• Tidak ada hasil yang ditemukan

FREQUENCY RESPONSE AND MEAN-SQUARED STABILITY

4.8 Appendices

Thus, we can write the following due to the binary nature of the index selections:

E h

DTπ‘˜ X DTπ‘˜

𝑖, 𝑗

i

=𝑋𝑖, 𝑗 P[𝑖 ∈ Tπ‘˜, 𝑗 ∈ Tπ‘˜]. (4.83) Regarding the probabilities in (4.83), we have the following for the non-diagonal (𝑖≠ 𝑗) entries:

P[𝑖 ∈ Tπ‘˜, 𝑗 ∈ Tπ‘˜] =P[𝑖 ∈ Tπ‘˜] P[𝑗 ∈ Tπ‘˜] = 𝑝𝑖 𝑝𝑗, (4.84) which follows from the fact that indices get updated independently from each other.

On the other hand, we have the following for the diagonal (𝑖 = 𝑗) entries:

P[𝑖 ∈ Tπ‘˜, 𝑗 ∈ Tπ‘˜] =P[𝑖 ∈ Tπ‘˜] = 𝑝𝑖, (4.85) which follows simply from the fact that𝑖 ∈ Tπ‘˜ if and only if 𝑗 ∈ Tπ‘˜ when𝑖 = 𝑗. Thus, we can write the following:

E

DTπ‘˜ X DTπ‘˜

𝑖, 𝑗

=





ο£²



ο£³

𝑝𝑖 𝑝𝑗 𝑋𝑖, 𝑗 𝑖 β‰  𝑗 , 𝑝𝑖 𝑋𝑖,𝑖, 𝑖 = 𝑗 ,

(4.86)

which is equivalent to the identity (4.81).

4.8.2 Proof of Theorem 4.1

Due to asynchronous updates described in (4.13), state vectorxπ‘˜ can be written as follows:

xπ‘˜ =(Iβˆ’DTπ‘˜)xπ‘˜-1+DTπ‘˜ A xπ‘˜-1+

𝑅

Γ•

𝑖=1

B𝑖 π›Όπ‘˜-1

𝑖 +wπ‘˜-1

= I+DTπ‘˜ (Aβˆ’I)

xπ‘˜-1+DTπ‘˜

𝑅

Γ•

𝑖=1

B𝑖 π›Όπ‘˜-1

𝑖 +wπ‘˜-1

!

. (4.87)

Taking expectation of (4.87) and using the facts that updated indices are selected independently, the input noise has zero mean, and the noise is uncorrelated with the index selections, we have the following:

E[xπ‘˜] =AΒ― E[xπ‘˜-1] +

𝑅

Γ•

𝑖=1

BΒ―π‘–π›Όπ‘˜-1

𝑖 =AΒ―π‘˜E[x0] +

π‘˜βˆ’1

Γ•

𝑛=0

A¯𝑛

𝑅

Γ•

𝑖=1

BΒ―π‘–π›Όπ‘˜-1-𝑛

𝑖 (4.88)

=

𝑅

Γ•

𝑖=1

(𝛼𝑖Iβˆ’A)Β― -1BΒ―π‘–π›Όπ‘˜

𝑖 +AΒ―π‘˜

E[x0] βˆ’

𝑅

Γ•

𝑖=1

(𝛼𝑖Iβˆ’A)Β― -1B¯𝑖

,

=xssπ‘˜ +AΒ―π‘˜

E[x0] βˆ’xss0

=xssπ‘˜ +xtrπ‘˜ (4.89)

where Β―Aand Β―Bare as in (4.19).

4.8.3 Proof of Theorem 4.2

Using the definition of the error term in (4.29) and substituting xπ‘˜ =qπ‘˜+xssπ‘˜ into (4.87), we have the following:

qπ‘˜+1+xssπ‘˜

+1 = I+DTπ‘˜+1 (Aβˆ’I)

(qπ‘˜+xssπ‘˜) +DTπ‘˜+1 wπ‘˜+DTπ‘˜+1P-1

𝑅

Γ•

𝑖=1

BΒ―π‘–π›Όπ‘˜

𝑖, (4.90) which can be written as follows by rearranging the terms:

qπ‘˜+1= I+DTπ‘˜+1 (Aβˆ’I)

qπ‘˜+DTπ‘˜+1 wπ‘˜ + DTπ‘˜+1P-1βˆ’I

Ξ΄π‘˜, (4.91) where thedeterministicvectorΞ΄π‘˜ is defined as in (4.36).

