"" "-...
...__ _ _ _ _ _ _ ELECTRON CAGE/ /
--
-77-
Figure 7
The normalized differential sputtering yield versus
a
for the low-dose solid gallium run of Table 2. The uncertainty in the yields is. 5% which includes the systematic errors discussed in Chapter III. The uncertainty in 0/n is 0.001.The continuous line is cos1• 94
a.
+
c:=· L
o·
Ls·o g·q v·o c:·o
0131A
8NI~311nds 3AI1Vl3~Figur e 7
o·o
0
II)
.
0
0
.
II) N
.
0
I")
0
.
~
CL
"
C:<
c t -
w :r:
t -
I")
0
.
I
II) N
.
0 I
00
I")
0
.
I 0
II)
.
0 I
-79- Figure 8
The normalized differential sputtering yield versus
e
for the high-dose solid gallium run of Table 2. The uncertainties are as quoted in the previous figure caption. The continuous line is cos1 • 85e.
G" 1
o·
1a·o
9·0v·o z·o 0131A
~NI~311nds 3AI1Vl3~Figure 8
o·o
0
II)
.
0
CX) I"")
0
.
II) N
.
0
I"")
0
.
...
CL ...
c: <:
c l -
w
II -
I"")
0
.
I
II) N
.
0 I
CX) I"")
0
.
I 0
II')
0
.
I
-81- Figure 9
The normalized differential sputtering yield versus
a
for the first liquid galliwn run listed in Table 2. The continuous line is cos1• 96
a.
G" L
o·
La·o
9·0v·o
G·o013IA
~NI~311nds 3AI1Vl3~Figure
9
o·o
0 11)
.
0
CX)
n
.
0
11) ('\J
.
0
n
.
0
-
a_...
~<
o t -
w
I t - n.
0 I
11) ('\J
.
0 I
CX)
n
.
0 I 0
11)
.
0 I
-83-
Figure 10
The normalized differential sputtering yield versus
e
for the second liquid gallium run listed in Table 2. Although no sputtering yield could be obtained for this run due to poor Ar+ beam current integration, the angular distribution is
independent of beam current integration during sputtering.
The continuous line is cos1·~2
e.
G" L
o·
Ls·o
9·0v·o c:·o 013IA
~NI~3llnds 3AI1Vl3~Figure 10
o·o
0
LI')
0
.
00
I")
0
.
LI') ('\J
.
0
I")
0
.
-
a...
...
c: <
0 t -
w
I t -
I")
0
.
I
LI') ('\J
.
0 I
00
I")
0
.
I 0
LI')
0
.
I
-as-
Figure 11
The normalized differential sputtering yield versus
e
for the solid indium run in Table 2. The estimated uncertainty in yields is 5%, .and the uncertainty in 8/ir is 0.001. The
continuous line is cos1·!li+
e.
G" L
o·
Ls·o s·o v·o
G"O013IA
~NI~3llnds 3AI1Vl3~Figure 11
o·o
0
l/')
.
0
0
.
l/') (\J
.
0
·n 0
.
-
0...
...
':<
o1-
w
I
I -
n
.
0
I
l/') (\J
.
0
I
CX) n
.
0
I
0
l/')
.
0
I
-87- Figure 12
The normalized differential sputtering yield versus 8 for the liquid indium run in Table 2. The uncertainties are the same as in the previous figure caption. The continuous line is cos.2 • 11.0.
a.
G" l
o·
Ls·o g·o. v·o
G"O013IA
~NI~3llndS 3AI1Vl3~Figure 12
o·o
0
Lf)
I"')
0
.
-
Q_...
c:
<:c t -
w :c
....__
I"')
0
.
I
Lf) N
.
0 I
CX>
I"')
0
.
I 0
Lf)
.
0 I
-a9-
Figure 13
Rutherford backscattering spectrum of a graphite foil which collected sputtered atoms from a liquid gallium-indium eutectic target. The Rutherford cross section for indium is 2.5 times as large as the cross section for gallium. The incident 1
9?
2+ energy was 5.00 MeV.c-···
.... . . . . ...
... ··- · ....
• ••·.
I.-
IO.
