] ( [ )] ( [

)] ( [ )] ( [ 1 ) (

) ( 1 ) (

n n

n n

t g t

f

t g t

f z

h z h z

p

(

)

[ ] [

]

(

)

[

] [ ]

⋅ ′ =

′′ ⋅ ′

⋅ ⋅ ⋅ ′ + ′

⋅ ′′ ⋅ ′

⋅ ⋅ ⋅ ⋅

= α − α− αβ βα β − β−

αβ ( ) ( )

) ( )

( )

( )

( ) ( )

(

1 1 1 1 1

n n

n n

n n

n n

n n

z g z f

z g z

g z n z

f z

g z f z

f z n

)

(

) ( )

(

)

( 1

1

n n n

n n n

z g

z g z n z

f

z f z n

′⋅ ′′ ⋅

⋅ + ′ ⋅ ′′ ⋅

⋅ ⋅

(4)

≤ ⋅

⋅ + ⋅

= − −

) ( '

) ( " )

( '

) ( " )

(

1 1

n n n

n n n

z g

z g nz z

f z f nz z

p

αββ αβα

≤ ⋅

⋅ ⋅ + ⋅

≤ − −

) ( '

) ( " )

( '

) (

" 1

1

n n n

n n n

z g

z g z n z

f z f nz

αββ αβα

≤ ⋅

⋅ ⋅ + ⋅

⋅ ⋅

≤ − −

) ( '

) ( " )

( '

) (

" 1

1

n n n

n n n

z g

z g z n z

f z f z n

β α

β β

α α

1 1 1 1 1 1 1

< + = ⋅ ⋅ + ⋅ ⋅

β α α β

n n n

n .

p(0) = 0

By Schwartz lemma we have:

⇔ ⋅

≤ ⇔

≤ ≤

⋅ −1 −1

) ( '

) ( " )

( '

) ( "

1 n n

z z

h z h z z z h

z h

αβ αβ

1

) ( '

) ( "

1 2 2 n

a a

z a

z

z h

z zh a

z

⋅     

   − ⋅ ≤ ⋅

    

   −

⇔ αβ (8)

Let’s the function x x z

a x x

Q R

Q n

a

= ⋅ − =

→ , ( ) 1 , ]

1 , 0 [ :

2

.

We have

[ ]

0,1 )

( , 2 2

2 )

( 2 ∀ ∈

  

 

+ ⋅ +

x

a n

n a n x

Q a

n

.

(5)

1 ) ( '

) ( "

1 2

≤ ⋅

⋅     

   −

z h

z h z a

z a

.

In this conditions applying the theorem 3 we obtain:

[ ] [ ]

α β γ

γ γ

β

α γ

/ 1

0 1 ,

,

, ( ) '( ) '( )

   

=

zn n

n z t f t g t dt

D

is univalent (∀)nN* \{1}.

Corollary 8 [5]. Let α,γ∈C ,Reα =a>0, gA

If

)

( 1 ) ( '

) ( "

U z n

z g

z g

∈ ∀ ≤

and

a n

n a n a

n 2 /2

2 2

   

  + +

γ

then (∀)β∈C, Reβ ≥a, the function

[ ]

γ β

β γ

β β

/ 1

0 1 ,

, ( ) '( )

   

 

=

zn

n z t g t

G

is univalent (∀)nN* \

{}

1 .

Theorem 9. Let α, , , complex number, Reδ =c>0, and the functions f,gA ...,

z b z g z

a z

f = + 2 2 +... , = + 2 2 + .

If f and g satisfy the conditions 1 ) ( '

) ( "

<

z f

z f

and 1 ( ) , )

( '

) ( "

U z z

g z g

∈ ∀

< (9)

and

α

with

β

the conditions: 1 1 1

< + β

(6)

2 1

2 1

max

1

2 2

2 2 2

1

    

 

    

 

+ ⋅ +

+ ⋅ + ⋅ ⋅ − ≤

z b a

b a z

z c

z c

z

αβ β α

αββ α

αβ (11),

then (∀)γ∈C,Reγ ≥c the function

[ ] [ ]

α β γ γ

γ β

α γ

/ 1

0 1 ,

, ( ) '( ) '( )

   

=

ztf t g t

z

F

is univalent. Proof: Let

[ ] [ ]

f t g t dt z

h

z

=

0

) ( ' ) ( ' )

( α β .

Let

) ( '

) ( " 1 ) (

z h

z h z

p = ⋅

αβ .

Then:

( )

(

(

)

) (

(

)

)

(

(

)

) (

(

)

)

= ⋅

⋅ ⋅

⋅ ⋅

+ ⋅

⋅ ⋅ ⋅

= αβ α α− α β β αβ α β α β−β

) ( ' ) ( '

) ( " )

( ' )

( ' 1 )

( ' ) ( '

) ( ' ) ( " )

( '

1 1 1

z g z f

z g z g z

f

z g z f

z g z f z f z

p

) ( '

) ( " )

( '

) ( "

z g

z g z

f z f

⋅ + ⋅

= αβα αββ .

The function p is olomorf , (∀)zU .

