FIGURES
Figure 1: Location of the study area and the watershed of the Panama Canal.
60
Figure 2: Holdridge Life Zones for lowland Panama adapted from Croat (1978).
Tropical dry forest Tropical moist forest Tropical wet forest Premontane forest
Premontane rain forest
Premontane moist forest
Figure 3: Location of the 54 forest monitoring plots (filled circles) around the Canal watershed.
62
Figure 4: Discontinuous rate of species accumulation between life zones. Adding plots moist forest plots in a random order produces the smooth curve to the left to 40 on the x-axis. Adding the remainder of the watershed plots, again in random order, produces a jump in species accumulation as predicted by Condit et al. (1996) when leaving a floristic province. The dotted line line at the top illustrates the shape of the species area curve if all plots were added in random order. The lines in this example were fitted by eye for illustration purposes.
Species Area Relationship
0 100 200 300 400 500 600 700 800 900
0 10 20 30 40 50 60
Total number of plots
Number of species
Plots from the tropical moist forest life zone area
Plots from the premontane wet forest and tropical wet forest area
#Y
# Y
#Y
# Y
#
# Y Y
#Y
#Y
#Y
# Y
#Y
#Y
#Y
#Y
#Y
# Y
#Y
# Y
#Y
#Y
#Y
#Y
# Y# Y# Y# Y
#Y
# Y# Y#Y
#Y
#Y
#Y#Y
#Y
#Y
#Y
# Y
#Y #Y
#Y
#Y
#Y
#Y
# Y
#Y
# Y
#Y
#Y
#Y#Y #Y#Y
# Y
#Y
#Y#Y#Y
#Y#Y
#Y#Y#Y#Y#Y
3000 2750
2250 2500
2000 3250
1750
350
0 3750
1500
2250 3500
3250
2500
2000 37
50
10 0 10 20 Kilometers
Isohyets (mm/yr) #Y Stations and Plots
Annual precipitation
Figure 5: Annual precipitation isohyets (millimeters of rain) interpolated with a spline fit from 65 plots and stations.
64
# Y
#Y
# Y
# Y
#Y
#Y
# Y
# Y
#Y
# Y
#Y
# Y
#Y
# Y
#Y
#Y
#Y
#Y
#Y
#Y
#Y
#Y
# Y# Y# Y# Y
# Y# Y# Y#Y
#Y
#Y
#Y#Y
#Y
#Y
#Y
#Y
#Y #Y
#Y
#Y
#Y
#Y
#Y
# Y# Y
#Y
# Y
#
Y#Y #Y#Y
#Y
#Y
#Y#Y#Y
# Y#Y
#Y#Y#Y#Y#Y
250 500
750 1000
0 250
250
250 500
750
250
500 1000
10 0 10 20 Kilometers
Cumulative May ppt. (mm) #Y Stations and Plots
May precipitation
Figure 6: Cumulative May precipitation (millimeters of rain)
interpolated with a spline fit for 65 stations and plots.
Figure 7: Dendrogram generated from PC-ORD’s hierarchical, agglomerative, polythetic CLUSTR sub-
routine for all 54 1-hectare plots. This dendrogram is based on Ward’s method of group linkage.
Eu c l i d e a n d i s t a n c e wi t h Wa r d ’ s me t h o d Pe r c e n t c h a i n i n g = 2 . 0 5
Lo g o f Di s t a n c e ( l n o f o b j e c t i v e f u n c t i o n )
1 . 1 4 7 2 . 6 7 6 4 . 2 0 6 5 . 7 3 5 7 . 2 6 4 | - - - +- - - +- - - +- - - +- - - +- - - +- - - +- - - + L1 - - - |
m2 9 - - - | - - - | | - - - | m3 0 - - - | | - - - | | C1 - - - | - - - | | | C4 - - - | | - - - | | - - - - | C2 | - - - | | | C3 | | | m1 3 - - - | | | m2 1 - - - | - - - | | - - - | | m2 2 - - - | | - - | | | m2 7 - - - | - - - | | - - - | | - | m2 8 - - - | | | | m2 3 - - - | - - - | | | m2 4 - - - | | | L3 - - - | - - - | | | L4 - - - | | | | m1 0 - - - | - - - - | | | | b h p - - - | - - - | | | - - - - | | b y 1 - - - | - - - | | | | b y 2 - - - | | | | m1 4 - - - | - - - | | | | b l p - - - | | - - - |- - | | b s 1 - - - | - - - | | | b s 2 - - - | | | m1 1 - - - | - - - | | m1 8 - - - | | L2 - - - | | m8 - - - | - - - | | - - - | | m9 - - - | | - - | | | m1 9 - - - | - - - | | | m2 0 - - - | | - | | m5 - - - | - | | | | m1 6 - - - | - - | | - - - | | | | m1 7 - - - | | | | | | m1 5 - - - | | - | | | m6 - - - | - - - | | | | | m7 - - - | | - - - | | | | m1 2 - - - | | | | m2 5 - - - | - - - | | | | m2 6 - - - | | | | | S0 - - - | | | | | S1 - - - | - - - | | - - - | | | - - | S3 - - - | | - - - | | - - - | | S2 - - - | | | S4 - - - | | m3 1 - - - | | m3 2 - - - | - - - - | | | m3 3 - - - | | - - - | | | m3 4 - - - | | - - - | - - - - -| m3 6 - - - | |
m3 5 - - - | - - - - | | m3 7 - - - | | - | m3 8 - - - | - - | m3 9 - - - |
BCI plots
Watershed plots
Cocoli plots
Fort Sherman
66
Figure 8: Non-metric multidimensional distance scaling of 54 1-hectare monitoring plots in the Panama Canal
watershed. The lines illustrated groups identified by cluster analysis and illustrated in Figure 7. The life zone labels follow Holdridge (1967) and are explained in the text.