~
..
:. N•••••
":{
·~:Jo·
.. .,, ,,
...~~~
•t'q
-·~· N '~1 ·~
..
~. \1''
0 •t.~·,
(!) ~. ·.,)t•
.
, ·::...
)~;-
, ....
~-
. . t .,.
· .. 't
.. .
··~
!·(.:
l ::-~
' \ 0
\:;: Y.·,'
..
-.
.:
~·f
...
. ·<:
. .
.
~;· "-
IO.
·,:j 0
~
•.:
,.·•. .,, r··
. · .·
~~~~~~·~~~~~-1.'~~~~~-L·~~---.L...·----~~~'
0IO 0 IO q IO 0
C\i '-'i - d
Figure
13
- >
:e
cu- >-
<!)
a:
L&J
z
L&J-91- Figure 14
The normalized differential sputtering yield versus
e
for galliwn sputtered from a liquid_ gallium-indiwn eutectic target by 15 k.eV Ar+. The target temperature was 31.8°C
(see Table 3}. The continuous line is cos3• 7
e.
Compare the angular distribution to the indiwn distribution taken from the same target in Figure 15.+
c::·
Lo·
Ls·o s·o v·o z·o 013IA
~NI~3llnds 3AI1Vl3~Figure 14
o·o
0 10
.
0
I"")
0
.
-
a_
...
':<
o l - -
:c w
I--
I"")
0
.
I
10 N
.
0 I
CX) I"") 0
.
I 0 10
.
0 I
-93- Figure 15
The normalized differential sputtering yield versus
e
for indium sputtered from the same liquid eutectic target as in Figure 14. The incident sputtering beam was 15 keV Ar+.
The continuous line is cos1• 99
e.
+ +
+
l" l
o·
ts·o g·o v·o i·o
013IA
~NI~3llndS 3AI1Vl3~Figure
15
o·o
0 LO
.
0
00
!"')
.
0
LO
(\J
.
0
!"')
0
.
...
a...
...
~<
o l -
w
:J:
I -
!"')
0
.
I
LO
(\J
.
0 I
00
!"'")
0
.
I 0 LO
.
0 I
-95- Figure 16
The normalized differential sputtering yield versus
e
for gallium sputtered from a liquid gallium-indium eutectic target by 25 keV Ar+ (see Table 3}. The continuous line is cos2·n
e.
+
z·
1o·
1s·o
9·0v·o z·o
013IA
DNI~3110dS 3AI1Vl3~Figure 16
o·o
0
II)
.
0
CX>
n
.
0
II) ('\J
.
0
n
.
0
- a...
...
C:<
ot--
w
I
1--
n
.
0 I
II) ('\J
.
0 I
CX>
n
.
0 I 0
II)
.
0 I
-97- Figure 17
The normalized differential sputtering yield versus
e
for indium sputtered from the same liquid eutectic target and by the same 25 keV Ar+ beam as in the previous figure. The continuous line i$ cos1 •~8
e.
z·
Lo·
Ls·o g·o v·o z·o 0131A
~NI~311nds 3AI1Vl3~Figur e 17
o·o
0
"' .
0
00 I")
.
0
"'
N.
0
I")
0
.
t--4
CL
...
c: < .
o t -
w :r:
I -
I")
0
.
I
"'
N
.
0 I
00 I")
0
.
I 0
"' .
0 I
-99- Figure 18
Rutherford backscattering spectrum of a graphite foil which collected sputtered atoms from the first run on the quickly frozen eutectic target. The total accumulated Ar+
at the end of the run was 3.33 mCoulombs (see Table 4).
The energy of the incident l!lF2+ beam was 5.00 MeV.
....
c-·- -·· . ·- . . . .
I I
in 0 in
N N
-
i+ .:161
. .. . ...
I
q
::>r11 S.lNno::>
Figure
18
I in
0
- q f")
.. ...
0 0
- >
Q)-
::E-101-
Figure 19
Rutherford backscattering spectrum of a graphite foil which collected sputtered atoms from the second run on the quickly frozen eutectic target. The total accumulated Ar+
at the end of the run was 8.33 mcoulombs (see Table 4).
