Chapter VI: Diffusing wave spectroscopy: a unified treatment on temporal
6.6 Appendix
SNR of decorrelation time measurements in spatial ensemble methods
When the light is reflected from the dynamic sample, the light intensity at position π and timeπ‘, πΌπ(π‘), can be decoupled into two parts,
πΌπ(π‘) =πΌπ ,π(π‘) +π(π‘), (6.3) where πΌπ ,π(π‘) is the intensity of one speckle of the signal light that is perturbed by the scattering media, andπ(π‘) is the intensity fluctuation from noise, such as shot
noise and detector noise. By the definition of noise, π(π‘) has zero mean. πΌπ ,π(π‘) follows exponential distribution due to speckle statistics [17]. For convenience, we define the AC part ofπΌπ ,π(π‘)andπΌπ(π‘)as ΛπΌπ ,π(π‘)and ΛπΌπ(π‘), respectively, therefore we have
Λ
πΌπ(π‘) =πΌΛπ ,π(π‘) +π(π‘). (6.4) Here, both ΛπΌπ ,π(π‘)and ΛπΌπ(π‘)are zero mean, and
hπΌΛπ ,π(π‘)i = q
hπΌΛπ ,π(π‘)i = πΌ0 (6.5) due to speckle statistics [17]. Here, hΒ·i denotes the expected value and πΌ0 is the expected value of πΌπ ,π(π‘).
Define the signalππ recorded on the camera pixel located at positionπ as ππ =
β« π 0
πΌ πΌπ(π‘)π π‘ , (6.6)
whereπΌis the factor that relates the photon numbers to photoelectrons on camera pixels, including detector quantum efficiency, light collection efficiency, and other experimental imperfections, andπ is the camera exposure time.
The speckle contrastπΎamong the whole camera frame is defined as πΎ =
s
h(ππβ hππi)2i
hππi2 orπΎ2= h(ππ β hππi)2i hππi2
. (6.7)
The numerator of theπΎ2is πΎ2
π’ π =h(ππ β hππi)2i
=h(
β« π
0
πΌπΌΛπ(π‘)π π‘)2i
=h
β« π
0
β« π
0
πΌ2πΌΛπ(π‘1)πΌΛπ(π‘2)π π‘1π π‘2i.
(6.8)
Substituting equation 6.4 into Eq. 6.8, we have
πΎ2
π’ π =h
β« π
0
β« π
0
πΌ2πΌΛπ ,π(π‘1)πΌΛπ ,π(π‘2)π π‘1π π‘2i + h
β« π
0
β« π
0
πΌ2π(π‘1)π(π‘2)π π‘1π π‘2i
=πΌ2hπΌΛ2
πi
β« π
0
β« π
0
ππ(π‘1βπ‘2)π π‘1π π‘2+πΌ2hπ2i
β« π
0
β« π
0
ππ(π‘1βπ‘2)π π‘1π π‘2
=πΌ2hπΌΛ2
πiπ
β« π
0
2(1β π‘ π
)ππ(π‘)π π‘+πΌ2hπ2iπ
β« π
0
2(1β π‘ π
)ππ(π‘)π π‘ .
(6.9)
Here, ππ(π‘) is the correlation function of the mean-removed signal light intensity, and ππ(π‘) is the correlation function of noise. If we assume ππ(π‘) = πβ2π‘/π and ππ(π‘) = πβπ‘/ππ, whereπis the decorrelation time of the speckle decorrelation time and ππ (related to the detector bandwidth BW, 1/BW) is the noise decorrelation time, the above equation can be simplified as
πΎ2
π’ π =πΌ2hπΌΛ2
πiπ π+2πΌ2hπ2iπ ππ. (6.10) If the detector is working under the shot noise dominant scheme, where the mean of the number of photoelectrons is equal to the standard deviation of the number of photoelectrons, we have
πΌ πΌ0π =h(
β« π
0
πΌπ(π‘)π π‘)2i
=2πΌ2hπ2iπ ππ.
