A REPULSIVE BOUNDED-CONFIDENCE MODEL
C.1 Additional Proofs
Proposition 1. Let πΊ = (π , πΈ) be a network with 2 nodes , so that π = {0,1}.
Then the dynamical process described by Equation 3.4 converges, and at time of convergenceπ,
|π₯0(π) βπ₯1(π) | β€max{π,|π₯0(0) βπ₯1(0) |}.
Proof. Suppose that there are no edges, or πΈ = β . Then the model converges at timeπ =1, and
|π₯0(π) βπ₯1(π) | =|π₯0(0) βπ₯1(0) |.
Now suppose that πΈ = {(π₯0, π₯1)}, and |π₯0(0) βπ₯1(0) | β₯ π. Then the update rule will result in no changes, the model converges atπ =1
|π₯0(π) βπ₯1(π) | =|π₯0(0) βπ₯1(0) |.
Now suppose that|π₯0(0) βπ₯1(0) | < π. Ifπ΄01=β1, the two nodes repel each other.
Then
π₯1(1) =π₯1(0) + (π₯1(0) βπ₯1(0)) +πβ (π₯1(0) βπ₯0(1)) 2
π₯0(1) =π₯0(0) + (π₯0(0) βπ₯0(0)) β (πβ (π₯1(0) βπ₯0(0)) 2
π₯1(1) βπ₯0(1) =π₯1(0) βπ₯0(0) + 2(πβ (π₯1(0) βπ₯0(0))) 2
=π
andπ₯1(1) βπ₯0(1) >=π, so that after this time, these two nodes will no longer affect each other, and cannot push each other further, so the model has converged, and maxπ, π|π₯0(π) βπ₯1(π) | β€π.
If π΄01 =1, the two nodes attract each other, and the model is equivalent to standard HegselmannβKrause, so that we have convergence to a single point and
|π₯0(π) βπ₯1(π) | =0.
This covers all possible cases, and the proposition is proven. β‘
Lemma 1. Supposeπ βπ a node. Define the following sets:
π+
π (π‘)=
π βπ : π΄π π =1and|π₯π(π‘) βπ₯π(π‘) | < π ππ(π‘)=
π βπ : π΄π π =β1and
(0< π₯π(π‘) βπ₯π(π‘) < π)or π₯π(π‘) =π₯π(π‘) and π > π πΏπ(π‘)=
π βπ : π΄π π =β1and
(0< π₯π(π‘) βπ₯π(π‘) < π)or π₯π(π‘) =π₯π(π‘) andπ > π .
Then
π₯π(π‘+1) = Γ
πβπ+
π (π‘)π₯π(π‘) +Γ
πβππ(π‘)(π₯π(π‘) βπ) +Γ
πβπΏπ(π₯π(π‘) +π)
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) | . (3.5) Proof. From Equation 3.4, we rearrange
π₯π(π‘+1) =π₯π(π‘) + Γ
πβπ π΄π πππ π(π‘)1|π₯ π(π‘) βπ₯
π(π‘) |<π
Γ
πβπ|π΄π π|1|π₯π(π‘) βπ₯π(π‘) |<π
=π₯π(π‘) + Γ
πβπ+
π (π‘)βͺππ(π‘)βͺπΏπ(π‘) π΄π πππ π(π‘) Γ
πβπ+
π(π‘)βͺππ(π‘)βͺπΏπ(π‘)|π΄π π|
=π₯π(π‘) + Γ
πβπ+
π(π‘)(π₯π(π‘) βπ₯π(π‘))
|π+
π (π‘) | + |ππ(π‘) | + |πΏπ(π‘) | +
Γ
πβππ(π‘)(β1) (1) (πβ (π₯π(π‘) βπ₯π(π‘)))
|π+
π (π‘) | + |ππ(π‘) | + |πΏπ(π‘) | +
Γ
πβπΏπ(π‘)(β1) (β1) (πβ (π₯π(π‘) βπ₯π(π‘)))
|π+
π (π‘) | + |ππ(π‘) | + |πΏπ(π‘) |
= Γ
πβπ+
π (π‘)π₯π(π‘) +Γ
πβππ(π‘)(π₯π(π‘) βπ) +Γ
πβπΏπ(π₯π(π‘) +π)
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) | .