Using (4.91), we can express the outer product qπ‘˜

+1qHπ‘˜

+1 recursively in terms of qπ‘˜qHπ‘˜ as follows:

qπ‘˜

+1qHπ‘˜

+1 = I+DTπ‘˜+1 (Aβˆ’I)

qπ‘˜qHπ‘˜ (AHβˆ’I)DTπ‘˜+1 +I +DTπ‘˜+1wπ‘˜ wHπ‘˜ DTπ‘˜+1

+ DTπ‘˜+1P-1βˆ’I

Ξ΄π‘˜ Ξ΄Hπ‘˜ P-1DTπ‘˜+1 βˆ’I + I+DTπ‘˜+1 (Aβˆ’I)

qπ‘˜ Ξ΄Hπ‘˜ P-1DTπ‘˜+1 βˆ’I + DTπ‘˜+1P-1βˆ’I

Ξ΄π‘˜ qHπ‘˜ I+ (AHβˆ’I)DTπ‘˜+1

, (4.92)

where the cross terms includingwπ‘˜ are left-out intentionally because these terms will disappear when we take the expectation since wπ‘˜ has a zero mean and it is uncorrelated with the index selections.

We now take the expectation of both sides of (4.92) and use the identities given by Lemma 4.6, and the independence assumption regarding the index selections, input noise and the initial condition. Then, we obtain the following:

Qπ‘˜+1 =πœ‘(Qπ‘˜) +PπšͺP+πšͺ Pβˆ’P2

+ Ξ΄π‘˜ Ξ΄Hπ‘˜

P-1βˆ’I +

(AΒ― βˆ’I) xtrπ‘˜ Ξ΄Hπ‘˜

P-1βˆ’I +

Ξ΄π‘˜ (xtrπ‘˜)H(AΒ―Hβˆ’I)

P-1βˆ’I

, (4.93) where the function πœ‘(Β·)is defined in (4.33). We also note thatE[qπ‘˜] =xtrπ‘˜ as given in (4.35).

AlthoughX+XH β‰ 2<{X} in general, we note that the following equality holds true for anyX ∈C𝑁×𝑁:

X+XH

P-1βˆ’I

=2<

X P-1βˆ’I

, (4.94)

where<{Β·} denotes the real part of its argument. So, using the identity (4.94) in (4.93) gives the result in (4.35).

4.8.4 Proof of Corollary 4.2 We first define the following:

Zπ‘˜ =Qπ‘˜ βˆ’Qrπ‘˜βˆ’Qn, (4.95)

where Qrπ‘˜ and Qn are given as the solutions of (4.44) and (4.43), respectively.

Substituting (4.95) into the recursion (4.35), we get

Zπ‘˜+1+Qrπ‘˜+1+Qn =πœ‘(Zπ‘˜) +πœ‘(Qrπ‘˜) +πœ‘(Qn) (4.96) +PπšͺP+πšͺ Pβˆ’P2

+ <n Ξ΄π‘˜Ξ΄π‘˜H

o

Pβˆ’1βˆ’I + <n

2(AΒ― βˆ’I)xtrπ‘˜Ξ΄Hπ‘˜

o

Pβˆ’1βˆ’I ,

which can be simplified as follows due to the defining equations in (4.44) and (4.43):

Zπ‘˜+1 =πœ‘(Zπ‘˜) + <n

2(AΒ― βˆ’I)xtrπ‘˜ Ξ΄Hπ‘˜

o

Pβˆ’1βˆ’I

. (4.97)

Due to the stability assumption (4.41) and Lemma 4.3 we have 𝜌(A)Β― <1, so limπ‘˜β†’βˆžxtrπ‘˜ =0. As a result,

lim

π‘˜β†’βˆžZπ‘˜ =0, (4.98)

which gives the desired result.

Necessity of the condition (4.41) follows from (4.40). That is, when 𝜌(𝚽) β‰₯1 there exists a nonzero positive semi-definite matrixXthat cannot be reduced by the functionπœ‘(Β·).

4.8.5 Proof of Lemma 4.1

Assume that the stability condition (4.41) is met, and solution to (4.43) exists. Lete𝑖

denote the𝑖𝑑 β„Ž standard basis vector. It is readily verified that the following identity holds true for anyX∈C𝑁×𝑁 and any index 1≀ 𝑖 ≀ 𝑁:

e𝑖H πœ‘(X) e𝑖 =(1βˆ’ 𝑝𝑖) eH𝑖 X e𝑖+𝑝𝑖eH𝑖 A X AHe𝑖. (4.99) Furthermore, we have the following:

eH𝑖

PπšͺP+πšͺ Pβˆ’P2

e𝑖 = 𝑝𝑖 eH𝑖 πšͺe𝑖. (4.100) So, by left and right multiplying (4.43) with eH𝑖 and e𝑖 respectively, we get the following:

e𝑖H Qnβˆ’πšͺ

e𝑖 𝑝𝑖 = 𝑝𝑖 eH𝑖 A QnAHe𝑖 β‰₯ 0, (4.101) where the inequality follows fromQn 0, and the desired result follows from the fact that 𝑝𝑖 > 0 for all𝑖.