~---..;. 0
....
c-. .. · .
;.· ... . . . ..
·~·". ..
..
. rti 0
\
. . .
. t ...
'· .. ....
.) ··~N..
-~.•tc
....
!:i
··I
, ,,1
'
•·J t 0
'N I
. .i .
.
•.:. ....
•• , ra , .. ·
o - · . .
• 1.: \ ., . . . .
,~---~·~---~·~---~·~---~·!:---:0
in 0 in
q
in 0C\i N
o
Fi gure 19
-
- >-
<!>
a::
I.LI
z
I.LI-103-
Figure 20
Rutherford backscattering spectrum of a graphite foil which collected sputtered atoms from the third run on the quickly frozen eutectic target. The total accumulated Ar+
at the end of the run was 13.3 mCoulombs (see Table 4).
.;
I in~ ~
.f
: .i q
-=
,.,.,
.
c: _ .: ... .
.. . . .. ..
~·~
.... . ..
'.
a _
C>
...
.... . . . .
..
~. .. . . .
,.2 + .:161 :) rt I
S.lN no:)
Figure 20
...
. · ...
1
q ~·: N C>
.· .l a::
L&JL&J
z
-105- Figure 21
The composition of the material sputtered from the solid gallium-indium eutectic versus incident Ar+ dose. The shaded blocks represent sputtering runs of the quickly frozen target while the unshaded blocks represent the target which was
frozen gradually.
0 0
I
I0
m
!.•
I·
I•
I•
,,, . l•
I
0 <X>
I
0
,.._
, .
0 <D
I 0 I{)
. I
0 v
Figure 21
I
0
,.,.,
I
I I I I
c:
I
~I - ~I
!I .51
I I I
I I
I '
L•
I
I·
I
ii
I
I•·
I
'!
I
h·. I
I
l
·,
I
I
•
I0 N
. · ..
I
0
-
-
-
-
-
· -
-
· -
-
-
N N
0 N
<X>
<D
v
N
0
<X>
<D
v
N
0 0
- "'
.0
E
0~
0 (.)
- E
+ ' -
c::x:
I-
z w
0(.)
z
LL 0
w en
0 0
-107- Figure 22
The normalized differential sputtering yield versus 6 for indium sputtered from the slowly frozen eutectic target during the first run listed in Table 4. The total accumulated Ar+ at the end of the run was 11.0 mCoulombs. The continuous
line is cos1 • 41
e.
+ +
c:·
1o·
1s·o
9·0v·o c: · o
0131A
DNI~3llnds 3AI1Vl3~Figure 22
o·o
0
1f)
.
0
0
.
1f) (\J
0
I")
0
.
...
0....
...
C:<
o l -
w
I
I -
I")
0
.
I
1f) (\J
.
0 I
co I")
0
.
I 0
LI)
.
0 I
-109- Figure 23
The normalized differential sputtering yield versus
e
for indium sputtered f.rom the slowly frozen eutectic target during the second run listed in Table 4. The total accumulated Ar+ at the end of the run was 21.·o mCoulombs. The continuous line is COSQ.~2 8.
+
z·
Lo·
Ls·o
9·0v·o z·o
013IA ~NI~3lln~s 3AllV13~
Figur e 23
o·o
Lt)
.
0
0
.
Lt) N
.
0
n
.
0
- a...
...
c::
<:a t - -
w
I I--
n
.
0 I
Lt) N
.
0 I
(X) n
.
0 I 0
Lt)
.
0 I
-111-
Figure 24
The normalized differential sputtering yield versus
e
for indium sputtered during the first run of the quickly frozen eutectic target. The total accumulated Ar+ at the end of the run was 3.33 mcoulombs. The continuous line is cos1• 6
e.
+
z.
l 0. ls·o
9"0t·o z·o
013IA
8NI~311ndS 3J\Il\f'l3~Figure
24
o·o
0
It)
.
0
0
.
It)
N
.
0
n
.
0
.-
Cl...
...
~<:
o~
w
I
~
n
.
0 I
It) N
.
0 I
n 00
.
0 I 0
It)
.