β‘ Lemma 2. Letπ βπ at timeπ‘, and letπ(π‘) βπ be a set of nodes such thatπ(π‘)is completely contained inπ+
π (π‘) βͺππ(π‘) βͺπΏπ(π‘). Define π(π‘)=
Γ
πβπ(π‘)π₯π(π‘)
|π(π‘) |
to be the average ofπ₯π(π‘) for all π βπ(π‘). Then we can rewrite Equation3.5as
π₯π(π‘+1) = Γ
πβ(ππ+(π‘)βͺππ(π‘)βͺπΏπ(π‘))\π(π‘)π₯π(π‘) +Γ
πβπ(π‘)π(π‘) + (|πΏπ(π‘) | β |ππ(π‘) |)π
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) | .
Proof. We rearrange Equation 3.5 as follows:
π₯π(π‘+1) = Γ
πβπ+
π (π‘)π₯π(π‘) +Γ
πβππ(π‘)(π₯π(π‘) βπ) +Γ
πβπΏπ(π₯π(π‘) +π)
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) |
= Γ
πβ(ππ+(π‘)βͺππ(π‘)βͺπΏπ(π‘))π₯π(π‘) + (|πΏπ(π‘) | β |ππ(π‘) |)π
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) |
= Γ
πβ(ππ+(π‘)βͺππ(π‘)βͺπΏπ(π‘))\π(π‘)π₯π(π‘) +Γ
πβπ(π‘)π(π‘) + (|πΏπ(π‘) | β |ππ(π‘) |)π
|π+
π (π‘) | + |ππ(π‘) + |πΏπ(π‘) | .
β‘ Lemma 3. LetπΊ = (π , πΈ)be a network withπnodes andπedges with confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, supposeπ₯π(π‘) > π₯π(π‘) for all other nodes π, so thatπ is the node with the highest opinion value at timeπ‘. Thenπ₯π(π‘+1) > π₯π(π‘+1)for all π.
Proof. Note thatπ+
π(π‘) = {π₯π} for all π , π‘, since every edge inπΊ is repulsive. For convenience we define the following sets:
ππ π(π‘)=ππ(π‘)Γ ππ(π‘) πβ²
π π(π‘)=ππ(π‘) \ππ π(π‘) πΏπ π(π‘)= πΏπ(π‘)Γ
πΏπ(π‘) πΏβ²
π π(π‘)= πΏπ(π‘) \πΏπ π(π‘) ππ π(π‘)= πΏπ(π‘)Γ
ππ(π‘).
Unpacking this notation,ππ π(π‘)consists of all nodes that repel bothπandπdownward, while πΏπ π(π‘) consists of all nodes that repel bothπ and π upward. πβ²
π π(π‘) consists of nodes which repel π downward, but not π (note that if π₯π(π‘) < π₯π(π‘), this is automatically empty), whileπΏβ²
π π(π‘)consists of nodes which repel π upward, but not π (again, if π₯π(π‘) < π₯π(π‘), this is empty). Finally, ππ π(π‘) consists of nodes which repelπupward and π downward (empty ifπ₯π(π‘) > π₯π(π‘)).
Now, supposeπ₯π(π‘) > π₯π(π‘)for all π βπ. Then we can write π+
π (π‘) ={π} ππ(π‘) =β
πΏπ(π‘) =πΏπ π(π‘)Γ
ππ π(π‘)Γ {π}
and
π+
π(π‘) ={π} ππ(π‘) ={π}Γ
ππ π(π‘) πΏπ(π‘) =πΏπ π(π‘)Γ
πΏβ²
π π(π‘).
Then we observe the following from the knowledge that nodes only effect each other if they are within confidence of each other.
π₯π(π‘) +π > π₯π(π‘) πΏπ π(π‘) +π > π₯π(π‘) ππ π(π‘) +π > π₯π(π‘)
π₯π(π‘) > πΏβ²
π π+π
Then applying Lemma 1 and Lemma 2:
π₯π(π‘+1)
=
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |ππ π(π‘) | (ππ π(π‘) +π) 2+ |πΏπ π(π‘) | + |ππ π(π‘) |
>
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |ππ π(π‘) | (ππ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πΏπ π(π‘) | + |ππ π(π‘) | + |πΏβ²
π π(π‘) |
(C.1)
>
(π₯π(π‘) βπ) +π₯π(π‘) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |ππ π(π‘) | (ππ π(π‘) βπ) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πΏπ π(π‘) | + |ππ π(π‘) | + |πΏβ²
π π(π‘) |
=π₯π(π‘+1)
where the inequality in Equation C.1 follows becauseπ₯π(π‘+1)is a weighted average, and πΏβ²
π π(π‘) is less than all of the other values being averaged in the previous line.
