• Tidak ada hasil yang ditemukan

Chapter IV: From Six Functors Formalisms to Derived Motivic Measures

4.6 Acknowledgements

The author would like to thank Matilde Marcolli for many vital and engaging dis- cussions during the formation of this paper. In addition, they would like to thank Emily Riehl for a very valuable email exchange regarding several of the categorical constructions necessary for the paper and Justin Campbell for a discussion of equiv- ariant categories of sheaves that will likely form the basis for further work. Finally, the author would like to thank Konrad Pilch and Victor Zhang for comments on an earlier draft of this paper.

BIBLIOGRAPHY

[1] J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique (I, II),

Astérisque Volumes 314, 315 (2007).

ISBN: 9782856292440 and 978-2-85629-245-7

[2] C. Barwick,On the algebraic K-theory of higher categories, Journal of Topology. Volume 9 (2016), 245-347.

https://doi.org/10.1112/jtopol/jtv042

[3] C. Barwick,On exact-categories and the Theorem of the Heart, Compositio Math. Volume 151 (2015), 2160 - 2186.

https://doi.org/10.1112/S0010437X15007447

[4] A. Beilinson,Remarks on Grothendieck’s standard conjectures, https://arxiv.org/abs/1006.1116

[5] A. Beilinson and V. Vologodsky,A DG Guide to Voevodsky’s Motives, GAFA, Geom. funct. anal. Volume 17 (2008), 1709 – 1787.

https://doi.org/10.1007/s00039-007-0644-5

[6] J. Bergner,The Homotopy Theory of(∞,1)-Categories,

London Mathematical Society Student Texts. Volume 90 (2018), 273 pp.

Online ISBN: 9781316181874

[7] F. Bittner, The universal Euler characteristic for varieties of characteristic zero,

Compositio Math. Volume 140 Issue 4 (2004), 1011 - 1032.

https://doi.org/10.1112/S0010437X03000617

[8] A. J. Blumberg, D. Gepner, G. Tabuada,A universal characterization of higher algebraic K–theory,

Geom. Topol. Volume 17 Issue 2 (2013), 733-838.

https://doi.org/10.2140/gt.2013.17.733

[9] M. Bondarko,Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura,

Journal of the Institute of Mathematics of Jussieu. Volume 8 Issue 1 (2009), 39 - 97.

https://doi.org/10.1017/S147474800800011X

[10] U. Bunke and D. C. Cisinski,A universal coarse K-theory, New York J. Math. Volume 26 (2020), 1–27.

http://nyjm.albany.edu/j/2020/26-1.html

[11] J. Campbell,THE K-THEORY SPECTRUM OF VARIETIES,

Transactions of the American Mathematical Society. Volume 371 Issue 11 (2019), 7845–7884.

https://doi.org/10.1090/tran/7648

[12] J. Campbell, J. Wolfson, I. Zakharevich,Derivedl-adic zeta functions, Advances in Mathematics. Volume 354 (2019), 106760

https://doi.org/10.1016/j.aim.2019.106760

[13] D. C. Cisinski,Invariance de la K-Théorie par équivalences dérivées, J. K-Theory. Volume 6 (2010), 505–546.

https://doi.org/10.2140/gt.2013.17.733

[14] D. C. Cisinski and F. Déglise,Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics. (2019) pp. 406

Hardcover ISBN: 978-3-030-33241-9

[15] D. C. Cisinski and F. Déglise,Integral Mixed Motives in Equal Characteristic, Documenta Math. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday (2015), 145-194.

[16] D. C. Cisinski and F. Déglise,Étale motives,

Compositio Math. Volume 152 Issue 3 (2016), 556 - 666.

https://doi.org/10.1112/S0010437X15007459

[17] F. Déglise , J. Fasel , F. Jin , A. Khan, On the rational motivic homotopy category,

Journal de l’École polytechnique — Mathématiques. Volume 8 (2021), 533- 583.

https://doi.org/10.5802/jep.153

[18] P. Deligne,Séminaire de Géométrie Algébrique du Bois Marie - Cohomologie étale - (SGA412),

Lecture Notes in Mathematics (1977), 569 pp.

ISBN: 978-3-540-08066-4

[19] P. Deligne,Voevodsky’s lectures on cross functors, Fall 2001, Unpublished lecture notes

https://www.math.ias.edu/vladimir/node/94 [20] V. Drinfeld,DG quotients of DG categories,

Journal of Algebra. Volume 272 Issue 2 (2004), 643-691.

https://doi.org/10.1016/j.jalgebra.2003.05.001

[21] B.I. Dundas, M. Levine, P.A. Østvær, O. Röndigs, V. Voevodsky, Motivic Homotopy Theory: Lectures at a Summer School in Nordfjordeid, Norway, August 2002,

Universitext. (2002), 226 pp.

Softcover ISBN: 978-3-540-45895-1

[22] E. Elmanto and H. Kolderup,A universal characterization of higher algebraic K–theory,

Annals of K-Theory. Volume 5 Issue 2 (2020), 327–355.

https://doi.org/10.2140/akt.2020.5.327

[23] D. Gaitsgory and J. Lurie,Weil’s Conjecture for Function Fields: Volume I, Annals of Mathematics Studies. Volume 199 (2019), 320 pp.

