These reactions were carried out using our standard procedure. See General Procedure D, Experimental Section, Chapter 2. In no case did analysis of the reaction mixture and crude product by TLC, LCMS, and NMR show anything other than decomposition products.
MeO MeO
252 CO2Me
CO2Me NCO
Cl 253
FeCl3 or Sn(OTf)2
CH2Cl2, 23 °C
MeO
MeO N
Cl
O
MeO2C CO2Me 251
195 CO2Me
CO2Me NCO
Cl 253
FeCl3 CH2Cl2, 23 °C
N Cl
O
MeO2C CO2Me 254 Cl
Cl
The reaction of cyclopropane 252 with allyl isothiocyanate was carried out using our standard procedure. See General Proceedure F, Experimental Section, Chapter 2.
Analysis of the reaction mixture and crude product by TLC, LCMS, and NMR showed only decomposition.
dimethyl (E)-5-(3,4-dimethoxyphenyl)-1-isopropyl-2-(isopropylimino)pyrrolidine- 3,3-dicarboxylate (256):
The reaction of cyclopropane 252 with diisopropylcarbodiimide was carried out using our standard procedure. See General Proceedure G, Experimental Section, Chapter 2.
Analysis of the reaction mixture and crude product by TLC, LCMS, and NMR showed only decomposition.
1H NMR analysis (300 MHz, CDCl
3) of the crude product (256) showed signals correponsing to the 5-arylamidine ring: δ 5.19 (dd, J = 8.4, 3.7, 1H), 3.23 (dd, J = 13.7, 8.5, 1H), 2.69 (dd, J = 13.7, 3.7, 1H). Further purification was not attempted.
MeO MeO
252 CO2Me
CO2Me NCS
Sn(OTf)2 CH2Cl2, 23 °C
MeO
MeO S
N
MeO2C CO2Me 255
MeO
MeO
252 CO2Me CO2Me
Sn(OTf)2 CH2Cl2, 23 °C
MeO
MeO N
N
MeO2C CO2Me
256
NC
i-Pr N
i-Pr
i-Pr i-Pr
The reaction of cyclopropane 252 with benzyl isocyanate was carried out using our standard procedure. See General Proceedure D, Experimental Section, Chapter 2. A mixture of 257 and 258 was obtained, and the following characterization data was collected. 257 (47% yield):
1H NMR (300 MHz, CDCl
3) δ 7.31–7.27 (m, 3H), 7.10–7.06 (m, 2H), 6.87 (d, J = 8.2, 1H), 6.72 (dd, J = 8.2, 2.1, 1H), 6.63 (d, J = 2.1, 1H), 5.11 (d, J
= 14.5, 1H), 4.33 (t, J = 7.6, 1H), 3.93 (s, 3H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.55 (d, J = 14.6, 1H), 2.97 (dd, J = 13.9, 7.3, 1H), 2.69 (dd, J = 13.9, 7.9, 1H).
13C NMR (126 MHz, CDCl
3) δ 167.9, 167.8, 167.0, 149.6, 149.2, 135.5, 130.7, 128.7, 128.5, 127.8, 120.1, 111.1, 109.7, 63.3, 58.6, 56.0, 55.9, 53.6, 53.5, 45.2, 37.8. 258 (40% yield):
1H NMR (300 MHz, CDCl
3) δ 7.37 (s, 1H), 7.35–7.24 (m, 5H), 6.80 (d, J = 0.6, 1H), 5.33 (d, J = 15.3, 1H), 4.42 (dd, J = 4.2, 3.3, 1H), 4.09 (d, J = 15.3, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.72 (s, 3H), 3.49 (s, 3H), 2.88 (dd, J = 6.9, 6.3, 1H), 2.77 (ddd, J = 15.1, 7.0, 4.4, 1H), 2.60 (ddd, J = 15.0, 6.2, 3.2, 1H).
13C NMR (126 MHz, CDCl
3) δ 169.5, 169.5, 169.0, 152.7, 150.0, 137.0, 136.6, 128.8, 128.1, 127.6, 125.0, 105.4, 104.9, 56.4, 56.3, 56.3, 53.0, 52.6, 45.5, 43.8, 29.0.
MeO MeO
252 CO2Me CO2Me
FeCl3
CH2Cl2, 23 °C
MeO
MeO N
O MeO2C CO2Me
NC
Bn O Bn
MeO + MeO
N Bn CO2Me CO2Me
257 258
The reaction of cyclopropane 264 with benzyl isocyanate was carried out using our standard procedure. See General Proceedure D, Experimental Section, Chapter 2.
Isoindolone 265 was obtained in approximately 49% yield, although purification was difficult.
