Simulation of the T(d,y)5He Pulse Height Spectrum
To simulate the pulse height spectrum of gamma rays to the unbound ground state and first excited state of 5He, it was necessary to assume theoretical lineshapes for the two decays. A convenient representation of the spectral shapes was used which was analogous to one in the analysis of the mirror reaction (King et~· 1972, and references therein):
where G(E )
y is the(theoretical) gamma intensity at energy E
y
S is the resonant n +a phase shift ;
P is the Breit-Wigner penetrability for ~
=
1 (Preston 1962' p. 51 7) ;a is the transition strength ;
subscript O is the transition to 3/2 ground state ; and subscript 1 is the transition to 1/2 first excited state.
The factor E3 arises from an assumption of El transitions. The reson-
Y
ant phase shifts were computed from literature values of the n + a scattering phase shifts (Arndt and Roper 1973), assuming that the hard sphere phase shift corresponds to a radius of 2.5 fm. The resonant phase shift S~ is defined as follows (Lane and Thomas, pp. 269-281):
where 6 Q, is the tot a 1 phase shift
- cp
Q, is the hard sphere phase shift and
WQ, is the Coulomb phase shift = O for neutrons.
The actual photon spectrum GE and the pulse height spectrum produced by the detector NK are related by:
. '
where EE is the detection efficiency of Na I crystal and boron- paraffi n attenuation at energy E (see page 22 ); and AE,K is the probability that photon of energy E is assiqned
a channel K by the multichannel analyzer connected to the detector.
The detector response function for a monoenergetic y-ray of energy E was parameterized as follows (King et~· and references therein):
AE,K
=
a0 + a1 exp[a2(K-E)]AE,K
=
a3 exp[-a4(K-E)2J
K < E
K > E
where a
0, a1, a2, a3, a4 are empirical, energy-dependent parameters. The parameters used here were determined by a nonlinear, least-squares fit to monoenergetic gamma spectra from the reactions T(d,y) 4He anrl 11B(d,ny
15.1)12
c,
the standard spectra were accumulated at identical experimental conditions (such as target-to-detector distance, attenuatorand collimation) as the T(d,y) reaction. Figure 4 shows a typical T(p,y) lineshape and the fit using the analytic form above. A hori- zontal extrapolation of the lineshape to zero energy was assumed. The exact form of the lineshape in the low pulse height region is not
known, and this introduces an uncertainty in the absolute cross section of about 10%. The lineshape fitting was carried out with the computer code NAIPK which is based on the program CURFIT given by Bevington
(1969, p. 237).
REFERENCES
A. Abramowitz and I. Stegun 1965, Handbook of Mathematical Functions (Dover Pub., New York).
F. Ajzenberg-Selove and T. Lauritsen 1974, Nuc. Phys. A227, l.
R. A. Arndt and L. D. Roper 1973, Nuc. Phys. A209, 447.
P. R. Bevington 1969, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York).
V. M. Bezotosnyi, V. A. Zhmailo, L. M. Surov and M. S. Shvetsov 1970, Soviet J. Nuc. Phys. lQ_, 127.
J. M. Blatt and L. C. Biedenharn 1952, Rev. Mod. Phys. 24, 258.
J. G. Brennan and R. G. Sachs 1952, Phys. Rev. 88, 824.
C. P. Brovme, W. A. Schier and I. F. Wright 1965, Nuc. Phys. 66, 49. W. Buss, H. W~ffler and B. Ziegler 1963, Phys. Lett. 4, 198.
R. F. Christy and I. Duck 1961, Nucl. Phys. 24, 89.
F. S. Chwieroth,Y. C. Tang and D.R. Thompson 1974, Phys. Rev. C4, 56.
J. H. Coon and R. W. Davis 1959, Bull. Am. Phys. Soc. i_, 365.
F. S. Dietrich 1964, Ph.D. Thesis, California Institute of Technology.
D. C. Dodder and G. M. Hale 1975, Private communication.
T. W.Donnelly 1967, Ph.D. Thesis, University of British Columbia.
P. L. Dyer 1973, Ph.D. Thesis, California Institute of Technology.
A. Fassler 1965, Nuc. Phys. §.§_, 329.
A. J. Ferguson 1965, Angular Correlation Methods in Gamma-Ray Spectros-
~ {North-Holland, Amsterdam).
