• Tidak ada hasil yang ditemukan

A REPULSIVE BOUNDED-CONFIDENCE MODEL

C.1 Additional Proofs

Proposition 1. Let 𝐺 = (𝑉 , 𝐸) be a network with 2 nodes , so that 𝑉 = {0,1}.

Then the dynamical process described by Equation 3.4 converges, and at time of convergence𝑇,

|π‘₯0(𝑇) βˆ’π‘₯1(𝑇) | ≀max{𝑐,|π‘₯0(0) βˆ’π‘₯1(0) |}.

Proof. Suppose that there are no edges, or 𝐸 = βˆ…. Then the model converges at time𝑇 =1, and

|π‘₯0(𝑇) βˆ’π‘₯1(𝑇) | =|π‘₯0(0) βˆ’π‘₯1(0) |.

Now suppose that 𝐸 = {(π‘₯0, π‘₯1)}, and |π‘₯0(0) βˆ’π‘₯1(0) | β‰₯ 𝑐. Then the update rule will result in no changes, the model converges at𝑇 =1

|π‘₯0(𝑇) βˆ’π‘₯1(𝑇) | =|π‘₯0(0) βˆ’π‘₯1(0) |.

Now suppose that|π‘₯0(0) βˆ’π‘₯1(0) | < 𝑐. If𝐴01=βˆ’1, the two nodes repel each other.

Then

π‘₯1(1) =π‘₯1(0) + (π‘₯1(0) βˆ’π‘₯1(0)) +π‘βˆ’ (π‘₯1(0) βˆ’π‘₯0(1)) 2

π‘₯0(1) =π‘₯0(0) + (π‘₯0(0) βˆ’π‘₯0(0)) βˆ’ (π‘βˆ’ (π‘₯1(0) βˆ’π‘₯0(0)) 2

π‘₯1(1) βˆ’π‘₯0(1) =π‘₯1(0) βˆ’π‘₯0(0) + 2(π‘βˆ’ (π‘₯1(0) βˆ’π‘₯0(0))) 2

=𝑐

andπ‘₯1(1) βˆ’π‘₯0(1) >=𝑐, so that after this time, these two nodes will no longer affect each other, and cannot push each other further, so the model has converged, and max𝑖, 𝑗|π‘₯0(𝑇) βˆ’π‘₯1(𝑇) | ≀𝑐.

If 𝐴01 =1, the two nodes attract each other, and the model is equivalent to standard Hegselmann–Krause, so that we have convergence to a single point and

|π‘₯0(𝑇) βˆ’π‘₯1(𝑇) | =0.

This covers all possible cases, and the proposition is proven. β–‘

Lemma 1. Suppose𝑖 βˆˆπ‘‰ a node. Define the following sets:

𝑉+

𝑖 (𝑑)=

𝑗 βˆˆπ‘‰ : 𝐴𝑖 𝑗 =1and|π‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑) | < 𝑐 π‘ˆπ‘–(𝑑)=

𝑗 βˆˆπ‘‰ : 𝐴𝑖 𝑗 =βˆ’1and

(0< π‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑) < 𝑐)or π‘₯𝑗(𝑑) =π‘₯𝑖(𝑑) and 𝑗 > 𝑖 𝐿𝑖(𝑑)=

𝑗 βˆˆπ‘‰ : 𝐴𝑖 𝑗 =βˆ’1and

(0< π‘₯𝑖(𝑑) βˆ’π‘₯𝑗(𝑑) < 𝑐)or π‘₯𝑗(𝑑) =π‘₯𝑖(𝑑) and𝑖 > 𝑗 .

