• Tidak ada hasil yang ditemukan

1. Parmeggiani, F., Weise, N.J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. 118, 73–118 (2018).

2. Almhjell, P. J., Boville, C. E. & Arnold F. H., Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).

3. Lütke-Eversloh, T., Santos, C. N. S. & Stephanopoulos, G. Perspectives of biotechnological production of L-tyrosine and its applications. Appl. Microbiol.

Biotechnol. 77, 751–762 (2007).

4. Cheng, Z., Kuru, E., Sachdeva, A. & Vendrell, M. Fluorescent amino acids as versatile building blocks for chemical biology. Nat. Rev. Chem. 4, 275–290 (2020).

5. Kim, K., Parang, K., Lau, O. D. & Cole, P. A. Tyrosine analogues as alternative substrates for protein tyrosine kinase Csk: Insights into substrate selectivity and catalytic mechanism. Bioorg. Med. Chem. 8, 1263–1268 (2000).

6. Rubini, R., Jansen, S. C., Beekhuis, H., Rozeboom, H. J. & Mayer, C. Selecting better biocatalysts by complementing recoded bacteria. Angew. Chem. Int. Ed. 62, e202213942 (2023).

7. Seyedsayamdost, M. R., Reece, S. Y., Nocera, D. G. & Stubbe, J. A. Mono-, di-, tri- , and tetra-substituted fluorotyrosines: New probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).

8. Knör, S., Laufer, B. & Kessler, H. Efficient enantioselective synthesis of condensed and aromatic-ring- substituted tyrosine derivatives. J. Org. Chem. 71, 5625–5630 (2006).

9. Ager, D. J. Synthesis of unnatural/nonproteinogenic α-amino acids in Amino Acids, Peptides, and Proteins in Organic Chemistry, Vol. 1 - Origins and Synthesis of Amino Acids, A. B. Hughes, Ed. (WILEY-VCH, 2009), pp. 495–526.

10. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42 D459–

D471 (2014).

11. Lynch, J. H. & Dudareva, N., Aromatic amino acids: A complex network ripe for future exploration. Trends Plant Sci. 25, 670–681 (2020).

12. Rodriguez, A. et al. Engineering Escherichia coli to overproduce aromatic amino

acids and derived compounds. Microb. Cell Fact. 13 (2014).

13. Arnold, L. D., Kalantar, T. H. & Vederas, J. C. Conversion of serine to stereochemically pure β-substituted α-amino acids via β-lactones. J. Am. Chem. Soc.

107, 7105–7109 (1985).

14. Tanner, D. Chiral aziridines—Their synthesis and use in stereoselective transformations. Angew. Chem. Int. Ed. 33, 599–619 (1994).

15. Brittain, W. D. G. & Cobb, S. L. Negishi cross-couplings in the synthesis of amino acids. Org Biomol. Chem. 16, 10–20 (2017).

16. Kumar, V., Turnbull, W. B. & Kumar, A. Review on recent developments in biocatalysts for Friedel–Crafts reactions. ACS Catal. 12, 10742–10763 (2022).

17. Nagasawa, T. et al. Syntheses of L‐tyrosine‐related amino acids by tyrosine phenol‐

lyase of Citrobacter intermedius. Eur. J. Biochem. 117, 33–40 (1981).

18. Phillips, R. S., Chen, H. Y. & Faleev, N. G. Aminoacrylate intermediates in the reaction of Citrobacter freundii tyrosine phenol-lyase. Biochemistry. 45, 9575–9583 (2006).

19. Won, Y. et al. In vivo biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chem.

Commun. 55, 15133–15136 (2019).

20. Olson, N. M. et al. Development of a single culture E. coli expression system for the enzymatic synthesis of fluorinated tyrosine and its incorporation into proteins.

J. Fluor. Chem. 261–262, 110014 (2022).

21. Watanabe, T. & Snell, E. E. Reversibility of the tryptophanase reaction: Synthesis of tryptophan from indole, pyruvate, and ammonia. Proc. Natl. Acad. Sci. U.S.A. 69, 1086–1090 (1972).

22. Watkins-Dulaney, E., Straathof, S. & Arnold, F. Tryptophan synthase: Biocatalyst extraordinaire. ChemBioChem. 22, 5–16 (2021).

23. Buller, A. R. et al. Directed evolution of the tryptophan synthase β-subunit for stand- alone function recapitulates allosteric activation. Proc. Natl. Acad. Sci. U.S.A. 112, 14599–14604 (2015).

24. Herger, M. et al. Synthesis of β-branched tryptophan analogues using an engineered subunit of tryptophan synthase. J. Am. Chem. Soc. 138, 8388–8391 (2016).