(6.11)
Substituting the above equation and Eq. 6.5 into Eq. 6.10, the numerator of the contrast square can be further simplified as
πΎ2
π’ π=πΌ2πΌ2
0π π+πΌ πΌ0π . (6.12)
The denominator ofπΎ is
πΎπππ€ π =hππi=πΌ πΌ0π . (6.13)
Hence, the contrast has the expression of πΎ2=
πΎ2
π’ π
πΎ2
πππ€ π
= πΌ2πΌ2
0π π+πΌ πΌ0π (πΌ πΌ0π)2
= π π
+ 1
πΌ πΌ0π
= π π
+ 1 ππ
(6.14)
whereππ is the number of the photoelectrons in one speckle within the camera ex- posure time. Conventional speckle statistics without considering shot noise predicts that the speckle contrast scales with respect to 1/p
ππ ππ‘ π‘ ππ π, where ππ ππ‘ π‘ ππ π is the number of independent decorrelation patterns recorded by the camera sensor within the exposure time. Intuitively,ππ ππ‘ π‘ ππ πisβΌπ/πsince the ratio provides the number of decorrelation events within the camera exposure time. Here, the extra term 1/ππ
in Eq. 6.14 is due to shot noise, i.e., depending on the photon budget. If the number of photoelectrons is sufficient, i.e., 1/ππ << π/π , we can discard this term and the expression degenerates to the conventional form.
In experiment, we can only collect a finite number of speckles and use the ensemble average to approximate the contrast. Hence, the contrast square calculated from one camera frame ΛπΎ2is a statistical estimation:
Λ
πΎ2 = h(ππ β hππi)2iπ ππππ‘ π
hππiπ ππππ‘ π . (6.15)
Here, hΒ·iπ ππππ‘ π denotes the ensemble average over the finite speckles in one camera frame. Therefore, both the numerator and denominator of the contrast square ΛπΎ2are estimated from the finite speckles. To evaluate the accuracy of the estimation, we need to estimate the errors of both numerator and denominator in Eq. 6.15.
Given a random variableπ, if we use a sample average 1/πππππ π ππππππ‘
Γππ ππ π π πππ πππ‘
π=1 ππ
withπππππ π ππππππ‘ independent measurements to estimate its expected valuehπi, the error between the sample average and the expected value is aboutp
π(π)/πππππ π ππππππ‘, where π(Β·) denotes the variance of the random variable π. In our calculation, πππππ π ππππππ‘, the number of independent measurements (NIM) in spatial ensemble method, is the number of speckle grains in the camera frame, which is termed ππ π ππ‘π ππ.
Let us first calculate the variance of the numerator (πΎ2
π’ π) of theπΎ2. The variance of πΎ2
π’ πis π(πΎ2
π’ π)= h(ππ β hππi)4i β h(ππ β hππi)2i2
=πΌ4
β« π 0
β« π 0
β« π 0
β« π 0
hπΌΛπ(π‘1)πΌΛπ(π‘2)πΌΛπ(π‘3)πΌΛπ(π‘4)iπ π‘1π π‘2π π‘3π π‘4
βπΌ2h
β« π
0
β« π
0
Λ
πΌπ(π‘1)πΌΛπ(π‘2)π π‘1π π‘2i.
(6.16)
The first term in the above equation takes the expected value of four random variables multiplied together. If ΛπΌπis a Gaussian random variable, the bracket can be expanded as
hπΌΛπ(π‘1)πΌΛπ(π‘2)πΌΛπ(π‘3)πΌΛπ(π‘4)i =hπΌΛπ(π‘1)πΌΛπ(π‘2)i hπΌΛπ(π‘3)πΌΛπ(π‘4)i + hπΌΛπ(π‘1)πΌΛπ(π‘3)i hπΌΛπ(π‘2)πΌΛπ(π‘4)i + hπΌΛπ(π‘1)πΌΛπ(π‘4)i hπΌΛπ(π‘2)πΌΛπ(π‘3)i.
(6.17) Here, even though ΛπΌπ is not a Gaussian random variable, we still take the formula as an approximation, and this approximation actually holds with tolerable errors based on our experimental results. Equation 6.16 then becomes
π(πΎ2
π’ π) β πΌ4
β« π
0
β« π
0
β« π
0
β« π
0
(hπΌΛπ(π‘1)πΌΛπ(π‘2)i hπΌΛπ(π‘3)πΌΛπ(π‘4)i
+ hπΌΛπ(π‘1)πΌΛπ(π‘3)i hπΌΛπ(π‘2)πΌΛπ(π‘4)i + hπΌΛπ(π‘1)πΌΛπ(π‘4)i hπΌΛπ(π‘2)πΌΛπ(π‘3)i)π π‘1π π‘2π π‘3π π‘4
βπΌ4h
β« π
0
β« π
0
Λ
πΌπ(π‘1)πΌΛπ(π‘2)π π‘1π π‘2i
2
=2πΌ4h
β« π 0
β« π 0
Λ
πΌπ(π‘1)πΌΛπ(π‘2)π π‘1π π‘2i
2
=2(πΎ2
π’ π)2.
