Chapter 2: VALIDATION OF SPINAL CORD FMRI WITH LFP AND SPIKE ACTIVITY IN NON-HUMAN PRIMATES ACTIVITY IN NON-HUMAN PRIMATES
2.5. Discussion and conclusions
2.5.7. Acknowledgements
This specific study is supported by NIH grant NS092961 and DOD grant SC160154. The author gratefully acknowledges Fuxue Xin, George Wilson III, Dr. Qing Liu and Chaohui Tang for their assistance with data collection, Dr. Chia-Chi Liao for advice on spinal cord recordings, and Dr. Robert L. Barry, Dr. Baxter Rogers and Benjamin Conrad for their advice on spinal functional data analysis.
61 2.6. References
Barry, R.L., Rogers, B.P., Smith, S.A., Gore, J.C., 2015. Reproducibility of resting state spinal cord networks at 7 Tesla 23, 3708. doi:10.1016/j.neuroimage.2016.02.058
Barry, R.L., Smith, S.A., Dula, A.N., Gore, J.C., 2014. Resting state functional connectivity in the human spinal cord. Elife 2014, 1–15. doi:10.7554/eLife.02812
Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo???planar mri. Magn. Reson. Med. 34, 537–541.
doi:10.1002/mrm.1910340409
Chen, L.M., Mishra, A., Yang, P.-F., Wang, F., Gore, J.C., 2015. Injury alters intrinsic functional connectivity within the primate spinal cord. Proc. Natl. Acad. Sci. U. S. A. 112, 5991–6.
doi:10.1073/pnas.1424106112
Chen, L.M., Yang, P.-F., Wang, F., Mishra, A., Shi, Z., Wu, R., Wu, T.-L., Wilson III, G.H., Ding, Z., Gore, J.C., 2017. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. Magn. Reson. Imaging 39, 71–81. doi:10.1016/j.mri.2017.01.020 Cohen, M.R., Kohn, A., 2011. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–
819. doi:10.1038/nn.2842
Conrad, B.N., Barry, R.L., Rogers, B.P., Maki, S., Mishra, A., Thukral, S., Sriram, S., Bhatia, A., Pawate, S., Gore, J.C., Smith, S.A., 2018. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord. Brain. doi:10.1093/brain/awy083
Deco, G., Jirsa, V.K., McIntosh, A.R., 2011. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. doi:10.1038/nrn2961
Eippert, F., Kong, Y., Jenkinson, M., Tracey, I., Brooks, J.C.W., 2016a. Denoising spinal cord fMRI data:
Approaches to acquisition and analysis. Neuroimage. doi:10.1016/j.neuroimage.2016.09.065 Eippert, F., Kong, Y., Winkler, A.M., Andersson, J.L., Finsterbusch, J., Buchel, C., Brooks, J.C., Tracey,
I., 2016b. Investigating resting-state functional connectivity in the cervical spinal cord at 3T.
bioRxiv 1–30. doi:10.1101/073569
Fox, M.D., Greicius, M., 2010. Clinical applications of resting state functional connectivity. Front Syst Neurosci 4, 1–13. doi:10.3389/fnsys.2010.00019
Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8, 700–711. doi:nrn2201 [pii]\n10.1038/nrn2201 Greicius, M.D.M., Krasnow, B., Reiss, A.L., Menon, V., … A.R.-P. of the, 2003, undefined, Reiss, A.L.,
Menon, V., 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Natl. Acad Sci. 100, 253/258. doi:10.1073/pnas.0135058100
Guye, M., Bartolomei, F., Ranjeva, J.-P., 2008. Imaging structural and functional connectivity: towards a
62
unified definition of human brain organization? Curr. Opin. Neurol. 24, 393–403.
doi:10.1097/WCO.0b013e3283065cfb
Hollis, E.R., Ishiko, N., Yu, T., Lu, C.-C., Haimovich, A., Tolentino, K., Richman, A., Tury, A., Wang, S.-H., Pessian, M., Jo, E., Kolodkin, A., Zou, Y., 2016. Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Nat. Neurosci. 19, 697–705.
doi:10.1038/nn.4282
Hutchison, R.M., Everling, S., 2012. Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Front. Neuroanat. 6. doi:10.3389/fnana.2012.00029 Huttunen, J.K., Gröhn, O., Penttonen, M., 2008. Coupling between simultaneously recorded BOLD
response and neuronal activity in the rat somatosensory cortex. Neuroimage 39, 775–785.
doi:10.1016/j.neuroimage.2007.06.042
Inácio, A.R., Nasretdinov, A., Lebedeva, J., Khazipov, R., 2016. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord. Nat. Commun. 7.
doi:10.1038/ncomms13060
Kong, Y., Eippert, F., Beckmann, C.F., Andersson, J., Finsterbusch, J., Buchel, C., Tracey, I., Brooks, J.C., 2014. Intrinsically organized resting state networks in the human spinal cord. Proc Natl Acad Sci U S A 111, 18067–18072. doi:10.1073/pnas.1414293111
Leopold, D.A., Maier, A., 2012. Ongoing physiological processes in the cerebral cortex. Neuroimage.
doi:10.1016/j.neuroimage.2011.10.059
Liu, X., Zhou, F., Li, X., Qian, W., Cui, J., Zhou, I.Y., Luk, K.D.K., Wu, E.X., Hu, Y., 2016.