Then

π‘₯𝑖(𝑑+1) = Í

π‘—βˆˆπ‘‰+

𝑖 (𝑑)π‘₯𝑗(𝑑) +Í

π‘—βˆˆπ‘ˆπ‘–(𝑑)(π‘₯𝑗(𝑑) βˆ’π‘) +Í

π‘—βˆˆπΏπ‘–(π‘₯𝑗(𝑑) +𝑐)

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) | . (3.5) Proof. From Equation 3.4, we rearrange

π‘₯𝑖(𝑑+1) =π‘₯𝑖(𝑑) + Í

π‘—βˆˆπ‘‰ 𝐴𝑖 𝑗𝑀𝑖 𝑗(𝑑)1|π‘₯ 𝑗(𝑑) βˆ’π‘₯

𝑖(𝑑) |<𝑐

Í

π‘—βˆˆπ‘‰|𝐴𝑖 𝑗|1|π‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑) |<𝑐

=π‘₯𝑖(𝑑) + Í

π‘—βˆˆπ‘‰+

𝑖 (𝑑)βˆͺπ‘ˆπ‘–(𝑑)βˆͺ𝐿𝑖(𝑑) 𝐴𝑖 𝑗𝑀𝑖 𝑗(𝑑) Í

π‘—βˆˆπ‘‰+

𝑖(𝑑)βˆͺπ‘ˆπ‘–(𝑑)βˆͺ𝐿𝑖(𝑑)|𝐴𝑖 𝑗|

=π‘₯𝑖(𝑑) + Í

π‘—βˆˆπ‘‰+

𝑖(𝑑)(π‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑))

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) | + |𝐿𝑖(𝑑) | +

Í

π‘—βˆˆπ‘ˆπ‘–(𝑑)(βˆ’1) (1) (π‘βˆ’ (π‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑)))

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) | + |𝐿𝑖(𝑑) | +

Í

π‘—βˆˆπΏπ‘–(𝑑)(βˆ’1) (βˆ’1) (π‘βˆ’ (π‘₯𝑖(𝑑) βˆ’π‘₯𝑗(𝑑)))

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) | + |𝐿𝑖(𝑑) |

= Í

π‘—βˆˆπ‘‰+

𝑖 (𝑑)π‘₯𝑗(𝑑) +Í

π‘—βˆˆπ‘ˆπ‘–(𝑑)(π‘₯𝑗(𝑑) βˆ’π‘) +Í

π‘—βˆˆπΏπ‘–(π‘₯𝑗(𝑑) +𝑐)

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) | .

β–‘ Lemma 2. Let𝑖 βˆˆπ‘‰ at time𝑑, and letπ‘Š(𝑑) βŠ‚π‘‰ be a set of nodes such thatπ‘Š(𝑑)is completely contained in𝑉+

𝑖 (𝑑) βˆͺπ‘ˆπ‘–(𝑑) βˆͺ𝐿𝑖(𝑑). Define π‘Š(𝑑)=

Í

π‘—βˆˆπ‘Š(𝑑)π‘₯𝑗(𝑑)

|π‘Š(𝑑) |

to be the average ofπ‘₯𝑗(𝑑) for all 𝑗 βˆˆπ‘Š(𝑑). Then we can rewrite Equation3.5as

π‘₯𝑖(𝑑+1) = Í

π‘—βˆˆ(𝑉𝑖+(𝑑)βˆͺπ‘ˆπ‘–(𝑑)βˆͺ𝐿𝑖(𝑑))\π‘Š(𝑑)π‘₯𝑗(𝑑) +Í

π‘—βˆˆπ‘Š(𝑑)π‘Š(𝑑) + (|𝐿𝑖(𝑑) | βˆ’ |π‘ˆπ‘–(𝑑) |)𝑐

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) | .

