• Tidak ada hasil yang ditemukan

FIGURES

Figure 1: Location of the study area and the watershed of the Panama Canal.

60

Figure 2: Holdridge Life Zones for lowland Panama adapted from Croat (1978).

Tropical dry forest Tropical moist forest Tropical wet forest Premontane forest

Premontane rain forest

Premontane moist forest

Figure 3: Location of the 54 forest monitoring plots (filled circles) around the Canal watershed.

62

Figure 4: Discontinuous rate of species accumulation between life zones. Adding plots moist forest plots in a random order produces the smooth curve to the left to 40 on the x-axis. Adding the remainder of the watershed plots, again in random order, produces a jump in species accumulation as predicted by Condit et al. (1996) when leaving a floristic province. The dotted line line at the top illustrates the shape of the species area curve if all plots were added in random order. The lines in this example were fitted by eye for illustration purposes.

Species Area Relationship

0 100 200 300 400 500 600 700 800 900

0 10 20 30 40 50 60

Total number of plots

Number of species

Plots from the tropical moist forest life zone area

Plots from the premontane wet forest and tropical wet forest area

#Y

# Y

#Y

# Y

#

# Y Y

#Y

#Y

#Y

# Y

#Y

#Y

#Y

#Y

#Y

# Y

#Y

# Y

#Y

#Y

#Y

#Y

# Y# Y# Y# Y

#Y

# Y# Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

# Y

#Y #Y

#Y

#Y

#Y

#Y

# Y

#Y

# Y

#Y

#Y

#Y#Y #Y#Y

# Y

#Y

#Y#Y#Y

#Y#Y

#Y#Y#Y#Y#Y

3000 2750

2250 2500

2000 3250

1750

350

0 3750

1500

2250 3500

3250

2500

2000 37

50

10 0 10 20 Kilometers

Isohyets (mm/yr) #Y Stations and Plots

Annual precipitation

Figure 5: Annual precipitation isohyets (millimeters of rain) interpolated with a spline fit from 65 plots and stations.

64

# Y

#Y

# Y

# Y

#Y

#Y

# Y

# Y

#Y

# Y

#Y

# Y

#Y

# Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

# Y# Y# Y# Y

# Y# Y# Y#Y

#Y

#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y #Y

#Y

#Y

#Y

#Y

#Y

# Y# Y

#Y

# Y

#

Y#Y #Y#Y

#Y

#Y

#Y#Y#Y

# Y#Y

#Y#Y#Y#Y#Y

250 500

750 1000

0 250

250

250 500

750

250

500 1000

10 0 10 20 Kilometers

Cumulative May ppt. (mm) #Y Stations and Plots

May precipitation

Figure 6: Cumulative May precipitation (millimeters of rain)

interpolated with a spline fit for 65 stations and plots.

Figure 7: Dendrogram generated from PC-ORD’s hierarchical, agglomerative, polythetic CLUSTR sub-

routine for all 54 1-hectare plots. This dendrogram is based on Ward’s method of group linkage.

Eu c l i d e a n d i s t a n c e wi t h Wa r d ’ s me t h o d Pe r c e n t c h a i n i n g = 2 . 0 5

Lo g o f Di s t a n c e ( l n o f o b j e c t i v e f u n c t i o n )

1 . 1 4 7 2 . 6 7 6 4 . 2 0 6 5 . 7 3 5 7 . 2 6 4 | - - - +- - - +- - - +- - - +- - - +- - - +- - - +- - - + L1 - - - |

m2 9 - - - | - - - | | - - - | m3 0 - - - | | - - - | | C1 - - - | - - - | | | C4 - - - | | - - - | | - - - - | C2 | - - - | | | C3 | | | m1 3 - - - | | | m2 1 - - - | - - - | | - - - | | m2 2 - - - | | - - | | | m2 7 - - - | - - - | | - - - | | - | m2 8 - - - | | | | m2 3 - - - | - - - | | | m2 4 - - - | | | L3 - - - | - - - | | | L4 - - - | | | | m1 0 - - - | - - - - | | | | b h p - - - | - - - | | | - - - - | | b y 1 - - - | - - - | | | | b y 2 - - - | | | | m1 4 - - - | - - - | | | | b l p - - - | | - - - |- - | | b s 1 - - - | - - - | | | b s 2 - - - | | | m1 1 - - - | - - - | | m1 8 - - - | | L2 - - - | | m8 - - - | - - - | | - - - | | m9 - - - | | - - | | | m1 9 - - - | - - - | | | m2 0 - - - | | - | | m5 - - - | - | | | | m1 6 - - - | - - | | - - - | | | | m1 7 - - - | | | | | | m1 5 - - - | | - | | | m6 - - - | - - - | | | | | m7 - - - | | - - - | | | | m1 2 - - - | | | | m2 5 - - - | - - - | | | | m2 6 - - - | | | | | S0 - - - | | | | | S1 - - - | - - - | | - - - | | | - - | S3 - - - | | - - - | | - - - | | S2 - - - | | | S4 - - - | | m3 1 - - - | | m3 2 - - - | - - - - | | | m3 3 - - - | | - - - | | | m3 4 - - - | | - - - | - - - - -| m3 6 - - - | |