L1
L2 L3
L4 m5
m6 m7 m8 m9
m10 m11
m12 m13
m14 m15 m16
m17m18
m19 m20
m21 m22
m23 m24
m26m25 m27 m28 m29 m30
m31 m32
m33 m34 m35
m36 m37
m38 m39
C1 C2 C3
C4
S0 S1 S2
S3 S4
bhp
blp bs1bs2
by1 by2
Axis 1
Axis 2
Tropical Moist Forest
Premontane wet forest/
Tropical wet forest
Relatively wet Relatively dry
y = 358.61x + 2522.4 R2 = 0.6192
1000 1500 2000 2500 3000 3500
-2 -1.5 -1 -0.5 0 0.5 1 1.5
centered NMS axis 1
Annual precipitation (mm)
y = 1.2809x + 2536.6 R2 = 0.3489
1000 1500 2000 2500 3000 3500
-300 -200 -100 0 100 200 300
DCA axis 1
Annual precipitation (mm)
Figure 9: Scatter plots illustrating correlations between interpolated annual precipitation and axis 1 ordination scores: (a) centered non-metric multidimensional distance scaling, (b) detrended correpondence analysis.
(a)
(b)
68
Figures 10: Centered NMDS scores for 45 Canal Area plots with symbols representing categorical site variables.
bhp bs1 blp bs2
by1
by2 C1
C2
C3 C4
L1 L2
L3 L4
m10 m11
m12
m13
m14
m15 m16
m17 m18
m19 m20 m21
m22
m23 m24
m25 m26
m27 m28 m29 m30
m5
m6
m7
m8 m9
S0 S1S2 S3
Axis 1S4
Axis 2 geo
1 2 3 4 5 6 7 8 9 10
bhp bs1 blp bs2
by1
by2 C1
C2
C3 C4
L1 L2
L3 L4
m10 m11
m12
m13
m14
m15 m16
m17 m18
m19 m20 m21
m22
m23 m24
m25 m26
m27 m28 m29 m30
m5
m6
m7
m8 m9
S0 S1S2 S3
Axis 1S4
Axis 2 age
1 2 3
bhp bs1 blp bs2
by1
by2 C1
C2
C3 C4
L1 L2
L3 L4
m10 m11
m12
m13
m14
m15 m16
m17 m18
m19 m20 m21
m22
m23 m24
m25 m26
m27 m28 m29 m30
m5
m6
m7
m8 m9
S0 S1S2 S3
Axis 1S4
Axis 2 topo
1 2 3
(a)
(b)
(c)
Topography Code
Planar 1
Planar > Irregular 2
Irregular 3
Inclined/Slope 4
Age Code
Young 1
Secondary Growth 2
Old Growth 3
Geology Code
pT 1
Tb 2
Tbo 3
Tc 4
Tcm 5
Tct 6
Tgo 7
Tl 8
Tlc 9
Tpa 10
Tv 11
Index to codes in Figures 10, 11, and 12 .
70
L1
L2
L3 L4
m5
m6 m7
m8 m9 m10 m11
m12
m13
m14 m16 m15 m17m18
m19 m20 m22m21
m23 m24
m26m25
m27m28m29 m30
C1C2 C3 C4
S0 S1S2 S3
S4
bhp blp
bs1 bs2 by2 by1
Axis 1
Axis 2
Figure 11(a): Detrended correspondence analysis for 45 lowland plots and 417 species. Eigenvalues for the first three axes, Axis 1: 0.7027, Axis 2: 0.2722, Axis 3: 0.2591.
Dry
Wet
L1
L3 L4 L2
m5 m6
m7 m8m9
m10 m11 m12
m13 m14
m16 m15 m17 m18
m20m19 m22m21
m23m24
m26m25
m27m28m29 m30
C1C2 C3 C4
S0 S3S1S2S4 bhp bs2bs1blp
by2 by1 Axis 1
Axis 2
Calophyllum brasiliensis Eugenia spp.
Ficus colubrinae Rinorea dasyadena Sorocea spp.