Proof. We rearrange Equation 3.5 as follows:

π‘₯𝑖(𝑑+1) = Í

π‘—βˆˆπ‘‰+

𝑖 (𝑑)π‘₯𝑗(𝑑) +Í

π‘—βˆˆπ‘ˆπ‘–(𝑑)(π‘₯𝑗(𝑑) βˆ’π‘) +Í

π‘—βˆˆπΏπ‘–(π‘₯𝑗(𝑑) +𝑐)

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) |

= Í

π‘—βˆˆ(𝑉𝑖+(𝑑)βˆͺπ‘ˆπ‘–(𝑑)βˆͺ𝐿𝑖(𝑑))π‘₯𝑗(𝑑) + (|𝐿𝑖(𝑑) | βˆ’ |π‘ˆπ‘–(𝑑) |)𝑐

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) |

= Í

π‘—βˆˆ(𝑉𝑖+(𝑑)βˆͺπ‘ˆπ‘–(𝑑)βˆͺ𝐿𝑖(𝑑))\π‘Š(𝑑)π‘₯𝑗(𝑑) +Í

π‘—βˆˆπ‘Š(𝑑)π‘Š(𝑑) + (|𝐿𝑖(𝑑) | βˆ’ |π‘ˆπ‘–(𝑑) |)𝑐

|𝑉+

𝑖 (𝑑) | + |π‘ˆπ‘–(𝑑) + |𝐿𝑖(𝑑) | .

β–‘ Lemma 3. Let𝐺 = (𝑉 , 𝐸)be a network with𝑛nodes andπ‘šedges with confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, supposeπ‘₯𝑖(𝑑) > π‘₯𝑗(𝑑) for all other nodes 𝑗, so that𝑖 is the node with the highest opinion value at time𝑑. Thenπ‘₯𝑖(𝑑+1) > π‘₯𝑗(𝑑+1)for all 𝑗.

Proof. Note that𝑉+

π‘˜(𝑑) = {π‘₯π‘˜} for all π‘˜ , 𝑑, since every edge in𝐺 is repulsive. For convenience we define the following sets:

π‘ˆπ‘– 𝑗(𝑑)=π‘ˆπ‘—(𝑑)Γ™ π‘ˆπ‘–(𝑑) π‘ˆβ€²

𝑖 𝑗(𝑑)=π‘ˆπ‘–(𝑑) \π‘ˆπ‘– 𝑗(𝑑) 𝐿𝑖 𝑗(𝑑)= 𝐿𝑖(𝑑)Γ™

𝐿𝑗(𝑑) 𝐿′

𝑗 𝑖(𝑑)= 𝐿𝑗(𝑑) \𝐿𝑖 𝑗(𝑑) π‘Šπ‘– 𝑗(𝑑)= 𝐿𝑖(𝑑)Γ™

π‘ˆπ‘—(𝑑).

Unpacking this notation,π‘ˆπ‘– 𝑗(𝑑)consists of all nodes that repel both𝑖and𝑗downward, while 𝐿𝑖 𝑗(𝑑) consists of all nodes that repel both𝑖 and 𝑗 upward. π‘ˆβ€²

𝑖 𝑗(𝑑) consists of nodes which repel 𝑖 downward, but not 𝑗 (note that if π‘₯𝑖(𝑑) < π‘₯𝑗(𝑑), this is automatically empty), while𝐿′

𝑗 𝑖(𝑑)consists of nodes which repel 𝑗 upward, but not 𝑖 (again, if π‘₯𝑖(𝑑) < π‘₯𝑗(𝑑), this is empty). Finally, π‘Šπ‘– 𝑗(𝑑) consists of nodes which repel𝑖upward and 𝑗 downward (empty ifπ‘₯𝑗(𝑑) > π‘₯𝑖(𝑑)).

Now, supposeπ‘₯𝑖(𝑑) > π‘₯𝑗(𝑑)for all 𝑗 βˆˆπ‘‰. Then we can write 𝑉+

𝑖 (𝑑) ={𝑖} π‘ˆπ‘–(𝑑) =βˆ…

𝐿𝑖(𝑑) =𝐿𝑖 𝑗(𝑑)Ø

π‘Šπ‘– 𝑗(𝑑)Ø {𝑗}

and

𝑉+

𝑗(𝑑) ={𝑗} π‘ˆπ‘–(𝑑) ={𝑖}Ø

π‘Šπ‘– 𝑗(𝑑) 𝐿𝑖(𝑑) =𝐿𝑖 𝑗(𝑑)Ø

𝐿′

𝑗 𝑖(𝑑).