E. Fermi 195G, Nuclear Physics (U. of Chicago Press, Chicago).
G. Fox and P. R. Christensen 1975, Private communication.
G. l.J. Grodstein 1957, NBS "Circular 583.
P. Heiss and H. Hackenbroich 1971, Nuc. Phys. Al62, 530.
P. E. Hodgson 1963, The 0 tical Model of Elastic Scattering (Oxford University Press, Amen House, London EC4 .
P. E. Hodgson 1967, Ann. Rev. Nuc. Science
l.Z.,
l.P. E. Hodgson 1971, Nuclear Reactions and Nuclear Structure (Clarendon Press, Oxford .
B. Hoop Jr. and H. Barschall 1966, Nuc. Phys. 83, 65.
H. T. King, W. E. Meyerhof and R. G. Hirko 1972, Nuc. Phys. Al78, 337.
A. Kosiara and H. B. Willard 1970, Phys. Lett. 328, 99.
A. M. Lane and R. G. Thomas 1958, Rev. Mod. Phys. 30, 257.
J. D. Larson 1965, Ph.D. Thesis, California Institute of Technology.
N. H. Lazar, R. C. Davis and P. R. Bell 1956, Nucleonics .!i_, 52.
E. B. Lyovshin et
tl·
1974, Phys. Lett. 528, 392.J. B. Marion and J. L. Fowler 1960, Fast Neutron Physics, Part I (Inter- science, New York).
J. B. Marion and F. C. Young 1968, Nuclear Reaction Analysis (North- Holland, Amsterdam).
M. A. Melkanoff, D.
A FORTRAN Pro pt1cal Moe Angeles).
S. Saxon, J. S. Nodvik and D. G. Cantor 1961,
ram for Elastic Scattering Analyses with the Nuclear
M. A. Melkanoff, T. Sawada and J. Raynal 1966 in Methods in Computational Physics, Vol. 6, Nuclear Physics, ed. by B. Alder,
S.
Fernbach, and M. Rotenberg (Academic Press).W. E. Meyerhof, M. Suffert and
W.
Feldman 1970, Nuc. Phys. Al48, 211.P.D.M. Parker 1963, Ph.D. Thesis, California Institute of Technology.
J. D. Pearson 1963, Ph.D. Thesis, California Institute of Technology.
C. M. Perey and F. G. Perey 1972, Nuclear Data Tables lQ_, 539.
C. M. Perey and F. G. Perey 1974, Atomic Data and Nuclear Data Tables _ll, 293.
J. E. Perry, Jr. and S. J. Bame 1955, Phys. Rev. 99' 1368.
J. Polchinski 1974, Private communication.
J. Polchinski 1975' Private communication.
M. A. Preston 1962, Ph~s i cs of the Nucleus (Addison-Wesley, Massachusetts) M. Radomski 1975, Private communication.
C. Rolfs 1973, Nuc. Phys. A217, 29.
C. Rolfs and R. E. Azuma 1974, Nuc. Phys. A227, 291.
M. E. Rose 1953, Phys. Rev. 21_, 610.
G. Satchler et _tl. 1968, Nuc. Phys. Al12, 1.
G. A. Sawyer and L. C. Burkhardt 1955, Phys. Rev. 98, 1305.
L. I. Schiff 1968, Quantum Mechanics, 3rd Edition (McGraw-Hill, New York).
W. T. Sharp, H. E. Gove and E. B. Paul 1966, AECL-268, Chalk River, Ontario. ·
W. F. Stratton et ~.1952, Phys. Rev. 88, 257.
R. G. Thomas 1951, Ph.D. Thesis, California Institute of Technology.
T. A. Tombrello and G. C. Phillips 1961, Phys. Rev. 122, 224.
T. A. Tombrello and P. D. Parker 1963, Phys. Rev. ll!_, 2582.
T. A. Tombrello, R. J. Spiger and A. D. Bacher 1967, Phys. Rev. 154, 935.
A. Tubis 1957, LASL Report No. LA-2150.
E. Ventura, J. R. Calarco, W. E. Meyerhof and A. M. Young 1973, Phys.
Lett. 46B, 364.