Sterculia spp.
Tabernaemontana undulata
Bactris coloniata Brosimum utile Carapa guianensis Euterpe precatoria Lozania pittieri Meliosma glabrata Ocotea ira Pterocarpus spp.
Saurauia yasicae Sloanea meianthera Theobroma bernoullii Tetrochidium gorgonae Unonopsis panamensis
Wet Dry
Acacia melanoceras Psuedosamane guachapele Eugenia venezuelensis Matayba scrobiculata Piper reticulatun Sciadodendron excelsum
Ardisia spp.
Casearia spp.
Eugenia spp.
Ficus spp.
Figure 11(b): Detrended correspondence analysis for 417 species based on 45 lowland plots. Crosses indicate species scores and text boxes identify species in prominent clusters.
72
L1 L2
L3
L4 m5
m6 m8 m7
m9
m10
m11 m12
m13
m14 m15
m16 m17
m18 m19m20
m21 m22
m23
m24
m25 m26
m27 m28
m29
m30 C1 C2 C3
C4 S1S2S0
S3 S4
bhp blp
bs1 bs2
by1 by2
Axis 1
Axis 2
Figure 12(a): Detrended correspondence analysis of 45 plots
based on 231 genera. Eigenvalues for the first three axes,
Axis 1: 0.5925, Axis 2: 0.2631, Axis 3: 0.2144.
Axis 1
Axis 2
Carapa Chrysochlamys Erisma Euterpe Marila Malouetia Tetrorchidium Tovomita
Artocarpus Bunchosia Bursera Cojoba Lafoensia Ochroma Rauvolfia
Figure 12(b): Detrended correspondence analysis for 231 genera based on 45 lowland plots. Crosses indicate genus scores and boxes identify genera in prominent clusters.
74
L1
L2
L3 L4
m5 m6
m7 m8
m9
m10
m11 m12
m13
m14
m15
m16
m17 m18
m19 m20
m21 m22
m23
m24 m25
m26
m27 m28
m29 m30
C1 C2 C3
C4 S0
S1 S2
S3 S4
bhp blp
bs1
bs2
by1 by2
Axis 1
Axis 2
Figure 13(a): Detrended correspondence analysis of 45 plots
based on 68 families. Eigenvalues for the first three axes,
Axis 1: 0.3404, Axis 2: 0.1101, Axis 3: 0.0904.
Axis 1
Axis 2
Lythraceae Lecythidaceae Moaraceae Solananceae Humiriaceae
Malpighiaceae Melastomataceae Quiinaceae Sabiaceae Simaroubaceae Theoprastaceae Vochysiaceae
Figure 13(b): Detrended correspondence analysis for 68 families based on 45 lowland plots. Crosses indicate family scores and boxes identify families in prominent clusters.
76
Figure 14: Distribution of plot occupancy for all species in the 54 plots in the Panama Canal watershed (n = 824).
Distribution of plot occupancy for 826 species in 54 plots
0 50 100 150 200 250 300 350 400 450
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
More
Frequency (number of species)
Number of plots occupied
Distribution of Plot Occupancy for 417 species in 45 lowland plots
0 20 40 60 80 100 120
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 More
Number of plots occupied
Frequency (number of species)
Figure 15: Distribution of plot occupancy for all Canal Area species (n = 427).
78
y = 4.097Ln(x) + 24.211 R2 = 0.3697
0 5 10 15 20 25 30 35 40 45
0.001 0.01 0.1 1
Maximum abundance per hectare
Number of occupied plots (n = 54)
Figure 16: The relationship between maximum local
abundance and plot occupancy.
5060708090100
1 2 3
Stand Age Category
(1 = young, 2 = young secondary, 3 = old growth)
Speci e s R ichnes s
Figure 17: Species richness by stand age. The bold letters indicate statistical significance: B is significantly different from A with p < 0.01 based on a two-sided, two-sample t-test with unequal variances.
A A
B
80
y = -0.0009x + 7.7813 R2 = 0.3089
3 3.5 4 4.5 5 5.5 6 6.5 7
1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500
Annual ppt (mm)
Soil pH at approximately 10 cm depth
Figure 18: Soil pH at approximately 10 cm depth versus total annual precipitation for 22 pits near Canal Area plots.
m25, m26
10 11 12 13 14 15 16 17 18
su sh bs ts fp
Geomorphic Position
Average A Horizon Thickness (cm)
Figure 19: Average A horizon depth appeared to vary as a function of slope position even when all
precipitation regimes are combined (su = summit, sh = shoulder, bs = backslope, ts = toeslope, fp = flood plain).
82
Figure 20: Accumulation of species for 56 1-ha plots based on a greedy heuristic. The heuristic represented 826 species in 43 plots. Twenty-seven hectares represent 800 species and the remaining trees are added with low efficiency.
0 100 200 300 400 500 600 700 800 900
0 10 20 30 40 50 60
Number of plots
Number of species represented
Greedy Average