0 I
-113- Figure 25
The normalized differential sputtering yield versus
e
for indium sputtered during the second run of the quickly frozen eutectic target. The total accumulated Ar+ at the end of the run was 8.33 mCoulombs. The continuous line is cos1 • 3
e.
+
G" l
o·
Ls·o
9·0v·o
G"O013IA
~NI~3llnqS 3AI!Vl3~Figure 25'
o·o
0
It)
.
0
CX>
n
.
0
It) ('\J
.
0
n
.
0
-
a_...
~<
o~
w
I
~
n
.
0 I
It) ('\J
.
0 I
CX>
n
.
0 I 0
It)
.
0 I
-115- Figure 26
The normalized differential sputtering yield versus
a
for indium sputtered during the third run of the quickly frozen eutectic target. The total accumulated Ar+ at the end of the run was 13 •· 3 mCoulombs. The continuous line is cos1 •2
a.
+
G" L
o·
Ls·o
9·0v·o
G"O013IA
~NI~3llndS 3AI1Vl3~Figure 26
o·o
0
Lt)
.
0
0
.
Lt)
N
.
0
n
.
0
-
Cl... ...':<
o l -
w
I
I -
n
.
0 I
Lt)
N
.
0 I
CX>
n
.
0 I 0
Lt)
.
0 I
-117-
Figure 27
Photograph of the ion scattering spectroscopy apparatus which was inserted between the analyzing magnet and the target
chamber.
Figure 27
-119- Figure 28
ISS spectrum of a pure solid gallium surface. Each point represents the number of particles detected per 10-7 Coulomb of incident 2 keV Ar+ on target. The detected particles can be sputtered ions as well as scattered Ar+.
The peak labeled gall.ium is comprised of Ar+ ions which were scattered from gallium atoms on the surface.
. . . . · ... ..
( ! ) - · D
. . . .. . ... . ,
:'~ ..
·:~ ·".~· !.'··
.
~.~~ \X.·
: • (t,•
_g
0 N
~ ~·
-~~ 0
-~ - ~
.i. ...
~=; ~•f\·
.:i:. =~.
=~~·
:'i . ... : t;:·
,··~·:
. .. .. ,·,:·.
• :f,t::.r.-
·.
t. ... ._-· .
•,I,_\•: • ._
·.
.• ii ... ..., ·J'. " . · ..
·=·~· \• .
• "L"• • : • ( l" •
'·· ..
. . . . .... .
·~:
•_.·. .
~ ff.I..... .
• .-: • ·' • ·:- ...
·~. \ -~ t.·. .
·.!·~.. .~
.: ..
.
:_ ...
::.
. . . .
,. .. . . . . .
. .
9\. .
•• •·.·: ..
•.
.:·:.1.~.
. . ..
,.. . .
.,
·.:~ ~. .
-g
0-o 0 I()
, _ _ _ _ _ _ _ _ _ _ _ _ _ _ , , , _ _ _ _ _ _ _ _ _ _ _ _ . . , . , _ _ _ _ _ _ _ _ _ _ _ _ _ ...._1 _ _ _ _ _ _ _ _ _ _ _ _ L - 1 _ _ _ _ _ _ _ _ _ _ ~0
~
8
~8
~ 0N N
S.LNno:> .:fO ~38WnN
Figure 28
- >
Q)-
<.!)>- a:
L&J
z
L&J
-121- Figure 29
ISS spectrum of a pure solid indium surface. Once again, the counts can represent sputtered ions as well as scattered Ar+. The peak labeled indium is comprised of Ar+ ions which were scattered from indium atoms on the surf ace.
.. . . .
....
c.. . .
. >~'! .
..
'-·
~'. .
'. .. . - .. . ..
~..
···~·.
. ·-:i.:'. ...
'..
""::;
.,,..
.. •:-.:-· .
·--·~·
. :. i:.
•-:."Ji. .
••• •• it ~
• ,,, e
_.,I
.. i. •. a.;., •.. · ... . ., ,,,. ·-· ··
:.~·-.;
: ;..·:··;
, . ..
1 1 J I. • . •.. . ·
• • ·~ r ·.,
..
'.:· ...