R. F. Wagner and C. Werntz 1971, Phys. Rev. C4, 1.
E. K. Warburton and J. Weneser 1969, The Role of Isospin in Electromag- netic Transitions in Isospin in Nuclear Physics ed.
D.
H.Wilkinson (North-Holland, Amsterdam).
H. A. Weidenmuller 1962, Theoretical Nuclear Physics (unpublished
..
lecture notes).
W.S.C. Williams 1964, High Ener and Nuclear Ph sics Data Handbook (Rutherford Laboratory, C 1 ton .
A. Winther 1975, Private communication.
C. D. Zerby and H. S. Moran 1961, Nuc. Instr. & Meth .
.Ji.,
115.TABLE l
Detection Efficiency for 811x511 Na.I (T,!) at 3111 from Target (see text, p.21)
Absorbing medium: paraffin +
s
2o
3 cone (2911) glass wall - 3/1611E y
19.0 24.9
l /l 611 lead
Steel housing and Al
2
o
3 around crystal dS1/4TI=
0.4 X 10 -2Jn - 2TI
f
Pn(cos e)-µ i (l - e 2 2
) dS"t
crystal attenuation detection in NaI in absorbing
medium attenuation factors Qn
=
Jn/J0
Detection Efficiency -µlxl e
E:: J/2 Ql Q2 attenuation in cone 0.8xl0- 3 .996 .989 0.27 0.9xl0 -3 .996 .989 0.29
l - e -µ2X2 detection
in NaI 0.86 0. 88
TABLE 2
Attenuation of 19.5 MeV Y-Rays in the Material between Target and NaI Detector - See text, p. 22.
MATERIAL
paraffin +
s
2o
3glass lead sheet
stainless steel housing of crystal
Al2
o
3 reflector of the crystaltarget and target backing
*
ate =
0° runs only.LENGTH
2911 3/1611 l /l 611 0.01911
1/1611 (67 mg/cm2 ) 3 mg/cm2
Zr 10 mil Pt 1/811 Cu
TRANSMISSION (e-]JX)
0.31 0.98 0.89 0.99
0.99 0.90
*
E y
(MeV)
24.22 23. 1 22.74 21. 99 20.88 15 .11
TABLE 3
Measurements of the Spectrum Fraction for Monochromatic y-Rays. See text, p. 22.
Spectrum Fraction
( 0 • 8 E o to 1 • 1 E 0)
y y
0.42 0.40 0.40 0.42 0.39 0.38
El ab d (MeV)
2 6 12
TABLE 4
Simulation of Pulse Height Spectrum for T(d,y) 5He See text, p. 22 and Appendix 2.
E y
(MeV) 17 .8 20.2 23.7
Only Transitions to Ground State
f
(spectrum) fraction
0.40 0.38 0.38
FWHM
48%
44%
41%
Equal Amplitudes for Tran- sitions to Ground State and First Excited State
f FWHM
0.38 74%
0.37 71%
0.39 66%
El ab
d (MeV)
4 8 10 12
TABLE 5
Results of Fits to Angular Distribution See text, p. 2 6.