Print ISBN: 9780691182131

[24] D. Gaitsgory and N. Rozenblyum, A Study in Derived Algebraic Geometry:

Volumes I and II,

Mathematical Surveys and Monographs. Volume 221 (2017) 969 pp.

Print ISBN: 978-1-4704-5306-0

[25] H. Gillet and C. Soulé,Descent, motives and K-theory, J. reine angew.Math. Volume 478 (1996), 127—176.

https://doi.org/10.1515/crll.1996.478.127 [26] M. Hovey,Model Categories,

Mathematical Surveys and Monographs. Volume: 63; 1999; 209 pp.

Print ISBN: 978-0-8218-4361-1

[27] M. Hoyois,The six operations in equivariant motivic homotopy theory, Advances in Mathematics. Volume 305(2017), 197-279,

https://doi.org/10.1016/j.aim.2016.09.031

[28] A. Khan, VOEVODSKY’S CRITERION FOR CONSTRUCTIBLE CATE- GORIES OF COEFFICIENTS,

https://www.preschema.com/papers/six.pdf

[29] A. Khan, THE MOREL–VOEVODSKY LOCALIZATION THEOREM IN SPECTRAL ALGEBRAIC GEOMETRY,

https://www.preschema.com/papers/localization.pdf

[30] J. Lieber, Yu I. Manin, M. Marcolli,Bost-Connes systems and F1-structures in Grothendieck rings, spectra, and Nori motives,

To appear in Facets of Algebraic Geometry: Volume in Honour of William Fulton’s 80th Birthday

https://arxiv.org/abs/1901.00020 [31] J. Lurie,Higher Topos Theory,

Princeton University Press. Volume 170 (2009), 944 pp.

ISBN: 9780691140490

[32] J. Lurie,Higher Algebra,

https://www.math.ias.edu/ lurie/papers/HA.pdf

[33] C. Mazza, V. Voevodsky, C. Weibel,Lecture notes on motivic cohomology, Clay Mathematics Monographs. Volume 2 (2006), 216 pp.

hPrint ISBN: 978-0-8218-5321-4

[34] J. P. Murre, J. Nagel, C. Peters,Lectures on the Theory of Pure Motives, University Lecture Series. Volume 61 (2013) 149 pp.

Print ISBN: 978-0-8218-9434-7

[35] T. Nikolaus and P. Scholze,On topological cyclic homology, Acta Math.

Volume 221 Issue 2 (2018), 203-409.

https://doi.org/10.4310/ACTA.2018.v221.n2.a1

[36] P. A. Østvær and O. Röndigs,Modules over motivic cohomology, Advances in Mathematics Volume 219 Issue 2 (2008), 689-727.

https://doi.org/10.1016/j.aim.2008.05.013

[37] T. Richarz and J. Scholbach,THE INTERSECTION MOTIVE OF THE MOD- ULI STACK OF SHTUKAS,

Forum of Mathematics, Sigma. Volume 8 (20200, e8 https://doi.org/10.1017/fms.2019.32

[38] E. Riehl and D. Verity,Elements of-Category Theory, www.math.jhu.edu/∼eriehl/elements.pdf

[39] O. Röndigs,Functoriality in motivic homotopy theory, Preprint.

[40] S. Schwede,Topological triangulated categories, https://arxiv.org/abs/1201.0899

[41] A. Suslin and V. Voevodsky,Relative cycles and Chow sheaves, Annals of Mathematics Studies. Volume 143 (2000), 10–86.

https://doi.org/10.1515/9781400837120.10 [42] B. Toën,Lectures on DG-categories,

Topics in Algebraic and Topological K-Theory (2011) 243-301 https://doi.org/10.1007/978-3-642-15708-0

[43] B. Toën and G. Vezzosi,A remark on K-theory and S-categories, Topology. Volume 43 Issue 4 (2004), 765-791.

https://doi.org/10.1016/j.top.2003.10.008

[44] B. Toën and G. Vezzosi,Homotopical algebraic geometry I: topos theory, Advances in Mathematics. Volume 193 Issue 2 (2005), 257-372

https://doi.org/10.1016/j.aim.2004.05.004

[45] V. Voevodsky,Triangulated categories of motives over a field,

Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud.

Volume 143 (2000), 188-238.

https://doi.org/10.1515/9781400837120.188 [46] F. Waldhausen,Algebraic K-theory of spaces,

Algebraic and Geometric Topology (1983) 318-419.

https://doi.org/10.2140/gt.2013.17.733

[47] C. A. Weibel,The K-book: An Introduction to Algebraic K-theory, Graduate Studies in Mathematics. Volume: 145(2013) 618 pp Print ISBN: 978-0-8218-9132-2

[48] I. Zakharevich,The K-theory of assemblers,

Advances in Mathematics. Volume 304 (2017), 1176-1218.

https://doi.org/10.1016/j.aim.2016.08.045