1H NMR analysis (300 MHz, CDCl
3) of showed signals corresponding to the 5- malonyl-containing side chain off the isoindoline ring: δ 3.03–2.94 (m, 1H), 2.83–2.70 (m, 1H), 2.54 (dd, J = 9.9, 7.0, 1H). Further purification was not attempted.
264
FeCl3 (1.1 equiv) CH2Cl2, 23 °C
NC
Bn O
(3 equiv) CO2Me
CO2Me
MeO
MeO OMe
MeO
MeO OMe
N O
Bn CO2Me MeO2C
265
(1) For selected reviews, see: a) Bentley, K. W. Nat. Prod. Rep. 1992, 9, 365–391; b) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–1730; c) Pässler, U.;
Knölker, H.-J. The Pyrrolo[2,1-a]isoquinoline Alkaloids. The Alkaloids:
Chemistry and Biology, Elsevier: Place, 2011; Vol. 70, pp 79–151; d) Chrzanowska, M.; Grajewska, A.; Rozwadowska, M. D. Chem. Rev. 2016, 116, 12369–12465.
(2) Ashley, E. R.; Cruz, E. G.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 15000–
15001.
(3) Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 17270–17271.
(4) a) Trolline: Wang, R. F.; Yang, X. W.; Ma, C. M.; Cai, S. Q.; Li, J. N.; Shoyama, Y. Heterocycles 2004, 63, 1443–1448; b) Olercacein E: Xiang, L., Xing, D. M., Wang, W., Wang, R. F., Ding, Y., and Du, L. J. (2005) Alkaloids from Portulaca oleracea L. Phytochemistry 66, 2595−2601; c) Crispine A: Zhang, Q.; Tu, G.;
Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795–6798.
(5) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198–7199.
(6) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2002, 124, 11566–
11567.
(7) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Trushkov, I. V.;
Melnikov, M. Ya. J. Org. Chem. 2011, 76, 8852–8868.
(8) Complete cleavage of the polarized C–C bond is thought to occur given the rapid racemization of a less-activated analogue (dimethyl 2-phenylcyclopropane-1,1- dicarboxylate) upon exposure to iron(III) chloride. See Chapter 2 for details.
(9) Volkova, Y. A.; Budynina, E. M.; Kaplun, A. E.; Ivanova, O. A.; Chagarovsky, A. O.; Skvortsov, D. A.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Ya.
Chem. Eur. J. 2013, 19, 6586–6590.
(10) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.;
Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.; Trushkov, I. V.;
Melnikov, M. Ya. Org. Lett. 2015, 17, 770–773.
(11) Ivanova, O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Rakhmankulov, E. R.;
Trushkov, I. V.; Semeykin, A. V.; Shimanovskii, N. L.; Melnikov, M. Ya. Chem.
Eur. J. 2011, 17, 11738–11742.
(12) Sandridge, M. J.; France, S. Org. Lett. 2016, 18, 4218–4221.
(13) For selected examples, see: a) Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.;
Gu, Q. Phytochemistry 2011, 72, 1436–1442; b) Lü, W.-W.; Gao, Y.-J.; Su, M.-
Z.; Luo, Z.; Zhang, W.; Shi, G.-B. Helv. Chim. Acta 2013, 96, 109–133; c) Zheng, C.-J.; Shao, C.-L.; Wu, L.-Y.; Chen, M.; Wang, K.-L.; Zhao, D.-L.; Sun, X.-P.;
Chen, G.-Y.; Wang, C.-Y. Mar. Drugs 2013, 11, 2054–2068.
(14) These cyclopropanes are not known in the literature. It is possible the combination of such strong donor and acceptor groups causes significant instability, preventing their isolation.
(15) Shi, M.; Shen, Y. Helv. Chim. Acta 2002, 85, 1355–1363.
(16) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.
Organometallics 1996, 15, 1518–1520.
(17) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, D. Synth. Commun. 1987, 17, 1709–1716.
(18) Lebel, H.; Ladjel, C.; Bréthous, L. J. Am. Chem. Soc. 2007, 129, 13321–13326.
(19) Takeda, K.; Akiyama, A.; Nakamura, H.; Takizawa, S.; Mizuno, Y.; Takayanagi, H.; Harigaya, Y. Synthesis 1994, 1063–1066.
(20) Müller, P.; Fernandez, D. Helv. Chim. Acta 1995, 78, 947–958.
(21) Skvorcova, M.; Grigorjeva, L.; Jirgensons, A. Org. Lett. 2015, 17, 2902–2904.
APPENDIX 3
Spectra Relevant to Chapter 2:
Lewis Acid Mediated (3 + 2) Cycloadditions of
Donor–Acceptor Cyclopropanes with Heterocumulenes
Figure A3.11 H NMR (500 MHz, CDCl3) of compound 195.