4.8.6 Proof of Lemma 4.2

Enumerate all possible index update sets. Namely, letT𝑗 denote the 𝑗𝑑 β„Ž update set, and let 𝛾𝑗 denote the probability of selecting the set T𝑗 for 1≀ 𝑗 ≀ 2𝑁. So, the system is equivalent to the following state transition matrix:

A𝑗 =I+DT𝑗 (Aβˆ’I) (4.102)

which now depends on the index 𝑗. This has probability𝛾𝑗 in model (4.50), where the probability is given as follows (due to the stochastic model in (4.15)):

𝛾𝑗 = Γ–

π‘–βˆˆT𝑗

𝑝𝑖

! Γ–

π‘–βˆ‰T𝑗

(1βˆ’ 𝑝𝑖)

!

. (4.103)

Then, for a givenX∈C𝑁×𝑁 we have the following:

2𝑁

Γ•

𝑗=1

𝛾𝑗 A𝑗 X AH𝑗 =

2𝑁

Γ•

𝑗=1

𝛾𝑗

I+DT𝑗 (Aβˆ’I)

X

I+ (AHβˆ’I)DT𝑗

=E h

I+DT𝑗 (Aβˆ’I) X

I+ (AHβˆ’I)DT𝑗

i

=X+P(Aβˆ’I)X+X(AHβˆ’I)P+E h

DT𝑗 (Aβˆ’I)X (AHβˆ’I)DT𝑗

i

(4.104)

=X+P(Aβˆ’I)X+X(AHβˆ’I)P+P(Aβˆ’I) X (AHβˆ’I)P +

(Aβˆ’I) X (AHβˆ’I)

(Pβˆ’P2)

=

I+P(Aβˆ’I) X

I+ (AHβˆ’I)P +

(Aβˆ’I) X (AHβˆ’I)

(Pβˆ’P2)

=πœ‘(X),

where we use the identity (4.81) in (4.104). Thus, the statement of the corollary follows directly from [42, Corollary 3.26].

4.8.7 Proof of Corollary 4.3

Using the recursive definition of the error correlation matrix in (4.35), we have the following regarding the trace of the error correlation matrix:

tr(Qπ‘˜+1)=tr(πœ‘(Qπ‘˜)) +tr(Pπšͺ) +tr

Ξ΄π‘˜Ξ΄Hπ‘˜

Pβˆ’1βˆ’I +tr

<

n

2(AΒ― βˆ’I)xtrπ‘˜Ξ΄Hπ‘˜

o

Pβˆ’1βˆ’I

, (4.105)

where we use the fact that tr(XD) =tr(XD)holds true for any diagonal matrixD. Next, we will provide bounds for individual elements on the right-hand-side of (4.105). We first get the following trace equality by summing (4.99) over all indices:

tr πœ‘(X)

=tr

X I+AHP Aβˆ’P

. (4.106)

Now defineΨas follows:

Ξ¨ =πœ†

max I+AHP Aβˆ’P

. (4.107)

Then we have the following:

Ξ¨I I+AHP Aβˆ’P=AΒ―HAΒ― + (AHβˆ’I) (Pβˆ’P2) (Aβˆ’I) AΒ―HAΒ―, (4.108) which implies the following:

kAΒ―k2 ≀Ψ1/2 and tr πœ‘(X)

≀ Ξ¨ tr(X). (4.109) Using the bound in (4.53), we can write the following:

tr

Ξ΄π‘˜Ξ΄Hπ‘˜

Pβˆ’1βˆ’I

=Ξ΄Hπ‘˜ Pβˆ’1βˆ’I

Ξ΄π‘˜ ≀ 𝚫2

Pβˆ’1βˆ’I

2. (4.110) For the last term on the right-hand-side of (4.105), we can write the following inequalities:

tr

<n

2(AΒ― βˆ’I)xtrπ‘˜Ξ΄Hπ‘˜

o

Pβˆ’1βˆ’I

=<n

2Ξ΄Hπ‘˜ (P-1βˆ’I) (AΒ― βˆ’I)xtrπ‘˜ o

≀

2Ξ΄Hπ‘˜ (Iβˆ’P) (Aβˆ’I)AΒ―π‘˜ (E[x0] βˆ’xss

0)

≀ π‘Ξ¨π‘˜/2, (4.111) where (4.111) follows from the definition of xtrπ‘˜ in (4.18), and the constant 𝑐 in (4.111) is given as follows:

𝑐 =2𝚫

(Iβˆ’P) (Aβˆ’I) 2

E[x0] βˆ’xss

0

2, (4.112)

where we use the bounds from (4.53) and (4.109).