E(He5 ) (MeV)
19.0
21.4 22.6 23.8
Fit with A
0 +Al 2 A2/Ao
-.03 ± .07 -.20 ± .07 -.30 ± .07 -.44 ± .06
Fit with Ao+A1P1+A2P2
A2/Ao Al/Ao
. 02 ± • 10 - . 07 ± • 10
-.13 ± .08 - . l 0 ± • 08 -. 26 ± .10 - . 05 ± • 10
-.34 ± .06 -.11 ± .06
Table 6
Parameter Sensitivity of Total Direct Capture Calculation of T(d,yE
1)5Heg.s. (See text, p. 69 )
Parameter Original value
Variation in Parameter limit on radial integration and mesh size:
rmax 15 fm 20 fm
cS r 0.025 fm 0.010 fm
initial-state po ten ti al parameters [in e9 ~
R c l. 3 * 3 l /3 ± 10%
Vi 45.0 ± 10%
dV
;f
dE 0.124 ± 10%(energy dependence)
RV l.75*3113 ± 10%
av 0.593 ± 10%
w 0.610 ± 10%
dW/dE 0.056 ± 10%
RW 4.458* 3l/ 3 ± 10%
dRw/dE -0. 165 * 3113 ± 10%
aw 0.526 ± 10%
( 1 ) '
final-state potential parameters [in eq. (2) 2 ~-
RC l.3* 31/3 ± 10%
RV l. 75 * 3l13 ± 10%
a v 0.593 ± 10%
Q 16.7 ± 10%
Maximum Variation in Calculated Cross Section
< 1%
< l % p. 56]:
20%
factor of 4 3%
factor of 8 20%
5%
3%
10%
2%
5%
59]:
20%
35%
25%
50%
Figure 1
Energy Level Diagram of the 5He and 5Li Nuclei (Ajzenberg- Selove and Lauritsen 1974), see text, p. 1 and p. 41.
""Tl -'· u:i c: ~ Cl) ._.
1~21.aJ
I r---
1SH
-2.1 I 3H+2nt
IMEVT
19.85 3 He+2n 18.92 2
9?9T»h?~¥t
3H+p+n 18.61I
17. ,,~,, 1112'1, 16.7016.77 312+1 3H+ 2 77r/#~nn
He+n+p 3H+ d ---!
16.66 312+ 16.39 -0.89 4 He+ n 5He
5Li
3 He+d -1.97 4 He +p
I I I I
lt>_go.~_ - --l
5Be l
I I I 1-4.2 3 He+2p I \.0°'
IFi gure 2
Schematic Diagram of the Target and Detection System
The leftdiagram shows a vertical section of the target chamber and vacuum system (not to scale). For additional details, see p. 10.
The right diagram shows the detector geometry and the lead shielding (not to scale). For additional details, see p. 11.
LIQUID NITROGEN COLLIMATOR COLO TRAP ION PUMP
~ t-1
BEAMDIRECTKlN_.! t1 I I~ /
BEAM TUBE TARGET GLASS-T LEAD SHIELDING Nol (Tl) CRYSTALFigure 3
Electronic Configuration for Measurements of T(d,y)5He and T(p,y)5He Yields. See text, p. 12.
a"
x 511 Nol {Tl) RCA 4522 j DYNODE 9 I PREAMPLIFIER~I
LINEAR DELAY
r-1
AMPLIFIER~I-
X ADCI
,,
... FAST (.Q TIME- c: 11 START11 -s ANODE DISCRIMINATOR TO- Cl) I> ~I w (low level AMPLITUDE Y ADC timing) CONVERTER?
"s/op"
LINEARI r1 FAST I> AMPLIFIER ANTENNA DELAY DISCRIMINATOR AT CHOPPER
Figure 4
21 MeV Standard Spectrum for an 811 x 511 Na I (T.Q.) Crystal
This pulse height spectrum for a monochromatic y-ray was meas- ured with the T(p,y) 4He reaction (Q
=
19.8 MeV) at E~ab=
1.5 MeV.The dots represent the data with the background subtracted. The solid line represents the nonlinear least-squares fit described in Appendix 2. The dashed line represents an estimate of the low energy background. See text, p. lb and Appendix 2.
_J
w
z z
<(
500
I
250
~
Cf)~ 200
::::>
0
u 150
..,
I
I I I I ~
I I
I
L, II
I
• L, •
.,
IFIT TO y-RAY PULSE HEIGHT SPECTRUM
T (p,y) 4He
E~b = 1.5 MeV, 81ab =90°
IOOL---~-1-::-.IA-:'---
L • •••
50 0 0
I
~ ....,
• L..,
... ..._