(6.18)
Therefore, if there are ππ π ππ‘π ππ independent speckles in spatial ensemble methods, the numerator of ΛπΎ2
π’ πhas a form of Λ
πΎ2
π’ π =πΎ2
π’ πΒ±
β 2πΎ2
π’ π
pππ π ππ‘π ππ
=πΎ2
π’ π(1Β± s
2 ππ π ππ‘π ππ
). (6.19)
Here, the term after theΒ±denotes the standard error of the statistical estimation.
Next, let us calculate the error of the denominator (πΎπππ€ π) ofπΎ. It is simply s
π(ππ) ππ π ππ‘π ππ
= s
h(ππ β hππi)2i ππ π ππ‘π ππ
= s
πΎπ’ π2 ππ π ππ‘π ππ
. (6.20)
Therefore, the denominator ΛπΎ2
πππ€ πhas a form of Λ
πΎ2
πππ€ π = (πΎπππ€ πΒ± s
πΎ2
π’ π
ππ π ππ‘π ππ
)2 βπΎ2
πππ€ πΒ± 2πΎπ’ ππΎπππ€ π pππ π ππ‘π ππ
. (6.21)
Finally, by combining equations 6.15, 6.19, and 6.21, the expression of the estimation of ΛπΎ2is
Λ
πΎ2= πΎΛ2
π’ π
Λ πΎ2
πππ€ π
β πΎ2
π’ π
πΎ2
πππ€ π
(1Β± s
1 ππ π ππ‘π ππ
vt
2+ 4πΎ2
π’ π
πΎ2
πππ€ π
)
=(π π
+ 1 ππ
) (1Β± s
1 ππ π ππ‘π ππ
r
2+4(π π
+ 1 ππ
)).
(6.22)
Hence, the estimation of the contrast is Λ
πΎ = r
π π
+ 1 ππ
(1Β± 1 2
s 1
ππ π ππ‘π ππ r
2+4(π π
+ 1 ππ
)). (6.23)
In SVS, we usually set the camera exposureπ much greater than the decorrelation timeπ, e.g.,π >> π, and the number of photons collected by one camera pixel ππ
is also much greater than 1, e.g., ππ >> 1. In this case, in the above equation, the second term in the second square root in the error part can be dropped and the estimation of the contrast square ΛπΎ can be approximated as
Λ πΎ =
r π π
+ 1 ππ
(1Β± s
1 2ππ π ππ‘π ππ
). (6.24)
Rewriting the above equation, we have
π =ππΎΛ2(1Β± s
1 2ππ π ππ‘π ππ
) β π ππ
. (6.25)
The SNR of the decorrelation time in spatial ensemble methods is π π π π π ππ‘π ππ = π
ππ π(π) = π ππΎΛ2
q 1
2ππ π ππ‘ π ππ
= 1 1+ π
π ππ
r
ππ π ππ‘π ππ
2 .
(6.26)
Here, ππ π(π) is the standard error of π, which is equal toππΎΛ2
q 1
2ππ π ππ‘ π ππ. As we defineππ as the number of photoelectrons on each camera pixel per time intervalπ, we findππ = ππ
π
π. The above Eq. 6.26 can be simplified as π π π π π ππ‘π ππ = 1
β 2
1 1+ 1
ππ
p
ππ π ππ‘π ππ. (6.27)
SNR of decorrelation time measurements in temporal sampling methods In temporal sampling methods, a fast photodetector with a sufficient bandwidth, such as a single-photon-counting-module (SPCM), is used to well sample the temporal traceπΌπ(π‘), and the decorrelation timeπis computed from the intensity correlation functionπΊ2(π‘):
πΊ2(π‘)= 1 π
πΌ2
β« π 0
πΌπ(π‘1)πΌπ(π‘1βπ‘)π π‘1. (6.28) In practice, the correlation is performed between the mean-removed intensity fluc- tuation:
πΊΛ2(π‘) = 1 π
πΌ2
β« π
0
Λ
πΌπ(π‘1)πΌΛπ(π‘1βπ‘)π π‘1, (6.29) where ΛπΊ2(π‘) denotes the intensity correlation function of the two mean-removed intensity traces, ΛπΌπ(π‘)is the AC part of the intensity fluctuation,π‘1is the time variable for integral, andπ‘is the time offset between the two intensity traces.