We respect the conditions (9) and (10) obtain:

1 1 1 ) ( '

) ( " )

( '

) ( " )

( '

) ( " )

( '

) ( " )

( = ⋅ + ⋅ ≤ ⋅ + ⋅ = + <

β α αββ

αβα αββ

αβα g z

z g z

f z f z

g z g z

f z f z

p

U z

∀)

( .

αβ β α αββ

αβα αββ

αβα 2 2 2 2 2 2 2

) 0 ( '

) 0 ( " )

0 ( '

) 0 ( " )

0

( a b a b

g g f

f

p = ⋅ + ⋅ = ⋅ + ⋅ = ⋅ +

(7)

U z

z b a

b a z

z

p ∀ ∈

⋅ + ⋅ +

+ ⋅ +

≤ , ( )

2 1

2 )

(

2 2

2 2

αβ β

α αβ

β α

⇔ ∈ ∀ +

+

+ ⋅ + ≤ ⋅

z U

z b a

b a z

z h

z h

) ( , 2

1 2 )

( '

) ( " 1

2 2

2 2

αββ

α αβ

β α

αβ

U z

z b a

b a z

z c

z

z h

z zh c

z c c

∈ ∀ ⋅

+ ⋅ +

+ ⋅ + ⋅ ⋅ − ⋅ ≤ ⋅

⇔ , ( )

2 1

2 1

) ( '

) ( " 1

2 2

2 2 2

2

αβ β

α αβ

β α

αβ .

The last inequality implies:

    

 

    

 

⋅ + ⋅ +

+ ⋅ + ⋅ ⋅ − ⋅

≤ ⋅

z b a

b a z

z c

z

z h

z zh c

z c

z c

αβ β

α αβ

β α αβ

2 2

2 2 2

1 2

2 1

2 1

max )

( '

) ( " 1

The relation (11) and the last inequality implies:

U z z

h z zh c

z c

∈ ∀ ≤ ⋅

) ( , 1 ) ( '

) ( "

1 2

and by the theorem 3 we obtain

[ ] [ ]

α β γ γ

γ β

α γ

/ 1

0 1 ,

,

, ( ) '( ) '( )

   

=

ztf t g t

z F

(8)

Corollary 10 [5] Let

α

,

γ

C

,

Re

α

=

b

>

0

and function ...

) (

, = + 2 2 +

A g z z a z g

Dacă

U z z

g z g

∈ ∀ <1, ( ) )

( '

) ( "

and satisfy the condition:

    

  

  

 +

+ ⋅     

  

⋅ − ≤

a z

a z z b

z b

z

2 2 2

1 1 2

2 1

max

1 γ

then for allβ∈C, Reβ ≥b, the function

[ ]

γ β β

γ

β β

1

0 1

, ( ) '( )

   

 

=

ztg t

z G

is univalent.

REFERENCES

[1] Z. Nehari- Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.

[2] N.N. Pascu- An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Braşov, (1987), 43-48.

[3] N.N. Pascu, V. Pescar, On the integral operators of Kim-Merkens and Pfaltzgraff, Studia(Mathematica), Univ. Babeş-Bolyai, Cluj-Napoca, 32, 2(1990), 185-192.

[4] J. A. Pfaltzgraff, Univalence of the integral of f

( )

z λ, Bull. London Math. Soc. 7(1975), no 3.254-256.

[5] V. Pescar and Shigeyoshi Owa- Univalence of certain integral operators, International J. Math. & Math. Sci. Vol. 23.No.10(2000), 697-701.

Authors:

Daniel Breaz - „ 1 Decembrie 1918” University of Alba Iulia, str. N.Iorga, No.13, Departament of Mathematics and Computer Science, dbreaz@lmm.uab.ro

Referensi

Dokumen terkait

Sehubungan dengan Berita Acara Penjelasan Nomor : BA.02/GST-SUV/POKJA/ IV/2017 tanggal 7 Maret 2017 untuk kegiatan pemilihan Jasa Konsultansi Pekerjaan Pengawasan Pembangunan

Sehubungan dengan point 1 dan 2 tersebut di atas, Pokja ULP memutuskan bahwa Pelelangan Pekerjaan Supervisi / Pengawasan Pembangunan Fasilitas Pelabuhan Tanah Ampo

Pada hari ini Sabtu tanggal 15 bulan April tahun 2017, pukul 11.00 WIB, Kelompok Kerja V Pemilihan Penyedia Barang/Jasa Unit Penyelenggara Bandar Udara Dewadaru Karimunjawa

Penggunaan faktor produksi luas lahan dan pestisida belum optimum dan penggunaan tenaga kerja tidak optimum.Dari penelitian Sriyoto et.al., (2007) yang menggunakan analisis

[r]

[r]

Apabila tidak tersedia anggaran atau tersedia namun tidak sesuai dengan klasifikasi paket yang diumumkan, maka proses pengadaan dinyatakan batal dan Penyedia tidak

Secara khusus, berkenaan dengan Pendidikan Akhlak, konseptualisasi pendidikan perdamaian ( peace education ) dalam buku teks yang diterbitkan perlu didiskusikan.. Persoalan