Then we observe the following from the knowledge that nodes only effect each other if they are within confidence of each other.

π‘₯𝑗(𝑑) +𝑐 > π‘₯𝑖(𝑑) 𝐿𝑖 𝑗(𝑑) +𝑐 > π‘₯𝑖(𝑑) π‘Šπ‘– 𝑗(𝑑) +𝑐 > π‘₯𝑖(𝑑)

π‘₯𝑖(𝑑) > 𝐿′

𝑗 𝑖+𝑐

Then applying Lemma 1 and Lemma 2:

π‘₯𝑖(𝑑+1)

=

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |π‘Šπ‘– 𝑗(𝑑) | (π‘Šπ‘– 𝑗(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |π‘Šπ‘– 𝑗(𝑑) |

>

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |π‘Šπ‘– 𝑗(𝑑) | (π‘Šπ‘– 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |π‘Šπ‘– 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

(C.1)

>

(π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |π‘Šπ‘– 𝑗(𝑑) | (π‘Šπ‘– 𝑗(𝑑) βˆ’π‘) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |π‘Šπ‘– 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

=π‘₯𝑗(𝑑+1)

where the inequality in Equation C.1 follows becauseπ‘₯𝑖(𝑑+1)is a weighted average, and 𝐿′

𝑗 𝑖(𝑑) is less than all of the other values being averaged in the previous line.

The next inequality follows straightforwardly by replacing each value in the average with a smaller or equal value.

So ifπ‘₯𝑖(𝑑) has the highest value opinion at time𝑑, it will always have the highest

value opinion. β–‘

Corollary 1. Let𝐺 =(𝑉 , 𝐸)be a network with𝑛nodes andπ‘šedges with confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, let 𝑀 = {𝑖 : π‘₯𝑖(𝑑) β‰₯ π‘₯𝑗(𝑑)βˆ€π‘— βˆˆπ‘‰}. Thenπ‘₯max

𝑀𝑖(𝑑+1) > π‘₯𝑗(𝑑+1)βˆ€π‘— βˆˆπ‘‰.

Proof. From the definitions ofπ‘ˆπ‘–(𝑑), 𝐿𝑖(𝑑), we can observe that the member of 𝑀 with highest index will have the largest corresponding set 𝐿𝑖(𝑑) and the smallest correspondingπ‘ˆπ‘–(𝑑), so that at time𝑑+1, that member of 𝑀 will have the highest- valued opinion of all members of𝑀. By the same logic as in the proof of Lemma 3, that opinion will also be the highest-valued opinion overall. β–‘ Corollary 2. Let𝐺 = (𝑉 , 𝐸)be the complete network with𝑛nodes with confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, let 𝑀 = {𝑖 : π‘₯𝑖(𝑑) ≀ π‘₯𝑗(𝑑)βˆ€π‘— βˆˆπ‘‰}. Thenπ‘₯min

𝑀𝑖(𝑑+1) < π‘₯𝑗(𝑑+1)βˆ€π‘— βˆˆπ‘‰.

Proof. Proves thatπ‘₯𝑖(𝑑) < π‘₯𝑗(𝑑)for all 𝑗 βˆˆπ‘‰, thenπ‘₯𝑖(𝑑+1) < π‘₯𝑗(𝑑+1)for all 𝑗 βˆˆπ‘‰, by segmentingπ‘ˆπ‘–(𝑑), 𝐿𝑖(𝑑), π‘ˆπ‘—(𝑑), 𝐿𝑗(𝑑) into the appropriate subsets and reversing inequalities as needed as in lemma 3. Then the same logic as in corollary 1 proves

the statement. β–‘

Lemma 4. Let𝐺 = (𝑉 , 𝐸)be a network with𝑛nodes andπ‘šedges with confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, supposeπ‘₯𝑖(𝑑) > π‘₯𝑗(𝑑) for all other nodes 𝑗 ∈ 𝑉, so that𝑖 is the node with the highest-valued opinion at time𝑑. Suppose that there is some node 𝑗 such thatπ‘₯𝑖(𝑑) βˆ’π‘₯𝑗(𝑑) < 𝑐, and that 𝑗 has the highest-valued opinion of all such nodes. Then

