• Tidak ada hasil yang ditemukan

6 Conclusion

Dalam dokumen smart materials and structures: new research (Halaman 119-125)

Under the action of applied electromechanical loadings, the electroelastic analysis of a cracked piezoelectric material has been made within the framework of the theory of linear piezoelectricity. The associated mixed boundary-value problems are different from those studied previously. The electric boundary conditions are governed by the CODs. By using the Fourier and Hankel transforms to solve the electroelasticity problems related to a crack of finite length and a penny-shaped crack, respectively, a full electroelastic field is deter- mined explicitly. In particular, the asymptotic electroelastic field near the crack front are derived, and the field intensity factors are given. The dependence of field intensity factors on applied electric field for various dielectric permittivities is displayed graphically. Fur- thermore, similar to the strain intensity factor, the COD intensity factor can be used as a suitable fracture criterion of a cracked piezoelectric material. Based on this criterion, the results indicate that applied positive electric fields decrease fracture toughness and negative ones increase fracture toughness for prescribed remote stress. In contrast, applied positive electric fields increase fracture toughness and negative ones decrease fracture toughness for prescribed remote strain or displacement. Therefore, far-field mechanical boundary con- ditions play a crucial role in studying the stability of a crack embedded in a piezoelectric ceramic, which might account for conflicting experimental observations.

References

Abramowitz, M. and Stegun, I. A. 1972. Handbook of Mathematical Functions. Dover, New York.

Broberg, K.B. 1999. Cracks and Fracture, Academic Press, San Diego.

Cao, H. and Evans, A. G. 1994. Electric-field-induced fatigue crack growth in piezo- electrics. J. Am. Ceram. Soc. 77, 1783-1786.

Dunn, M.L., 1994. The effects of crack face boundary conditions on the fracture mechan- ics of piezoelectric solids. Eng. Fract. Mech.48, 25-39.

Chen, W. Q. and Shioya, T. 1999. Fundamental solution for a penny-shaped crack in a piezoelectric medium. J. Mech. Phys. Solids 47, 1459-1475.

Fabrikant, V. I. 1991. Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, Dordrecht.

Fabrikant, V. I. 2003. Computation of infinite integrals involving three Bessel functions by introduction of new formalism. ZAMM.83, 363-374.

Fulton, C. C. and Gao, H. 2001. Effect of local polarization switching on piezoelectric fracture. J. Mech. Phys. Solids, 49, 927-952.

Gao, C.-F. and Wang, M.-Z. 2001. Green’s functions of an interfacial crack between two dissimilar piezoelectric media. Int. J. Solids Struct.38, 5323–5334.

Gao, C.-F. and Fan, W. X. 1999. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. Int. J. Solids Struct.36, 2527-2540.

Gao, H., Zhang T.-Y. and Tong, P. 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic, J. Mech. Phys. Solids,45, 491-510.

Gradshteyn, I. S. and Ryzhik, I. M. 1980. Table of Integrals, Series and Products. Acad- emic Press, New York.

Haertling, G. H. 1987. PLZT electrooptic materials and applications-a review. Ferrl- electrics, 75, 25-55.

Hao, T. H. and Shen, Z. Y. 1994. A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech.47, 793-802.

Huang, J. H. 1997. A fracture criterion of a penny-shaped crack in transversely isotropic piezoelectric media. Int. J. Solids Struct. 34, 2631-2644.

Ikeda, T. 1990. Fundamentals of Piezoelectricity. Oxford University Press.

Jiang, L. Z. and Sun, C. T. 2001. Analysis of indentation cracking in piezoceramics. Int.

J. Solids Struct. 38, 1903-1918.

Karapetian, E., Sevostianov, I. and Kachanov, M. 2000. Penny-shaped and half-plane cracks in a transversely isotropic piezoelectric solid under arbitrary loading. Arch.

Appl. Mech. 70, 201-229.

Kogan, L., Hui, C. Y. and Molcov, V., 1996. Stress and induction field of a spheroidal inclusion of a penny-shaped crack in a transversely isotropic piezoelectric material.

Int. J. Solids Struct.33, 2719–2737.

Kwon, S. M. and Lee, K. Y. 2000. Analysis of stress and electric fields in a rectangular piezoelectric body with a center crack under anti-plane shear loading. Int. J. Solids Struct. 37, 4859-4869.

Li, X.-F. 2002. Electroelastic analysis of an anti-plane shear crack in a piezoelectric ce- ramic strip. Int. J. Solids Struct.39, 1097-1117.

Li X-F and Duan X-Y. 2001. Closed-form solution for a mode-III crack at the mid-plane of a piezoelectric layer. Mech. Res. Comm.28, 703-710.

Li, X.-F. and Lee K. Y. 2004a. Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer J. Mech. Phys. Solids. 52, 2079-2100.

Li, X.-F. and Lee K. Y. 2004b. Crack growth in a piezoelectric material with a Griffith crack perpendicular to the poling axis. Phil. Mag.84, 1789-1820

Li, X.-F. and Lee K. Y. 2004c. Fracture analysis of cracked piezoelectric materials. Int. J.

Solids Struct.41, 4137–4161.

Li, X.-F. and Lee K. Y. 2004d. Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack. ASME J. Appl. Mech.71, 866-878.