Organization of the intrinsic functional network in the cervical spinal cord: A resting state functional MRI study. Neuroscience 336, 30–38. doi:10.1016/j.neuroscience.2016.08.042
Logothetis, N.K., 2003. The underpinnings of the BOLD functional magnetic resonance imaging signal.
J. Neurosci. 23, 3963–3971. doi:23/10/3963 [pii]
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A, 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–7. doi:10.1038/35084005
Malisza, K.L., Stroman, P.W., 2002. Functional imaging of the rat cervical spinal cord. J. Magn. Reson.
Imaging 16, 553–558. doi:10.1002/jmri.10185
Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., Malach, R., 2005. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954.
doi:10.1126/science.1110913
San Emeterio Nateras, O., Yu, F., Muir, E.R., Bazan, C., Franklin, C.G., Li, W., Li, J., Lancaster, J.L., Duong, T.Q., 2016. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T. Radiology 279, 262–8. doi:10.1148/radiol.2015150768
63
Scholvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H., Leopold, D.A., 2010. Neural basis of global resting- state fMRI activity. Proc. Natl. Acad. Sci. 107, 10238–10243. doi:10.1073/pnas.0913110107 Shi, Z., Wu, R., Yang, P.-F., Wang, F., Wu, T.-L., Mishra, A., Chen, L.M., Gore, J.C., 2017. High spatial
correspondence at a columnar level between activation and resting state fMRI signals and local field potentials. Proc. Natl. Acad. Sci. 114, 5253–5258. doi:10.1073/pnas.1620520114
Shreyas Harita, Stroman, P.W., 2017. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise. Magn. Reson.
Med. doi:10.1002/mrm.26606
Song, W., Martin, J.H., 2016. Spinal cord direct current stimulation differentially modulates neuronal activity in the dorsal and ventral spinal cord. J. Neurophysiol. jn.00584.2016.
doi:10.1152/jn.00584.2016
Stroman, P.W., 2005. Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord: Spinal fMRI. Clin. Med. Res. 3, 146–156. doi:10.3121/cmr.3.3.146
Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., Zempel, J.M., Snyder, L.H., Corbetta, M., Raichle, M.E., 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86. doi:10.1038/nature05758
Wang, Z., Chen, L., Négyessy, L., Friedman, R., Mishra, A., Gore, J., Roe, A., 2013a. The Relationship of Anatomical and Functional Connectivity to Resting-State Connectivity in Primate Somatosensory Cortex. Neuron 78, 1116–1126. doi:10.1016/j.neuron.2013.04.023
Wang, Z., Qi, H.X., Kaas, J.H., Roe, A.W., Chen, L.M., 2013b. Functional signature of recovering cortex:
Dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Exp. Neurol. 249, 132–143. doi:10.1016/j.expneurol.2013.08.013
Wei, P., Li, J., Gao, F., Ye, D., Zhong, Q., Liu, S., 2010. Resting state networks in human cervical spinal cord observed with fMRI. Eur J Appl Physiol 108, 265–271. doi:10.1007/s00421-009-1205-4 Wilson, G.H., Yang, P.F., Gore, J.C., Chen, L.M., 2016. Correlated inter-regional variations in low
frequency local field potentials and resting state BOLD signals within S1 cortex of monkeys. Hum.
Brain Mapp. 37, 2755–2766. doi:10.1002/hbm.23207
Wu, T.-L., Wang, F., Mishra, A., Wilson, G.H., Byun, N., Chen, L.M., Gore, J.C., 2017. Resting-state functional connectivity in the rat cervical spinal cord at 9.4 T. Magn. Reson. Med.
doi:10.1002/mrm.26905
Yang, P.-F., Wang, F., Chen, L.M., 2015. Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord. J. Neurosci. 35, 10493–10502.
doi:10.1523/JNEUROSCI.0583-15.2015
Zhao, F., Williams, M., Meng, X., Welsh, D.C., Coimbra, A., Crown, E.D., Cook, J.J., Urban, M.O.,
64
Hargreaves, R., Williams, D.S., 2008. BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. Neuroimage 40, 133–147.
doi:10.1016/j.neuroimage.2007.11.010
Zhao, F., Williams, M., Meng, X., Welsh, D.C., Grachev, I.D., Hargreaves, R., Williams, D.S., 2009.
Pain fMRI in rat cervical spinal cord: An echo planar imaging evaluation of sensitivity of BOLD and blood volume-weighted fMRI. Neuroimage 44, 349–362.
doi:10.1016/j.neuroimage.2008.09.001
65
Chapter 3: RESTING-STATE FUNCTIONAL CONNECTIVITY IN THE RAT