Using the bounds in (4.109), (4.110), and (4.111) in the equality (4.105), we get the following:

tr(Qπ‘˜+1) ≀Ψtr(Qπ‘˜) +tr(Pπšͺ) +𝚫2kPβˆ’1βˆ’Ik2+π‘Ξ¨π‘˜/2. (4.113) Using the inequality (4.113) recursively, we get the following:

tr(Qπ‘˜) ≀ Ξ¨π‘˜tr(Q0) +𝑐 Ξ¨π‘˜/2βˆ’Ξ¨π‘˜

/ Ξ¨1/2βˆ’Ξ¨ + 1βˆ’Ξ¨π‘˜

1βˆ’Ξ¨

tr(Pπšͺ) +𝚫2kPβˆ’1βˆ’Ik2

. (4.114)

In the final step we use the assumptionAHP A≺ Pin (4.51), and conclude from (4.107) thatΨ < 1. So, the upper bound in (4.114) gives the following result:

lim sup

π‘˜β†’βˆž tr(Qπ‘˜) ≀ tr(Pπšͺ) +𝚫2kPβˆ’1βˆ’Ik2

1βˆ’Ξ¨ , (4.115)

which is equivalent to (4.52) since 1βˆ’Ξ¨ =πœ†

min(Pβˆ’AHP A).

4.8.8 Proof of Lemma 4.5

Assume thatA∈C𝑁×𝑁 is a triangular matrix with 𝐴𝑖,𝑖 being the𝑖𝑑 β„Ž diagonal entry.

Then, we first note that both Β―Aand𝚽are triangular matrices, which follows simply from the fact that P and J are diagonal matrices, and the Kronecker product of triangular matrices is a triangular matrix. In particular, we note that the𝑖𝑑 β„Ždiagonal entry of Β―Ais as follows:

Β― 𝐴𝑖,𝑖 =

1+ 𝑝𝑖(𝐴𝑖,π‘–βˆ’1)

. (4.116)

Then, it is straightforward to verify that theπ‘˜π‘‘ β„Ždiagonal entry of𝚽is as follows for π‘˜ =𝑖+ (𝑗 βˆ’1)𝑁with 1 ≀ 𝑖, 𝑗 ≀ 𝑁:

π‘†π‘˜ , π‘˜ = π΄Β―βˆ—

𝑗 , 𝑗 𝐴¯𝑖,𝑖+𝛿𝑖, 𝑗 (π‘π‘–βˆ’ 𝑝2

𝑖) |𝐴𝑖,π‘–βˆ’1|2, (4.117) where𝛿𝑖, 𝑗 =1 if and only if𝑖= 𝑗.

Since𝚽is triangular, the diagonal entries of𝚽correspond to the eigenvalues of𝚽. Thus,

𝜌(𝚽)= max

1β‰€π‘˜β‰€π‘2

|π‘†π‘˜ , π‘˜|= max

1≀𝑖, 𝑗≀𝑁

π΄Β―βˆ—

𝑗 , 𝑗 𝐴¯𝑖,𝑖+𝛿𝑖, 𝑗 (π‘π‘–βˆ’ 𝑝2

𝑖) |𝐴𝑖,π‘–βˆ’1|2

(4.118)

= max

1≀𝑖≀𝑁|𝐴¯𝑖,𝑖|2+ (π‘π‘–βˆ’ 𝑝2

𝑖) |𝐴𝑖,π‘–βˆ’1|2 = max

1≀𝑖≀𝑁1+ 𝑝𝑖 |𝐴𝑖,𝑖|2βˆ’1

. (4.119) We now prove the equivalence in (4.64). Assume thatAis a stable matrix. SinceA is a triangular matrix, its diagonal entries are the eigenvalues. Thus,

𝜌(A) < 1 =β‡’ |𝐴𝑖,𝑖| <1 βˆ€π‘– =β‡’ 𝜌(𝚽) < 1, (4.120) where the last implication follows from (4.119).

For the converse direction,

𝜌(A) β‰₯ 1 =β‡’ βˆƒπ‘– s.t. |𝐴𝑖,𝑖| β‰₯ 1 =β‡’ 𝜌(𝚽) β‰₯1, (4.121) where the last implication follows from (4.119).

C h a p t e r 5