This work proposes an approach to estimate the complex Poissonâs ratio through an indirect method. The complex modulus and the complex shear modulus were ïŹrst determined by performing two diïŹerent tests using a dynamic mechanical analyzer.
Afterwards, the estimates for complex Poissonâs ratio are provided by the use of the elastic-viscoelastic correspondence principle.
The complex Poissonâs ratio based on the modulus provided from DMA output software proved meaningless from the physical point of view. Therefore, the use of the shear modulus provided by DMA required a correction scale factor that was estimated using measured data provided by works found in the literature.
A key point to be emphasized is that investigations in the literature have been indicating that the viscoelastic properties provided by DMA equipment present great levels of discrepancy in scale depending on the test modality chosen for the mate- rial characterization as reported in [11, 18, 30].Therefore, based on these articles found in the literature and on the data analyzed in this work, two main points are worth to be highlighted here: (i) DMA seems to be an eïŹcient tool aimed at exam- ining material properties for quality control, research and development, and also for the establishment of optimum processing conditions; (ii) care should be taken when comparing viscoelastic properties provided directly from DMA software that come from diïŹerent test modalities inasmuch as these are possibly aïŹected by a biased scale factor.
References
1. Alotta, G., Barrera, O., Cocks, A.C., Paola, M.D.: On the behaviour of a three-dimensional fractional viscoelastic constitutive model. Meccanica 52(9), 2127â2142 (2017).https://doi.
org/10.1007/s11012-016-0550-8
2. Armenkas, A.E.: Advanced Mechanics of Materials and Applied Elasticity. CRC Press, Florida (2005)
3. Arzoumanidis, G.A., Liechti, K.M.: Linear viscoelastic property measurement and its signif- icance for some nonlinear viscoelasticity models. Mech. Time-Depend. Mater.7, 209â250 (2003).https://doi.org/10.1023/B:MTDM.0000007357.18801.13
4. BonïŹglio, P., Pompoli, F.: A simpliïŹed compression test for the estimation of the Pois- sonâs ratio of viscoelastic foams. Polym. Test.61, 324â332 (2017).https://doi.org/10.1016/
j.polymertesting.2017.05.040
5. Borges, F.C.L., Castello, D.A., Magluta, C., Rochinha, F.A., Roitman, N.: An experimental assessment of internal variables constitutive models for viscoelastic materials. Mech. Syst.
Signal Process. 50â51 (2015).https://doi.org/10.1016/j.ymssp.2014.04.023
6. Charpin, L., Sanahuja, J.: Creep and relaxation Poissonâs ratio: Back to the foundations of linear viscoelasticity. Application to concrete. Int. J. Solids Struct. 110â111 (2017).https://
doi.org/10.1016/j.ijsolstr.2017.02.009
7. Christensen, R.M.: Theory of ViscoelasticityâAn Introduction. Academic Press, New York (1982)
80 I. R. Henriques et al.
8. Dae Han, C., Kim, J.K.: On the use of time-temperature superposition in multicompo- nent/multiphase polymer systems. Polymer 34(12), 2533â2539 (1993). https://doi.org/10.
1016/0032-3861(93)90585-X
9. Dauvillier, B.S., Feilzer, A.J., De Gee, A.J., Davidson, C.L.: Visco-elastic parameters of dental restorative materials during setting. J. Dent. Res.79(3), 818â823 (2000).https://doi.org/10.
1177/00220345000790030601
10. Dealy, J., Plazek, D.: Time-temperature superpositionâa users guide. Rheol. Bull.78, 16â31 (2009)
11. Deng, S., Hou, M., Ye, L.: Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym. Test.26(6), 803â813 (2007).
https://doi.org/10.1016/j.polymertesting.2007.05.003
12. Estrada-Royval, I.-A., DĂaz-DĂaz, A.: Post-curing process and visco-elasto-plastic behaviour of two structural adhesives. Int. J. Adhes. Adhes.61(9), 9â111 (2015).https://doi.org/10.1016/j.
ijadhadh.2015.06.001
13. Graziani, A., Bocci, M., Canestrari, F.: Complex Poissonâs ratio of bituminous mixtures: mea- surement and modeling. Mater. Struct.47, 1131â1148 (2014).https://doi.org/10.1617/s11527- 013-0117-2
14. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poissonâs ratio and modern materials. Nat.