:
:.. . . ... .
'
.
., ·:·, .
.. .
'..
-
-
-
0
8
N
0 0
IO
0 0
2
- C> 0
IO
• • I \
... ~~~-'~~~ ... ·~~~~~~-... ·~~~~~~--'·'--~~~~~~ ... ·~~~~~~___,C>
~ ~
8
~ 0S.lNno:> .:10 ~:38WnN
Figure 29
- >
Cl>-
~<.:>
a:
w z w-123-
Figure 30
ISS spectrum of the liquid_ gallium-indium eutectic alloy.
A previous sputter-cleaning exposed some of the tantalum on which the liquid alloy was supported.
....
c-· . . .... ....
:•.
.. ;l:· - -~f
:, ~-·
•• -,'! •
-.;.'(:
ii-.:. .
. :.,:.-
.
,"J: ..-" .
.... s.:.: •
,rf .
:.·• ·t':.'f·
... --~
~<7·.
,~, ,,,_. -
.:)1.-
. .. .. ,, . ...
··~. . l:(
a . .,.,
a.=.~·?' :Ii.
r- -~ .
.. .
:':~~--=
. .,-:; ..
..,..
: :. ... ....
. , . . · .. -· -
.. . ... .... -. . . -:.
.... . ...r •• . '· ··~
.;... -·
.~~~·
.r.. : . .
:::a.
:,r.,, •
. . .
·~--· .. ·: .. . . . .
;,,.:,:,..
. "• ·"' . .
;.· ·:·.. · .
• • #
... >' .
• r :·
•4'? • • • . . . · l •
.. t·.,· .. ,,.
..
1·~·.... ·r.:! • ••
. . "' .
. . .. : .•..
:. . .
' .,.. . ..
f, ....
4 • •-
. . . • #
. ... : ...
~...
. . . . ·.
',.- . .. ... . .
; (
..
". .. .
·~. . .
:-.... .. . .
• • • I·:--
§ -
8
It)~~~~~~.._•~~~~~~·~~~~~
...
·~~~~~__,o8 ~ 8 ~
0N
Sl.NnO~
.:10
~38wnN
Figure 30
- ~
- >
(!)
a:::
Lii
z
l&J
-125- Figure 31
Schematic diagram of the ISS apparatus. The incident beam trajectory is perpendicular to the plane of the diagram.
UHV CHAMBER 121• ELECTROSTATIC ANALYZER
i
.,
____ ..., _ _ _ ... .__ -
l,- - - - -I
---
...- __ _
...
___ _
.. ~ ... ---
\.-~ / ...-
">/
MACOR
CHANNELTRON HOLDER
I I I I I
,1
I \
I IFi
11I
I
\:;~-:b.rJ
11BENDIX CEM (~ I
I
4039 CHANNELTRON _ _ _ _
ll
_!il ___ ~ I QI
VERTICAL ION BEAM
Figure 31
II ~1:±-.J.=~ =4=~
11IL----...ll
,._,J ~ ..
PORT FOR ELECTRICAL
1
FEEOTHROUGHS
-127-
Figure 32
Photograph corresponding to the point of view taken in the schematic in Figure 31. Part of the electrostatic analyzer can be seen through the viewport.
Figure 32
-129- Figure 33
Schematic diagram of the multichannel scaling arrangement used to collect I.SS energy spectra.
BEAM CURRENT ON TARGET
I
CURRENT DIGITIZERI
external clock
ND 2400 x-axis display DISPLAY MUL Tl CHANNEL
MODULE ANALYZER
multi scale pulses
LOW-LEVEL DISCRIMINATOR HIGH-VOLTAGE AMPLIFIER PULSE AMPLIFIER
CHARGE-SENSITIVE PREAMP
ELECTROSTATIC CHANNEL TRON DETECTOR ANALYZER
•
II
IL---...1
analyzed Ar• ionsFigure
33
-131-
Figure 34
Circuit diagram of the amplifier used to provide the voltages for the electrostatic analyzer. This amplifier is referred to as "high-voltage11 in the schematic in Figure 33 to distinguish i t from the amplifier used to amplify and shape the pulses from the channeltron detector.