• Tidak ada hasil yang ditemukan

[16] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, Steven M Girvin, and R Jun Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 69(6):062320, 2004.

[17] Long B Nguyen, Yen-Hsiang Lin, Aaron Somoroff, Raymond Mencia, Nicholas Grabon, and Vladimir E Manucharyan. High-coherence fluxonium qubit. Phys. Rev. X, 9(4):041041, 2019.

[18] AVEEK DUTTA, Alexander Place, Kevin Crowley, Xuan Hoang Le, Youqi Gang, Xin Gui, Lila Rodgers, Trisha Madhavan, Nishaad Khedkar, Ignace Jarrige, et al. Study of two-level-system losses in tantalum superconducting microwave coplanar waveguide resonators.Bulletin of the American Physical Society, 2022.

[19] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 2004.

[20] Dibyendu Roy, Christopher M Wilson, and Ofer Firstenberg. Colloquium:

Strongly interacting photons in one-dimensional continuum.Reviews of Mod- ern Physics, 89(2):021001, 2017.

[21] DE Chang, JS Douglas, Alejandro González-Tudela, C-L Hung, and HJ Kim- ble. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 90(3):031002, 2018.

[22] Alexandra S Sheremet, Mihail I Petrov, Ivan V Iorsh, Alexander V Poshakin- skiy, and Alexander N Poddubny. Waveguide quantum electrodynam- ics: collective radiance and photon-photon correlations. arXiv preprint arXiv:2103.06824, 2021.

[23] Ying Dong, J Taylor, Youn Seok Lee, HR Kong, and KS Choi. Waveguide-qed platform for synthetic quantum matter. Physical Review A, 104(5):053703, 2021.

[24] Sahand Mahmoodian, Giuseppe Calajó, Darrick E Chang, Klemens Ham- merer, and Anders S Sørensen. Dynamics of many-body photon bound states in chiral waveguide qed. Physical Review X, 10(3):031011, 2020.

[25] Pierre Türschmann, Hanna Le Jeannic, Signe F Simonsen, Harald R Haakh, Stephan Götzinger, Vahid Sandoghdar, Peter Lodahl, and Nir Rotenberg.

Coherent nonlinear optics of quantum emitters in nanophotonic waveguides.

Nanophotonics, 8(10):1641–1657, 2019.

[26] Susana F Huelga, Angel Rivas, and Martin B Plenio. Non-markovianity- assisted steady state entanglement. Phys. Rev. Lett., 108(16):160402, 2012.

[27] Jiong Cheng, Wen-Zhao Zhang, Ling Zhou, and Weiping Zhang. Preserva- tion macroscopic entanglement of optomechanical systems in non-markovian environment. Sci. Rep., 6:23678, 2016.

[28] Bruno Bellomo, R Lo Franco, and Giuseppe Compagno. Non-markovian effects on the dynamics of entanglement. Phys. Rev. Lett., 99(16):160502, 2007.

[29] Bruno Bellomo, Rosario Lo Franco, Sabrina Maniscalco, and Giuseppe Com- pagno. Entanglement trapping in structured environments. Phys. Rev. A, 78 (6):060302, 2008.

[30] C Gonzalez-Ballestero, Francisco J García-Vidal, and Esteban Moreno. Non- markovian effects in waveguide-mediated entanglement.New J. Phys., 15(7):

073015, 2013.

[31] H Jeff Kimble. The quantum internet. Nature, 453(7198):1023–1030, 2008.

[32] Robert Raussendorf, Daniel E Browne, and Hans J Briegel. Measurement- based quantum computation on cluster states. Phys. Rev. A, 68(2):022312, 2003.

[33] A Goban, C-L Hung, S-P Yu, JD Hood, JA Muniz, JH Lee, MJ Martin, AC McClung, KS Choi, Darrick E Chang, et al. Atom–light interactions in photonic crystals. Nat. Comm., 5(1):1–9, 2014.

[34] Neil V Corzo, Jérémy Raskop, Aveek Chandra, Alexandra S Sheremet, Bap- tiste Gouraud, and Julien Laurat. Waveguide-coupled single collective exci- tation of atomic arrays. Nature, 566(7744):359–362, 2019.

[35] M Baur, Stefan Filipp, R Bianchetti, JM Fink, M Göppl, L Steffen, Peter J Leek, Alexandre Blais, and Andreas Wallraff. Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit. Physical review letters, 102(24):243602, 2009.