m3 5 - - - | - - - - | | m3 7 - - - | | - | m3 8 - - - | - - | m3 9 - - - |

BCI plots

Watershed plots

Cocoli plots

Fort Sherman

66

Figure 8: Non-metric multidimensional distance scaling of 54 1-hectare monitoring plots in the Panama Canal

watershed. The lines illustrated groups identified by cluster analysis and illustrated in Figure 7. The life zone labels follow Holdridge (1967) and are explained in the text.

L1

L2 L3

L4 m5

m6 m7 m8 m9

m10 m11

m12 m13

m14 m15 m16

m17m18

m19 m20

m21 m22

m23 m24

m26m25 m27 m28 m29 m30

m31 m32

m33 m34 m35

m36 m37

m38 m39

C1 C2 C3

C4

S0 S1 S2

S3 S4

bhp

blp bs1bs2

by1 by2

Axis 1

Axis 2

Tropical Moist Forest

Premontane wet forest/

Tropical wet forest

Relatively wet Relatively dry

y = 358.61x + 2522.4 R2 = 0.6192

1000 1500 2000 2500 3000 3500

-2 -1.5 -1 -0.5 0 0.5 1 1.5

centered NMS axis 1

Annual precipitation (mm)

y = 1.2809x + 2536.6 R2 = 0.3489

1000 1500 2000 2500 3000 3500

-300 -200 -100 0 100 200 300

DCA axis 1

Annual precipitation (mm)

Figure 9: Scatter plots illustrating correlations between interpolated annual precipitation and axis 1 ordination scores: (a) centered non-metric multidimensional distance scaling, (b) detrended correpondence analysis.

(a)

(b)

68

Figures 10: Centered NMDS scores for 45 Canal Area plots with symbols representing categorical site variables.

bhp bs1 blp bs2

by1

by2 C1

C2

C3 C4

L1 L2

L3 L4

m10 m11

m12

m13

m14

m15 m16

m17 m18

m19 m20 m21

m22

m23 m24

m25 m26

m27 m28 m29 m30

m5

m6

m7

m8 m9

S0 S1S2 S3

Axis 1S4

Axis 2 geo

1 2 3 4 5 6 7 8 9 10

bhp bs1 blp bs2

by1

by2 C1

C2

C3 C4

L1 L2

L3 L4

m10 m11

m12

m13

m14

m15 m16

m17 m18

m19 m20 m21

m22

m23 m24

m25 m26

m27 m28 m29 m30

m5

m6

m7

m8 m9

S0 S1S2 S3

Axis 1S4

Axis 2 age

1 2 3

bhp bs1 blp bs2

by1

by2 C1

C2

C3 C4

L1 L2

L3 L4

m10 m11

m12

m13

m14

m15 m16

m17 m18

m19 m20 m21

m22

m23 m24

m25 m26

m27 m28 m29 m30

m5

m6

m7

m8 m9

S0 S1S2 S3

Axis 1S4

Axis 2 topo

1 2 3

(a)

(b)

(c)

Topography Code

Planar 1

Planar > Irregular 2

Irregular 3

Inclined/Slope 4

Age Code

Young 1

Secondary Growth 2

Old Growth 3

Geology Code

pT 1

Tb 2

Tbo 3

Tc 4

Tcm 5

Tct 6

Tgo 7

Tl 8

Tlc 9

Tpa 10

Tv 11

Index to codes in Figures 10, 11, and 12 .

70

L1

L2

L3 L4

m5

m6 m7

m8 m9 m10 m11

m12

m13

m14 m16 m15 m17m18

m19 m20 m22m21

m23 m24

m26m25

m27m28m29 m30

C1C2 C3 C4

S0 S1S2 S3

S4

bhp blp

bs1 bs2 by2 by1

Axis 1

Axis 2

Figure 11(a): Detrended correspondence analysis for 45 lowland plots and 417 species. Eigenvalues for the first three axes, Axis 1: 0.7027, Axis 2: 0.2722, Axis 3: 0.2591.

Dry

Wet

L1

L3 L4 L2

m5 m6

m7 m8m9

m10 m11 m12

m13 m14

m16 m15 m17 m18

m20m19 m22m21

m23m24

m26m25

m27m28m29 m30

C1C2 C3 C4

S0 S3S1S2S4 bhp bs2bs1blp

by2 by1 Axis 1

Axis 2

Calophyllum brasiliensis Eugenia spp.

Ficus colubrinae Rinorea dasyadena Sorocea spp.

Sterculia spp.