195
CO2Me
CO2Me Cl
Figure A3.3 13C NMR (126 MHz, CDCl3) of compound 195.
Figure A3.2 Infrared spectrum (thin film/NaCl) of compound 195.
Figure A3.41 H NMR (500 MHz, CDCl3) of compound 197.
197
CO2Me
CO2Me Me
Me Me
Figure A3.6 13C NMR (126 MHz, CDCl3) of compound 197.
Figure A3.5 Infrared spectrum (thin film/NaCl) of compound 197.
Figure A3.71 H NMR (500 MHz, CDCl3) of compound 144.
N
O CO2Me
i-Pr CO2Me 144
Figure A3.9 13C NMR (126 MHz, CDCl3) of compound 144.
Figure A3.8 Infrared spectrum (thin film/NaCl) of compound 144.
Figure A3.101 H NMR (500 MHz, CDCl3) of compound 145.
N
O CO2Me
CO2Me 145MeO
Bn
Figure A3.11 Infrared spectrum (thin film/NaCl) of compound 145.
Figure A3.12 13C NMR (126 MHz, CDCl3) of compound 145.
Figure A3.131 H NMR (500 MHz, CDCl3) of compound 146.
N
O CO2Me
CO2MeBn 146Cl
Figure A3.15 13C NMR (126 MHz, CDCl3) of compound 146.
Figure A3.14 Infrared spectrum (thin film/NaCl) of compound 146.
Figure A3.161 H NMR (500 MHz, CDCl3) of compound 147.
N
O CO2Me
CO2Me 147
Figure A3.18. 13C NMR (126 MHz, CDCl3) of compound 147.
Figure A3.17 Infrared spectrum (thin film/NaCl) of compound 147.
Figure A3.191 H NMR (500 MHz, CDCl3) of compound 148.
n-Bu N
O CO2Me
CO2Me 148
Figure A3.21 13C NMR (126 MHz, CDCl3) of compound 148.
Figure A3.20 Infrared spectrum (thin film/NaCl) of compound 148.
Figure A3.221 H NMR (500 MHz, CDCl3) of compound 149.
N
O CO2Me
CO2Me 149
H
Figure A3.24 13C NMR (126 MHz, CDCl3) of compound 149.
Figure A3.23 Infrared spectrum (thin film/NaCl) of compound 149.
Figure A3.251 H NMR (500 MHz, CDCl3) of compound 158.
S
N CO2Me CO2Me 158
Figure A3.27 13C NMR (126 MHz, CDCl3) of compound 158.
Figure A3.26 Infrared spectrum (thin film/NaCl) of compound 158.
Figure A3.281 H NMR (500 MHz, CDCl3) of compound 158.
MeO
S
N CO2Me CO2Me 150
Figure A3.30 13C NMR (126 MHz, CDCl3) of compound 150.
Figure A3.29 Infrared spectrum (thin film/NaCl) of compound 150.
Figure A3.311 H NMR (500 MHz, CDCl3) of compound 159.
Ph
S
N CO2Me CO2Me 159
Figure A3.33 13C NMR (126 MHz, CDCl3) of compound 159.
Figure A3.32 Infrared spectrum (thin film/NaCl) of compound 159.
Figure A3.341 H NMR (500 MHz, CDCl3) of compound 160.
S
N CO2Me CO2Me Cl 160
Figure A3.36 13C NMR (126 MHz, CDCl3) of compound 160.
Figure A3.35 Infrared spectrum (thin film/NaCl) of compound 160.
Figure A3.371 H NMR (500 MHz, CDCl3) of compound 161.
Me
S
N CO2Me CO2Me 161
Figure A3.39 13C NMR (126 MHz, CDCl3) of compound 161.
Figure A3.38 Infrared spectrum (thin film/NaCl) of compound 161.
Figure A3.401 H NMR (500 MHz, CDCl3) of compound 162.
t-Bu
S
N CO2Me CO2Me 162
Figure A3.42 13C NMR (126 MHz, CDCl3) of compound 162.
Figure A3.41 Infrared spectrum (thin film/NaCl) of compound 162.
Figure A3.431 H NMR (500 MHz, CDCl3) of compound 163.
O
S
N CO2Me CO2Me 163
O
Me
Figure A3.45 13C NMR (126 MHz, CDCl3) of compound 163.
Figure A3.44 Infrared spectrum (thin film/NaCl) of compound 163.
Figure A3.461 H NMR (500 MHz, CDCl3) of compound 155.
Me
S
N CO2Me CO2Me
Me Me 155
Figure A3.48 13C NMR (126 MHz, CDCl3) of compound 155.
Figure A3.47 Infrared spectrum (thin film/NaCl) of compound 155.