[36] Io-Chun Hoi, CM Wilson, Göran Johansson, Joel Lindkvist, Borja Peropadre, Tauno Palomaki, and Per Delsing. Microwave quantum optics with an arti- ficial atom in one-dimensional open space. New Journal of Physics, 15(2):

025011, 2013.

[37] Arjan F Van Loo, Arkady Fedorov, Kevin Lalumière, Barry C Sanders, Alexandre Blais, and Andreas Wallraff. Photon-mediated interactions be- tween distant artificial atoms. Science, 342(6165):1494–1496, 2013.

[38] Mohammad Mirhosseini, Eunjong Kim, Xueyue Zhang, Alp Sipahigil, Paul B Dieterle, Andrew J Keller, Ana Asenjo-Garcia, Darrick E Chang, and Oskar Painter. Cavity quantum electrodynamics with atom-like mirrors. Nature, 569(7758):692, 2019.

[39] Io-Chun Hoi, Tauno Palomaki, Joel Lindkvist, Göran Johansson, Per Dels- ing, and CM Wilson. Generation of nonclassical microwave states using an artificial atom in 1d open space. Phys. Rev. Lett., 108(26):263601, 2012.

[40] Deniz Bozyigit, C Lang, L Steffen, JM Fink, Christopher Eichler, M Baur, R Bianchetti, Peter J Leek, Stefan Filipp, Marcus P Da Silva, et al. Antibunch- ing of microwave-frequency photons observed in correlation measurements using linear detectors. Nature Physics, 7(2):154–158, 2011.

[41] C Lang, Christopher Eichler, L Steffen, JM Fink, Matthew J Woolley, Alexan- dre Blais, and Andreas Wallraff. Correlations, indistinguishability and en- tanglement in hong–ou–mandel experiments at microwave frequencies. Nat.

Phys., 9(6):345–348, 2013.

[42] Gustav Andersson, Baladitya Suri, Lingzhen Guo, Thomas Aref, and Per Delsing. Non-exponential decay of a giant artificial atom. Nat. Phys., 15:

1123–1127, 2019. doi: 10.1038/s41567-019-0605-6.

[43] Bharath Kannan, Max J Ruckriegel, Daniel L Campbell, Anton Frisk Kockum, Jochen Braumüller, David K Kim, Morten Kjaergaard, Philip Krantz, Alexander Melville, Bethany M Niedzielski, et al. Waveguide quan- tum electrodynamics with superconducting artificial giant atoms. Nature, 583(7818):775–779, 2020.

[44] AM Vadiraj, Andreas Ask, TG McConkey, I Nsanzineza, CW Sandbo Chang, Anton Frisk Kockum, and CM Wilson. Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics.Physical Review A, 103(2):023710, 2021.

[45] Bharath Kannan, Aziza Almanakly, Youngkyu Sung, Agustin Di Paolo, David A Rower, Jochen Braumüller, Alexander Melville, Bethany M Niedzielski, Amir Karamlou, Kyle Serniak, et al. On-demand directional photon emission using waveguide quantum electrodynamics. arXiv preprint arXiv:2203.01430, 2022.

[46] Christopher Eichler, Jonas Mlynek, Jonas Butscher, Philipp Kurpiers, Kle- mens Hammerer, Tobias J Osborne, and Andreas Wallraff. Exploring inter- acting quantum many-body systems by experimentally creating continuous matrix product states in superconducting circuits.Phys. Rev. X, 5(4):041044, 2015.

[47] Bharath Kannan, Daniel L Campbell, Francisca Vasconcelos, Roni Winik, DK Kim, Morten Kjaergaard, Philip Krantz, Alexander Melville, Bethany M Niedzielski, JL Yoder, et al. Generating spatially entangled itinerant pho- tons with waveguide quantum electrodynamics. Science Advances, 6(41):

eabb8780, 2020.

[48] Jean-Claude Besse, Kevin Reuer, Michele C. Collodo, Arne Wulff, Lucien Wernli, Adrian Copetudo, Daniel Malz, Paul Magnard, Abdulkadir Akin, Mihai Gabureac, Graham J. Norris, J. Ignacio Cirac, Andreas Wallraff, and Christopher Eichler. Realizing a deterministic source of multipartite- entangled photonic qubits. Nat. Commun., 11(4877), 2020.