By substituting Eq. 6.4 into Eq. 6.29, we have
Λ
πΊ2(π‘) = 1 π
πΌ2
β« π
0
[πΌΛπ ,π(π‘1) +π(π‘1)] [πΌΛπ ,π(π‘1βπ‘) +π(π‘1βπ‘)]π π‘1. (6.30) The expected value of ΛπΊ2(π‘) is
hπΊΛ2(π‘)i =πΌ2πΌ2
0ππ(π‘) +πΌ2hπ2iππ(π‘). (6.31) Same as the definition before,ππ(π‘)is the correlation function of the mean-removed signal light intensity, andππ(π‘)is the correlation function of noise.
When we use the finite time average to estimate the expected value of ΛπΊ2(π‘), we need to calculate the variance of ΛπΊ2(π‘):
π[πΊΛ2(π‘)] = 1 π
(hπΊΛ2(π‘)2i β hπΊΛ2(π‘)i2)
= 1 π
h
β« π
0
β« π
0
πΌ4πΌΛπ(π‘1)πΌΛπ(π‘1βπ‘)πΌΛπ(π‘2)πΌΛπ(π‘2βπ‘)π π‘1π π‘2i β 1 π2
hπΊΛ2(π‘)2i2
β 2πΌ4 π2
β« π
0
β« π
0
hπΌΛπ(π‘1)πΌΛπ(π‘2)i2π π‘1π π‘2
= 2πΌ4 π2
β« π
0
β« π
0
[πΌ2
0ππ(π‘) + hπ2iππ(π‘)]2π π‘1π π‘2
β2(πΌ4πΌ4
0
π 2π
+πΌ3πΌ3
0
1 π
+πΌ2πΌ2
0
1 π ππ
).
(6.32)
Hence, if we calculate the correlation function ΛπΊ2(π‘) by using a finite long mea- surement trace and use it to estimate hπΊΛ2(π‘)i, we have the following estimation form
πΊΛ2(π‘) =hπΊΛ2(π‘)i Β± q
π[πΊΛ2(π‘)]
= [πΌ2πΌ2
0ππ(π‘) +πΌ2hπ2iππ(π‘)] Β± r
2(πΌ4πΌ4
0
π 2π
+πΌ3πΌ3
0
1 π
+πΌ2πΌ2
0
1 π ππ
).
(6.33)
Since ππ(π‘) usually has much shorter decorrelation time compared to ππ(π‘), to estimate the speckle decorrelation time π, we can use the part of the correlation curve whereππ(π‘)4 drops close to 0 while ππ(π‘) is still close to unity. In this case,
the part of the the correlation curve ΛπΊ2(π‘)is πΊΛ2(π‘) = [πΌ2πΌ2
0ππ(π‘) Β± r
2(πΌ4πΌ4
0
π 2π
+πΌ3πΌ3
0
1 π
+πΌ2πΌ2
0
1 π ππ
)
=πΌ2πΌ2
0[ππ(π‘) Β± s
2( π 2π
+ 1
πΌ πΌ0π
+ 1
πΌ2πΌ2
0π ππ )].
(6.34)
In the experiment,ππcan be approximated as the inverse of the detector bandwidth, or equivalently the time interval Ξπ between two data points. In the following calculation, we will substituteππbyΞπ.
When we use the decorrelation curve to estimate a parameter associated with the curve, such as decorrelation time, there exist different fitting models to retrieve the parameter. Here, for simplicity, the estimated decorrelation time Λπcan be chosen by taking the time point where the decorrelation curve drops to 1/π. In this case, the error of the estimated decorrelation timeππ π(π)is
ππ π(π) = 1
|πππ
π π‘ |ππ(π‘)=1/π| s
2( π 2π
+ 1
πΌ πΌ0π
+ 1
πΌ2πΌ2
0πΞπ )
= π 2π
s 2( π
2π
+ 1
πΌ πΌ0π
+ 1
πΌ2πΌ2
0πΞπ ).