2𝑐 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | ≀ π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) ≀

(|𝐿′

𝑗 𝑖(𝑑) | +2)𝑐 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |. Proof. By assumption, since 𝑗 has the highest-valued opinion of all nodes within confidence of𝑖,π‘Šπ‘– 𝑗(𝑑)is empty. To prove the lower bound,

π‘₯𝑖(𝑑+1) =

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) |

β‰₯

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑗(𝑑+1) =

(π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) β‰₯ 2𝑐

2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |.

To prove the upper bound, π‘₯𝑖(𝑑+1) =

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐)+

2+ |𝐿𝑖 𝑗(𝑑) |

≀

π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (π‘₯𝑗(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑗(𝑑+1) =

(π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) ≀

𝑐+𝑐+ |𝐿′

𝑗 𝑖(𝑑) | (π‘₯𝑗(𝑑) βˆ’πΏβ€²

𝑗 𝑖(𝑑)) 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀

(|𝐿′

𝑗 𝑖(𝑑) | +2)𝑐 2+ |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |. Notice that if 𝐿′

𝑗 𝑖(𝑑) is empty, both inequalities become equalities, so that π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1)= 2𝑐

2+ |𝐿𝑖 𝑗(𝑑) | Notice also that if both 𝐿𝑖 𝑗(𝑑) and 𝐿′

𝑗 𝑖(𝑑) are empty, that the distance between

π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) is precisely𝑐. β–‘

Corollary 3. Let𝐺 =(𝑉 , 𝐸)be a network with𝑛nodes andπ‘šedges with confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, supposeπ‘₯𝑖(𝑑) < π‘₯𝑗(𝑑) for all other nodes 𝑗 βˆˆπ‘‰, so that𝑖is the node with the lowest-valued opinion at time 𝑑. Suppose that there is some node 𝑗 such thatπ‘₯𝑗(𝑑) βˆ’π‘₯𝑖(𝑑) < 𝑐, and that 𝑗 has the lowest-valued opinion of all such nodes. Then

2𝑐 2+ |π‘ˆπ‘– 𝑗(𝑑) | + |π‘ˆβ€²

𝑖 𝑗(𝑑) | ≀ π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) ≀

(|π‘ˆβ€²

𝑖 𝑗(𝑑) | +2)𝑐 2+ |π‘ˆπ‘– 𝑗(𝑑) | + |π‘ˆβ€²

𝑖 𝑗(𝑑) |. Lemma 5. Let𝐺 = (𝑉 , 𝐸) be the complete network with 𝑛nodes and confidence bound𝑐. Suppose that every edge in𝐺 is repulsive. At time𝑑, suppose that𝑖and 𝑗 are nodes such that(𝑖, 𝑗) ∈ 𝐸,π‘₯𝑖(𝑑) > π‘₯𝑗(𝑑), andπ‘₯𝑖(𝑑) βˆ’π‘₯𝑗(𝑑) < 𝑐, and there exist no nodesπ‘˜ connected to𝑖or 𝑗 such thatπ‘₯𝑖(𝑑) > π‘₯π‘˜(𝑑) > π‘₯𝑗(𝑑). Then

|π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) | ≀𝑐 .