[49] Yong Lu, Ingrid Strandberg, Fernando Quijandría, Göran Johansson, Simone Gasparinetti, and Per Delsing. Propagating wigner-negative states generated from the steady-state emission of a superconducting qubit. Physical Review Letters, 126(25):253602, 2021.

[50] Vladimir P Bykov. Spontaneous emission from a medium with a band spec- trum. Sov. J. Quantum Electron., 4(7):861, 1975.

[51] Sajeev John and Jian Wang. Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Phys. Rev. Lett., 64(20):2418, 1990.

[52] Sajeev John and Jian Wang. Quantum optics of localized light in a photonic band gap. Phys. Rev. B, 43(16):12772, 1991.

[53] Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58(20):2059, 1987.

[54] Sajeev John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58(23):2486, 1987.

[55] Sajeev John and Tran Quang. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A, 50(2):1764, 1994.

[56] HZ Shen, Shuang Xu, HT Cui, and XX Yi. Non-markovian dynamics of a system of two-level atoms coupled to a structured environment. Phys. Rev.

A, 99(3):032101, 2019.

[57] Alejandro González-Tudela and J Ignacio Cirac. Markovian and non- markovian dynamics of quantum emitters coupled to two-dimensional struc- tured reservoirs. Phys. Rev. A, 96(4):043811, 2017.

[58] P Lambropoulos, Georgios M Nikolopoulos, Torben R Nielsen, and Søren Bay. Fundamental quantum optics in structured reservoirs. Reports on Progress in Physics, 63(4):455, 2000.

[59] Nipun Vats and Sajeev John. Non-markovian quantum fluctuations and su- perradiance near a photonic band edge. Phys. Rev. A, 58(5):4168, 1998.

[60] Hannes Pichler, Soonwon Choi, Peter Zoller, and Mikhail D Lukin. Universal photonic quantum computation via time-delayed feedback. PNAS, 114(43):

11362–11367, 2017.

[61] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavs- son, and William D Oliver. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 6(2):021318, 2019.

[62] Steven M Girvin. Circuit qed: superconducting qubits coupled to microwave photons. Quantum machines: measurement and control of engineered quan- tum systems, pages 113–256, 2014.

[63] Uri Vool and Michel Devoret. Introduction to quantum electromagnetic circuits. International Journal of Circuit Theory and Applications, 45(7):

897–934, 2017.

[64] Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman lectures on physics, Vol. III: The new millennium edition, volume 3. Basic books, 2011.

[65] K Osbourne and JM Martinis. Superconducting qubits and the physics of josephson junctions. InLes Houches conference proceedings, 2003.

[66] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge- insensitive qubit design derived from the cooper pair box. Phys. Rev. A, 76:

042319, oct 2007. doi: 10.1103/PhysRevA.76.042319.

[67] Daniel Sank, Zijun Chen, Mostafa Khezri, J Kelly, R Barends, B Campbell, Y Chen, B Chiaro, A Dunsworth, A Fowler, et al. Measurement-induced state transitions in a superconducting qubit: Beyond the rotating wave approxima- tion. Phys. Rev. Lett., 117(19):190503, 2016.

[68] Theodore Walter, Philipp Kurpiers, Simone Gasparinetti, Paul Magnard, An- ton Potočnik, Yves Salathé, Marek Pechal, Mintu Mondal, Markus Oppliger, Christopher Eichler, et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl., 7(5):054020, 2017.

[69] Agnetta Y. Cleland, Marek Pechal, Pieter-Jan C. Stas, Christopher J. Sara- balis, E. Alex Wollack, and Amir H. Safavi-Naeini. Mechanical purcell filters for microwave quantum machines. Applied Physics Letters, 115(26):263504, 2019. doi: 10.1063/1.5111151.

[70] Eun Jong Kim. Waveguide Quantum Electrodynamics in Superconducting Circuits. PhD thesis, California Institute of Technology, 2022.

[71] Yao-Lung L Fang. Waveguide QED: Multiple Qubits, Inelastic Scattering, and Non-Markovianity. PhD thesis, Duke University, 2017.

[72] Darrick E Chang, Anders S Sørensen, Eugene A Demler, and Mikhail D Lukin. A single-photon transistor using nanoscale surface plasmons. Nature physics, 3(11):807–812, 2007.

Dalam dokumen Superconducting Slow-Light Waveguide Circuits (Halaman 194-200)