(6.35)
Hence, the decorrelation timeπcan be estimated from the calculated decorrelation timeπas
π=πΛ(1Β± π
β 2
s π 2π
+ 1
πΌ πΌ0π
+ 1
πΌ2πΌ2
0πΞπ
). (6.36)
The SNR of the decorrelation time in temporal sampling methods is π π π π‘ ππ π ππ ππ = π
ππ π(π) =
β 2 π
1 qπ
2π + 1
πΌ πΌ0π + 1
πΌ2πΌ2
0πΞπ
. (6.37)
As defined in the main text, the NIM in temporal domain methods ππ‘ ππ π ππ ππ = 2π
π , and taking the fact that πΌ πΌ0π = 12ππ‘ ππ π ππ ππππ, the SNR equation 6.37 can be rewritten as
π π π π‘ ππ π ππ ππ =
β 2 π
1 q1+ 2
ππ + 2
π2
π
π Ξπ
p
ππ‘ ππ π ππ ππ. (6.38)
References
[1] D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer. Diffusing wave spectroscopy.Physical Review Letters, 60(12):1134β1137, March 1988.
[2] JΓΆrg Stetefeld, Sean A. McKenna, and Trushar R. Patel. Dynamic light scat- tering: a practical guide and applications in biomedical sciences.Biophysical Reviews, 8(4):409β427, October 2016.
[3] Theodore J. Huppert, Solomon G. Diamond, Maria A. Franceschini, and David A. Boas. HomER: a review of time-series analysis methods for near- infrared spectroscopy of the brain.Applied Optics, 48(10):D280, March 2009.
[4] Gerard M. Ancellet and Robert T. Menzies. Atmospheric correlation-time measurements and effects on coherent doppler lidar.Journal of the Optical Society of America A, 4(2):367, February 1987.
[5] D. A. Boas, L. E. Campbell, and A. G. Yodh. Scattering and imaging with diffusing temporal field correlations. Physical Review Letters, 75(9):1855β
1858, August 1995.
[6] Turgut Durduran and Arjun G. Yodh. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement.NeuroImage, 85:51β63, January 2014.
[7] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh. Diffuse optics for tissue monitoring and tomography.Reports on Progress in Physics, 73(7):076701, June 2010.
[8] Shuai Yuan, Anna Devor, David A. Boas, and Andrew K. Dunn. Determina- tion of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging.Applied Optics, 44(10):1823, April 2005.
[9] Mingjun Zhao, Chong Huang, Daniel Irwin, Siavash Mazdeyasna, Ahmed Bahrani, Nneamaka Agochukwu, Lesley Wong, and Guoqiang Yu. EMCCD- based speckle contrast diffuse correlation tomography of tissue blood flow distribution. In Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS). OSA, 2018.
[10] Andrew K. Dunn, Hayrunnisa Bolay, Michael A. Moskowitz, and David A.
Boas. Dynamic imaging of cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow & Metabolism, 21(3):195β201, March 2001.
[11] David A. Boas and Andrew K. Dunn. Laser speckle contrast imaging in biomedical optics.Journal of Biomedical Optics, 15(1):011109, 2010.
[12] A. J. F. Siegert. On the fluctuations in signals returned by many indepen- dently moving scatterers, Radiation Laboratory, Massachusetts Insitute of Technology, 1943.
[13] R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian.
Speckle-visibility spectroscopy: a tool to study time-varying dynamics. Re- view of Scientific Instruments, 76(9):093110, September 2005.
[14] Ichiro Inoue, Yuya Shinohara, Akira Watanabe, and Yoshiyuki Amemiya.
Effect of shot noise on x-ray speckle visibility spectroscopy.Optics Express, 20(24):26878, November 2012.
[15] Andrew K. Dunn. Laser speckle contrast imaging of cerebral blood flow.
Annals of Biomedical Engineering, 40(2):367β377, November 2011.
[16] Robert Zwanzig and Narinder K. Ailawadi. Statistical error due to finite time averaging in computer experiments.Physical Review, 182(1):280β283, June 1969.
[17] Joseph W. Goodman. Speckle Phenomena in Optics. Viva Books Private Limited, 2008.
[18] Detian Wang, Ashwin B. Parthasarathy, Wesley B. Baker, Kimberly Gannon, Venki Kavuri, Tiffany Ko, Steven Schenkel, Zhe Li, Zeren Li, Michael T.
Mullen, John A. Detre, and Arjun G. Yodh. Fast blood flow monitoring in deep tissues with real-time software correlators.Biomedical Optics Express, 7(3):776, February 2016.
[19] Wenjun Zhou, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan.
Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics.Optica, 5(5):518, April 2018.
[20] J. Xu, A. K. Jahromi, J. Brake, J. E. Robinson, and C. Yang. Interferometric speckle visibility spectroscopy (isvs) for human cerebral blood flow monitor- ing, 2020. eprint:arXiv:2009.00002.