Proof. By the assumption that no nodes have values betweenπ‘₯𝑖(𝑑) and π‘₯𝑗(𝑑), we have thatπ‘Šπ‘– 𝑗(𝑑)=π‘Šπ‘— 𝑖(𝑑) =βˆ…. Then to prove one direction of the bound,

π‘₯𝑖(𝑑+1)=

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’π‘) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) +π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) |

≀

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’π‘) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) +π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | +

|𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (π‘₯𝑗(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑗(𝑑+1)=

|π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) + (π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

β‰₯

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (π‘₯𝑖(𝑑) βˆ’π‘) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) + (π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | +

|𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |.

Combining both equations, π‘₯𝑖(𝑑+1) βˆ’π‘₯𝑗(𝑑+1) ≀

|π‘ˆβ€²

𝑖 𝑗(𝑑) | π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’π‘₯𝑖(𝑑)

+𝑐+𝑐+ |𝐿′

𝑗 𝑖(𝑑) |

π‘₯𝑗(𝑑) βˆ’πΏβ€²

𝑗 𝑖(𝑑) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀

2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | 𝑐 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀ 𝑐 . To prove the other direction,

π‘₯𝑗(𝑑+1)=

|π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) + (π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) + (π‘₯𝑖(𝑑) βˆ’π‘) +π‘₯𝑗(𝑑) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | +

|𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (𝐿′

𝑗 𝑖(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | π‘₯𝑖(𝑑+1)=

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’π‘) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) +π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) + |𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) |

β‰₯

|π‘ˆβ€²

𝑖 𝑗(𝑑) | (π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’π‘) + |π‘ˆπ‘– 𝑗(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) +π‘₯𝑖(𝑑) + (π‘₯𝑗(𝑑) +𝑐) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | +

|𝐿𝑖 𝑗(𝑑) | (𝐿𝑖 𝑗(𝑑) +𝑐) + |𝐿′

𝑗 𝑖(𝑑) | (π‘ˆπ‘– 𝑗(𝑑) βˆ’π‘) 2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |.

Combining both inequalities yields

π‘₯𝑗(𝑑+1) βˆ’π‘₯𝑖(𝑑+1) ≀

|π‘ˆβ€²

𝑖 𝑗(𝑑) |

𝐿𝑖 𝑗(𝑑) βˆ’π‘ˆβ€²

𝑖 𝑗(𝑑) +2𝑐

+𝑐+𝑐+ |𝐿′

𝑗 𝑖(𝑑) | 𝐿′

𝑗 𝑖(𝑑) βˆ’π‘ˆπ‘– 𝑗(𝑑) +2𝑐

2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) | .

Note, however, that

2𝑐= (π‘₯𝑖(𝑑) +𝑐) βˆ’ (π‘₯𝑖(𝑑) βˆ’π‘)

> π‘ˆβ€²

𝑖 𝑗(𝑑) βˆ’πΏπ‘– 𝑗(𝑑)

> (π‘₯𝑗(𝑑) +𝑐) βˆ’π‘₯𝑗(𝑑) =𝑐 and similarly𝑐 < π‘ˆπ‘– 𝑗(𝑑) βˆ’πΏβ€²

𝑗 𝑖(𝑑) < 2𝑐so that we have π‘₯𝑗(𝑑+1) βˆ’π‘₯𝑖(𝑑+1) ≀

|π‘ˆβ€²

𝑖 𝑗(𝑑) |

𝐿𝑖 𝑗(𝑑) βˆ’π‘ˆβ€²

𝑖 𝑗(𝑑) +2𝑐

+𝑐+𝑐+ |𝐿′

𝑗 𝑖(𝑑) |

𝐿′

𝑗 𝑖(𝑑) βˆ’π‘ˆπ‘– 𝑗(𝑑) +2𝑐

2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀

2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

𝑐

2+ |π‘ˆβ€²

𝑖 𝑗(𝑑) | + |π‘ˆπ‘– 𝑗(𝑑) | + |𝐿𝑖 𝑗(𝑑) | + |𝐿′

𝑗 𝑖(𝑑) |

≀ 𝑐

and the proof is finished. β–‘

A p p e n d i x D