The next inequality follows straightforwardly by replacing each value in the average with a smaller or equal value.
So ifπ₯π(π‘) has the highest value opinion at timeπ‘, it will always have the highest
value opinion. β‘
Corollary 1. LetπΊ =(π , πΈ)be a network withπnodes andπedges with confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, let π = {π : π₯π(π‘) β₯ π₯π(π‘)βπ βπ}. Thenπ₯max
ππ(π‘+1) > π₯π(π‘+1)βπ βπ.
Proof. From the definitions ofππ(π‘), πΏπ(π‘), we can observe that the member of π with highest index will have the largest corresponding set πΏπ(π‘) and the smallest correspondingππ(π‘), so that at timeπ‘+1, that member of π will have the highest- valued opinion of all members ofπ. By the same logic as in the proof of Lemma 3, that opinion will also be the highest-valued opinion overall. β‘ Corollary 2. LetπΊ = (π , πΈ)be the complete network withπnodes with confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, let π = {π : π₯π(π‘) β€ π₯π(π‘)βπ βπ}. Thenπ₯min
ππ(π‘+1) < π₯π(π‘+1)βπ βπ.
Proof. Proves thatπ₯π(π‘) < π₯π(π‘)for all π βπ, thenπ₯π(π‘+1) < π₯π(π‘+1)for all π βπ, by segmentingππ(π‘), πΏπ(π‘), ππ(π‘), πΏπ(π‘) into the appropriate subsets and reversing inequalities as needed as in lemma 3. Then the same logic as in corollary 1 proves
the statement. β‘
Lemma 4. LetπΊ = (π , πΈ)be a network withπnodes andπedges with confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, supposeπ₯π(π‘) > π₯π(π‘) for all other nodes π β π, so thatπ is the node with the highest-valued opinion at timeπ‘. Suppose that there is some node π such thatπ₯π(π‘) βπ₯π(π‘) < π, and that π has the highest-valued opinion of all such nodes. Then
2π 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | β€ π₯π(π‘+1) βπ₯π(π‘+1) β€
(|πΏβ²
π π(π‘) | +2)π 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |. Proof. By assumption, since π has the highest-valued opinion of all nodes within confidence ofπ,ππ π(π‘)is empty. To prove the lower bound,
π₯π(π‘+1) =
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) 2+ |πΏπ π(π‘) |
β₯
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1) =
(π₯π(π‘) βπ) +π₯π(π‘) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1) βπ₯π(π‘+1) β₯ 2π
2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |.
To prove the upper bound, π₯π(π‘+1) =
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π)+
2+ |πΏπ π(π‘) |
β€
π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (π₯π(π‘) +π) 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1) =
(π₯π(π‘) βπ) +π₯π(π‘) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1) βπ₯π(π‘+1) β€
π+π+ |πΏβ²
π π(π‘) | (π₯π(π‘) βπΏβ²
π π(π‘)) 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€
(|πΏβ²
π π(π‘) | +2)π 2+ |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |. Notice that if πΏβ²
π π(π‘) is empty, both inequalities become equalities, so that π₯π(π‘+1) βπ₯π(π‘+1)= 2π
2+ |πΏπ π(π‘) | Notice also that if both πΏπ π(π‘) and πΏβ²
π π(π‘) are empty, that the distance between
π₯π(π‘+1) βπ₯π(π‘+1) is preciselyπ. β‘
Corollary 3. LetπΊ =(π , πΈ)be a network withπnodes andπedges with confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, supposeπ₯π(π‘) < π₯π(π‘) for all other nodes π βπ, so thatπis the node with the lowest-valued opinion at time π‘. Suppose that there is some node π such thatπ₯π(π‘) βπ₯π(π‘) < π, and that π has the lowest-valued opinion of all such nodes. Then
2π 2+ |ππ π(π‘) | + |πβ²
π π(π‘) | β€ π₯π(π‘+1) βπ₯π(π‘+1) β€
(|πβ²
π π(π‘) | +2)π 2+ |ππ π(π‘) | + |πβ²
π π(π‘) |. Lemma 5. LetπΊ = (π , πΈ) be the complete network with πnodes and confidence boundπ. Suppose that every edge inπΊ is repulsive. At timeπ‘, suppose thatπand π are nodes such that(π, π) β πΈ,π₯π(π‘) > π₯π(π‘), andπ₯π(π‘) βπ₯π(π‘) < π, and there exist no nodesπ connected toπor π such thatπ₯π(π‘) > π₯π(π‘) > π₯π(π‘). Then
|π₯π(π‘+1) βπ₯π(π‘+1) | β€π .