25. Romney, D. K., Murciano-Calles, J., Wehrmüller, J. & Arnold, F. H. Unlocking reactivity of TrpB: A general biocatalytic platform for synthesis of tryptophan analogues. J. Am. Chem. Soc. 139, 10769–10776 (2017).

26. Romney, D. K., Sarai, N. S. & Arnold, F. H. Nitroalkanes as versatile nucleophiles for enzymatic synthesis of noncanonical amino acids. ACS Catal. 9, 8726–8730 (2019).

27. Dick, M., Sarai, N. S., Martynowycz, M. W., Gonen, T. & Arnold, F. H. Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. J. Am.

Chem. Soc. 141, 19817–19822 (2019).

28. Watkins, E. J., Almhjell, P. J. & Arnold, F. H. Direct enzymatic synthesis of a deep‐

blue fluorescent noncanonical amino acid from azulene and serine. ChemBioChem.

21, 80–83 (2019).

29. Goss, R. J. M. & Newill, P. L. A. A convenient enzymatic synthesis of L- halotryptophans. Chem. Commun., 4924–4925 (2006).

30. Smith, D. R. M. et al. The first one-pot synthesis of L-7-iodotryptophan from 7- iodoindole and serine, and an improved synthesis of other L-7-halotryptophans. Org.

Lett. 16, 2622–2625 (2014).

31. Rix, G. et al. Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nat. Commun. 11, 5644 (2020).

32. Tatum, E. L. & Bonner, D. Indole and serine in the biosynthesis and breakdown of tryptophane. Proc. Natl. Acad. Sci. U.S.A. 30, 30–37 (1944).

33. Hall, A. N., Lea, D. J. & Rhydon, H. N. The behaviour of the Bz-methylindoles as substrates and inhibitors for Neurospora crassa tryptophan synthase. Biochem. J.

84, 12–16 (1962).

34. Brzovic, P. S., Kayastha, A. M., Miles, E. W. & Dunn, M. F. Substitution of glutamic acid 109 by aspartic acid alters the substrate specificity and catalytic activity of the β-subunit in the tryptophan synthase bienzyme complex from Salmonella typhimurium. Biochemistry. 31, 1180–1190 (1992).

35. Ruvinov, S. B., Ahmed, S. A., McPhie, P. & Miles, E. W. Monovalent cations partially repair a conformational defect in a mutant tryptophan synthase α2β2 complex (β-E109A). J. Biol. Chem. 270, 17333–17338 (1995).

36. Milić, D. et al. Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Biochemistry. 45, 7544–7552 (2006).

37. Boville, C. E., Romney, D. K., Almhjell, P. J., Sieben, M. & Arnold, F. H. Improved synthesis of 4-cyanotryptophan and other tryptophan analogs in aqueous solvent using variants of TrpB from Thermotoga maritima. J. Org. Chem. 83, 7447–7452 (2018).

38. Chen, Z., & Zhao, H. Rapid creation of a novel protein function by in vitro coevolution. J. Mol. Biol. 348, 1273–1282 (2005).

39. Murciano-Calles, J., Romney, D. K., Brinkmann-Chen, S., Buller, A. R. & Arnold, F. H. A panel of TrpB biocatalysts derived from tryptophan synthase through the transfer of mutations that mimic allosteric activation. Angew. Chem. Int. Ed. 55, 11577–11581 (2016).

40. Boville, C. E. et al. Engineered biosynthesis of β-alkyl tryptophan analogues.

Angew. Chem. Int. Ed. 57, 14764–14768 (2018).

41. Tang, M. C., Fu, C. Y. & Tang, G. L. Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5- methyltyrosine in saframycin A biosynthesis. J. Biol. Chem. 287, 5112–5121 (2012).

42. Schmidt, E. W., Nelson, J. T. & Fillmore, J. P. Synthesis of tyrosine derivatives for saframycin MX1 biosynthetic studies. Tetrahedron Lett. 45, 3921–3924 (2004).

43. Smith, J. L., Harrison, I. M., Bingman, C. & Buller, A. R. Investigation of β- substitution activity of O-acetylserine sulfhydrolase from Citrullus vulgaris.

ChemBioChem, e202200157 (2022).

44. A. R. Buller et al. Directed evolution mimics allosteric activation by stepwise tuning of the conformational ensemble. J. Am. Chem. Soc. 120, 7256–7266 (2018).

45. Kraut, D. A., Sigala, P. A., Fenn, T. D. & Herschlag, D. Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole.

Proc. Natl. Acad. Sci. U.S.A. 107, 1960–1965 (2010).

46. Merino, E., Jensen, R. A. & Yanofsky, C. Evolution of bacterial trp operons and their regulation. Curr. Opin. Microbiol. 11, 78–86 (2008).

47. Thompson, B., Machas, M. & Nielsen, D. R. Engineering and comparison of non- natural pathways for microbial phenol production. Biotechnol. Bioeng. 113, 1745–

1754 (2016).