Mater.10(11), 823â837 (2011).https://doi.org/10.1038/nmat3134
15. HernĂĄndez, W.P., Castello, D.A., Ritto, T.G.: Uncertainty propagation analysis in laminated structures with viscoelastic core. Comput. Struct.164(2), 23â37 (2016).https://doi.org/10.
1016/j.compstruc.2015.10.006
16. Hilton, H.: ClariïŹcations of Certain Ambiguities and Failings of Poissonâs Ratios in Linear Viscoelasticity. J. Elast.104(1), 303â318 (2011).https://doi.org/10.1007/s10659-010-9296-z 17. Hilton, H.: Elastic and Viscoelastic poissonâs ratios: the theoretical mechanics perspective.
Mater. Sci. Appl.8, 291â332 (2017)
18. Kumar, N.P.: Viscoelastic characterization and eïŹective damping of a carbon/polyurethane laminate. Master thesis, Rochester Institute of Technology, New York (2016)
19. Lack, I., Krupa, I., Stach, M., Kuma, A., Juriov, J., Chodk, I.: Thermal lag and its practical con- sequence in the dynamic mechanical analysis of polymers. Polym. Test.19, 775â771 (2000).
https://doi.org/10.1016/S0142-9418(99)00046-X
20. Lakes, R., Wineman, A.: On poissonâs ratio in linearly viscoelastic solids. J. Elast.85(1), 45â63 (2006).https://doi.org/10.1007/s10659-006-9070-4
21. Lakes, R.S.: Viscoelastic measurement techniques. Rev. Sci. Instrum.75(4), 797-810 (2004).
https://doi.org/10.1063/1.1651639
22. Lee, E.H.: Stress analysis for linear viscoelastic materials. Rheol. Acta. 1(4-6), 426â430 (1961).https://doi.org/10.1007/BF01989085
23. Menard, K.: Dynamic mechanical analysisâa practical introduction. CRC Press LLC, Florida (2008)
24. Placet, V., FoltĂȘte, E.: Is Dynamic Mechanical Analysis (DMA) a non-resonance technique?.
EPJ Web Conf.6, (2010).https://doi.org/10.1051/epjconf/20100641004
25. Pritz, T.: The Poissonâs loss factor of solid viscoelastic materials. J. Sound Vib.306(3), 790â
802 (2007).https://doi.org/10.1016/j.jsv.2007.06.016
26. Rao, K.V., Dayananda, G.N., Ananthapadmanabha, G.S.: Viscoelastic characterisation of an epoxy based shape memory polymer (SMEP). Indian J. Adv. Chem. Sci.2, 64â67 (2014) 27. Rouleau, L., Deu, J.-F., Legay, A., Le Lay, F.: Application of KramersKronig relations to
timetemperature superposition for viscoelastic materials. Mech. Mater.65(10), 66â75 (2013).
https://doi.org/10.1016/j.mechmat.2013.06.001
28. Rouleau, L., Pirk, R., Pluymers, B., Desmet, W.: Characterization and modeling of the vis- coelastic behavior of a self-adhesive rubber using dynamic mechanical analysis tests. J. Aerosp.
Technol. Manag.7(2), 200â208 (2015).https://doi.org/10.5028/jatm.v7i2.474
29. Shaw, M.T., MacKnight, W.J.: Introduction to Polymer Viscoelasticity. Wiley, New York (2005)
The Mechanical Behavior of Viscoelastic . . . 81
30. Swaminathan, G., Shivakumar, K.: A re-examination of DMA testing of polymer matrix composites. J. Reinf. Plast. Comp. 28(8), 979â994 (2008). https://doi.org/10.1177/
0731684407087740
31. Tschoegl, N.W., Knauss, W.G., Emri, I.: Poissonâs ratio in linear viscoelasticity a crit- ical review. Mech. Time-Depend. Mater. 6(1), 3â51 (2002). https://doi.org/10.1023/A:
101441150317
32. Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: an introduc- tion. Springer, Berlin (1989)
33. Van Gurp, M., Palmen, J.: Time-temperature superposition for polymeric blends. Rheol. Bull.
67(1), 5â8 (1998)
34. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mech- anisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc.77(14), 3701â3707 (1955).https://doi.org/10.1021/ja01619a008
35. Yu, H., Kongsmo, R., Patil, N., He, J., Breiby, D.W., Zhang, Z.: On determining the Poissonâs ratio of viscoelastic polymer microparticles using a ïŹat punch test. Int. J. Mech. Sci.128â129, 150â158 (2017).https://doi.org/10.1016/j.ijmecsci.2017.04.019