Tabernaemontana undulata

Bactris coloniata Brosimum utile Carapa guianensis Euterpe precatoria Lozania pittieri Meliosma glabrata Ocotea ira Pterocarpus spp.

Saurauia yasicae Sloanea meianthera Theobroma bernoullii Tetrochidium gorgonae Unonopsis panamensis

Wet Dry

Acacia melanoceras Psuedosamane guachapele Eugenia venezuelensis Matayba scrobiculata Piper reticulatun Sciadodendron excelsum

Ardisia spp.

Casearia spp.

Eugenia spp.

Ficus spp.

Figure 11(b): Detrended correspondence analysis for 417 species based on 45 lowland plots. Crosses indicate species scores and text boxes identify species in prominent clusters.

72

L1 L2

L3

L4 m5

m6 m8 m7

m9

m10

m11 m12

m13

m14 m15

m16 m17

m18 m19m20

m21 m22

m23

m24

m25 m26

m27 m28

m29

m30 C1 C2 C3

C4 S1S2S0

S3 S4

bhp blp

bs1 bs2

by1 by2

Axis 1

Axis 2

Figure 12(a): Detrended correspondence analysis of 45 plots

based on 231 genera. Eigenvalues for the first three axes,

Axis 1: 0.5925, Axis 2: 0.2631, Axis 3: 0.2144.

Axis 1

Axis 2

Carapa Chrysochlamys Erisma Euterpe Marila Malouetia Tetrorchidium Tovomita

Artocarpus Bunchosia Bursera Cojoba Lafoensia Ochroma Rauvolfia

Figure 12(b): Detrended correspondence analysis for 231 genera based on 45 lowland plots. Crosses indicate genus scores and boxes identify genera in prominent clusters.

74

L1

L2

L3 L4

m5 m6

m7 m8

m9

m10

m11 m12

m13

m14

m15

m16

m17 m18

m19 m20

m21 m22

m23

m24 m25

m26

m27 m28

m29 m30

C1 C2 C3

C4 S0

S1 S2

S3 S4

bhp blp

bs1

bs2

by1 by2

Axis 1

Axis 2

Figure 13(a): Detrended correspondence analysis of 45 plots

based on 68 families. Eigenvalues for the first three axes,

Axis 1: 0.3404, Axis 2: 0.1101, Axis 3: 0.0904.

Axis 1

Axis 2

Lythraceae Lecythidaceae Moaraceae Solananceae Humiriaceae

Malpighiaceae Melastomataceae Quiinaceae Sabiaceae Simaroubaceae Theoprastaceae Vochysiaceae

Figure 13(b): Detrended correspondence analysis for 68 families based on 45 lowland plots. Crosses indicate family scores and boxes identify families in prominent clusters.

76

Figure 14: Distribution of plot occupancy for all species in the 54 plots in the Panama Canal watershed (n = 824).

Distribution of plot occupancy for 826 species in 54 plots

0 50 100 150 200 250 300 350 400 450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

More

Frequency (number of species)

Number of plots occupied

Distribution of Plot Occupancy for 417 species in 45 lowland plots

0 20 40 60 80 100 120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 More

Number of plots occupied

Frequency (number of species)

Figure 15: Distribution of plot occupancy for all Canal Area species (n = 427).

78

y = 4.097Ln(x) + 24.211 R2 = 0.3697

0 5 10 15 20 25 30 35 40 45

0.001 0.01 0.1 1

Maximum abundance per hectare

Number of occupied plots (n = 54)

Figure 16: The relationship between maximum local

abundance and plot occupancy.

5060708090100

1 2 3

Stand Age Category

(1 = young, 2 = young secondary, 3 = old growth)

Speci e s R ichnes s

Figure 17: Species richness by stand age. The bold letters indicate statistical significance: B is significantly different from A with p < 0.01 based on a two-sided, two-sample t-test with unequal variances.

A A

B

80

y = -0.0009x + 7.7813 R2 = 0.3089

3 3.5 4 4.5 5 5.5 6 6.5 7

1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500

Annual ppt (mm)

Soil pH at approximately 10 cm depth

Figure 18: Soil pH at approximately 10 cm depth versus total annual precipitation for 22 pits near Canal Area plots.

m25, m26

10 11 12 13 14 15 16 17 18

su sh bs ts fp

Geomorphic Position

Average A Horizon Thickness (cm)

Figure 19: Average A horizon depth appeared to vary as a function of slope position even when all

precipitation regimes are combined (su = summit, sh = shoulder, bs = backslope, ts = toeslope, fp = flood plain).

82

Figure 20: Accumulation of species for 56 1-ha plots based on a greedy heuristic. The heuristic represented 826 species in 43 plots. Twenty-seven hectares represent 800 species and the remaining trees are added with low efficiency.

0 100 200 300 400 500 600 700 800 900

0 10 20 30 40 50 60

Number of plots

Number of species represented

Greedy Average

Dokumen terkait