Proof. By the assumption that no nodes have values betweenπ₯π(π‘) and π₯π(π‘), we have thatππ π(π‘)=ππ π(π‘) =β . Then to prove one direction of the bound,
π₯π(π‘+1)=
|πβ²
π π(π‘) | (πβ²
π π(π‘) βπ) + |ππ π(π‘) | (ππ π(π‘) βπ) +π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) |
β€
|πβ²
π π(π‘) | (πβ²
π π(π‘) βπ) + |ππ π(π‘) | (ππ π(π‘) βπ) +π₯π(π‘) + (π₯π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | +
|πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (π₯π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1)=
|ππ π(π‘) | (ππ π(π‘) βπ) + (π₯π(π‘) βπ) +π₯π(π‘) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β₯
|πβ²
π π(π‘) | (π₯π(π‘) βπ) + |ππ π(π‘) | (ππ π(π‘) βπ) + (π₯π(π‘) βπ) +π₯π(π‘) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | +
|πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |.
Combining both equations, π₯π(π‘+1) βπ₯π(π‘+1) β€
|πβ²
π π(π‘) | πβ²
π π(π‘) βπ₯π(π‘)
+π+π+ |πΏβ²
π π(π‘) |
π₯π(π‘) βπΏβ²
π π(π‘) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€
2+ |πβ²
π π(π‘) | + |πΏβ²
π π(π‘) | π 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€ π . To prove the other direction,
π₯π(π‘+1)=
|ππ π(π‘) | (ππ π(π‘) βπ) + (π₯π(π‘) βπ) +π₯π(π‘) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€
|πβ²
π π(π‘) | (πΏπ π(π‘) +π) + |ππ π(π‘) | (ππ π(π‘) βπ) + (π₯π(π‘) βπ) +π₯π(π‘) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | +
|πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (πΏβ²
π π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | π₯π(π‘+1)=
|πβ²
π π(π‘) | (πβ²
π π(π‘) βπ) + |ππ π(π‘) | (ππ π(π‘) βπ) +π₯π(π‘) + (π₯π(π‘) +π) + |πΏπ π(π‘) | (πΏπ π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) |
β₯
|πβ²
π π(π‘) | (πβ²
π π(π‘) βπ) + |ππ π(π‘) | (ππ π(π‘) βπ) +π₯π(π‘) + (π₯π(π‘) +π) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | +
|πΏπ π(π‘) | (πΏπ π(π‘) +π) + |πΏβ²
π π(π‘) | (ππ π(π‘) βπ) 2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |.
Combining both inequalities yields
π₯π(π‘+1) βπ₯π(π‘+1) β€
|πβ²
π π(π‘) |
πΏπ π(π‘) βπβ²
π π(π‘) +2π
+π+π+ |πΏβ²
π π(π‘) | πΏβ²
π π(π‘) βππ π(π‘) +2π
2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) | .
Note, however, that
2π= (π₯π(π‘) +π) β (π₯π(π‘) βπ)
> πβ²
π π(π‘) βπΏπ π(π‘)
> (π₯π(π‘) +π) βπ₯π(π‘) =π and similarlyπ < ππ π(π‘) βπΏβ²
π π(π‘) < 2πso that we have π₯π(π‘+1) βπ₯π(π‘+1) β€
|πβ²
π π(π‘) |
πΏπ π(π‘) βπβ²
π π(π‘) +2π
+π+π+ |πΏβ²
π π(π‘) |
πΏβ²
π π(π‘) βππ π(π‘) +2π
2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€
2+ |πβ²
π π(π‘) | + |πΏβ²
π π(π‘) |
π
2+ |πβ²
π π(π‘) | + |ππ π(π‘) | + |πΏπ π(π‘) | + |πΏβ²
π π(π‘) |
β€ π
and the proof is finished. β‘
A p p e n d i x D