Liu, B., Fang, D.-N., Soh, A. K. and Hwang, K.-C. 2001. An approach for analysis of poled/depolarized piezoelectric materials with a crack. Int. J. Fract. 111, 395-407.

McMeeking, R. M. 1999. Crack tip energy release rate for a piezoelectric compact tension specimen. Eng. Fract. Mech.64, 217-244.

McMeeking, R. M. 2001. Towards a fracture mechanics for brittle piezoelectric and di- electric materials. Int. J. Fract.108, 25-41.

Pak, Y. E. 1990. Crack extension force in a piezoelectric material. J. Appl. Mech.57, 647-653.

Pak, Y. E. 1992. Linear electro-elastic fracture mechanics of piezoelectric materials. Int.

J. Fract.54, 79-100.

Park, S. and Sun, C. T. 1995. Fracture criteria for piezoelectric ceramics. J. Am. Ceram.

Soc.78, 1475-1480.

Parton, V.Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683.

Pisarenko, G. G. Chushko, V. M. and Kovalev, S. P. 1985. Anisotropy of fracture tough- ness in piezoelectric ceramics. J. Am. Ceram. Soc.68, 259-265.

Qin, Q. H. 2001. Fracture Mechanics of Piezoelectric Materials. Boston, WIT Press, Southampton

Qin, Q-H and Yu, S. W. 1997. An arbitrarily-oriented plane crack terminating an interface between dissimilar piezoelectric materials. Int. J. Solids Struct.34, 581-590.

Rao, S. S. and Sunar, M. 1994. Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl. Mech. Rev.47, 113-123.

Ru, C. Q. 1999. Electric-field induced crack closure in linear piezoelectric media. Acta Mater.47, 4683-4693.

Schneider, G. A., Felten, F. and McMeeking, R. M. 2003. The electrical potential differ- ence across cracks in PZT measured by Kelvin Probe Microscopy and the implica- tions for fracture. Acta Mater.51, 2235-2241.

Shang, J. K. and Tan, X. 2001. A maximum strain criterion for electric-field-induced fatigue crack propagation in ferroelectric ceramics. Mater. Sci. Eng.A 301, 131-139.

Shindo, Y., Tanaka, K., Narita, F., 1997. Singular stress and electric fields of a piezo- electric ceramic strip with a finite crack under longitudinal shear. Acta Mech. 120, 31-45.

Shindo, Y., Watanabe, K. and Narita, F. 2000. Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int. J. Engng. Sci.38, 1-19.

Sneddon, I. N. 1951. Fourier Transform. McGraw-Hill, New York.

Sosa, H. and Khutoryansky, N., 1996. New developments concerning piezoelectric mate- rials with defects. Int. J. Solids Struct.33, 3399-3414.

Suo, Z., Kuo, C.-M., Barnett, D. M. and Willis, J. R. 1992. Fracture mechanics for piezo- electric ceramics. J. Mech. Phys. Solids.40, 739-765.

Tobin, A. G. and Pak, Y. E. 1993. Effect of electric fields on the fracture behaviour of PZT ceramics. Proc. SPIE, 1916/79, 78-86.

Uchino, K. 1996. Piezoelectric actuators/ultrasonic motors. Norwell, Nassachusetts:

Kluwer Academic Publishers.

Wang, B. L. and Mai, Y.-W. 2003. On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Engng. Sci. 41, 633-652.

Wang, T. C. and Han, X. L. 1999. Fracture mechanics of piezoelectric materials. Int. J.

Fract.98, 15-35.

Wang, X. D. and Jiang, L. Y. 2002. Fracture behaviour of cracks in piezoelectric media with electromechanically coupled boundary conditions. Proc. R. Soc. Lond. A 458, 2545-2560.

Wang, Z. and Zheng, B. 1995. The general solution of three-dimensional problems in piezoelectric media. Int. J. Solids Struct.32, 105-115.

Xu, X.-L. and Rajapakse, R. K. N. D. 2001. On a plane crack in piezoelectric solids. Int.

J. Solids Struct.38, 7643-7658.

Yang, F. 2001. Fracture mechanics for a Mode I crack in piezoelectric materials. Int. J.

Solids Struct.38, 3813-3830.

Yang, J. H. and Lee, K.Y. 2001. Penny shaped crack in three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mech.148, 187–197.

Zhang, T.-Y. and Tong, P. 1996. Fracture mechanics for a mode III crack in a piezoelectric material. Int. J. Solids Struct.33, 343–359.

Zhang, T.-Y., Zhao, M., and Tong, P. 2002. Fracture of piezoelectric ceramics. Adv. Appl.

Mech.38, 147-289.

Zhang, T.-Y., Qian, C.-F. and Tong, P. 1998. Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material. Int. J. Solids Struct.35, 2121-2149.

Zhong, Z. and Meguid, S. A. 1997. Analysis of a circular arc-crack in piezoelectric mate- rials. Int. J. Fract.84, 143-158.

Zuo, J. Z. and Sih, G. C. 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theo. Appl. Fract. Mech. 34, 17-33.

Editor: Peter L. Reece, pp. 113-157 © 2006 Nova Science Publishers, Inc.

Chapter 3

A NALYSIS OF H YBRID A CTUATED L AMINATED

Dalam dokumen smart materials and structures: new research (Halaman 119-125)