Aarts, E. and Korst, J. (1988). Simulated annealing and Boltzmann machines. New York, John Wiley and Sons Inc.
Abi, N. (2019). Spatially balanced sampling methods in household surveys. PhD thesis, University of Canterbury, School of Mathematics and Statistics.
Altieri, L. and Cocchi, D. (2021). Spatial sampling for non-compact patterns. Interna- tional Statistical Review, 89(3):532–549. https://doi.org/10.1111/insr.12445.
Ardilly, P. (1991). ´Echantillonnage repr´esentatif optimum `a probabilit´es in´egales.Annales d’ ´Economie et de Statistique, pages 91–113.
Arnab, R. (2017). Chapter 3 - simple random sampling. In Arnab, R., editor, Survey Sampling Theory and Applications, pages 51–88. Academic Press.
Bellhouse, D. R. (1977). Some optimal designs for sampling in two dimensions.
Biometrika, 64(3):605–611.
Benedetti, R., Dickson, M. M., Espa, G., Pantalone, F., and Piersimoni, F. (2022). A simulated annealing-based algorithm for selecting balanced samples. Computational Statistics, 37(1):491–505.
Benedetti, R., Espa, G., and Taufer, E. (2017a). Model-based variance estimation in non- measurable spatial designs. Journal of Statistical Planning and Inference, 181:52–61.
Benedetti, R. and Piersimoni, F. (2017). A spatially balanced design with probability function proportional to the within sample distance. Biometrical Journal, 59(5):1067–
1084.
Benedetti, R., Piersimoni, F., and Postiglione, P. (2017b). Alternative and complementary approaches to spatially balanced samples. Metron, 75(3):249–264.
Benedetti, R., Piersimoni, F., and Postiglione, P. (2017c). Spatially balanced sampling:
a review and a reappraisal. International Statistical Review, 85(3):439–454.
BIBLIOGRAPHY
Benedetti, R., Piersimoni, F., Postiglione, P., et al. (2015). Sampling spatial units for agricultural surveys. Springer.
Berger, Y. G. (1998a). Rate of convergence for asymptotic variance of the horvitz–
thompson estimator. Journal of Statistical Planning and Inference, 74(1):149–168.
Berger, Y. G. (1998b). Variance estimation using list sequential scheme for unequal probability sampling. Journal of Official Statistics, 14(3):315.
Berger, Y. G. (2005). A variance estimator for systematic sampling from a deliberately ordered population. Communications in Statistics-Theory and Methods, 34(7):1533–
1541.
Berger, Y. G., Mu˜noz, J. F., and Rancourt, E. (2009). Variance estimation of survey estimates calibrated on estimated control totalsan application to the extended regres- sion estimator and the regression composite estimator. Computational statistics & data analysis, 53(7):2596–2604.
Bivand, R., Nowosad, J., and Lovelace, R. (2021). spData: Datasets for Spatial Analysis.
R package version 2.0.1.
Bondesson, L. and Thorburn, D. (2008). A list sequential sampling method suitable for real-time sampling. Scandinavian Journal of Statistics, 35(3):466–483.
Bowley, A. L. (1926). Measurement of the precision attained in sampling. Bulletin de L’Institute International de Statistique, XXII.
Breidt, F. J. and Chauvet, G. (2011). Improved variance estimation for balanced samples drawn via the cube method. Journal of Statistical Planning and Inference, 141(1):479–
487.
Breidt, F. J. and Chauvet, G. (2012). Penalized balanced sampling. Biometrika, 99(4):945–958.
Brewer, K. R. W. (1963). A model of systematic sampling with unequal probabilities.
Australian Journal of Statistics, 5(1):5–13.
Brewer, K. R. W. and Gregoire, T. G. (2009). Introduction to survey sampling. In Handbook of Statistics, volume 29, pages 9–37. Elsevier.
Brewer, K. R. W. and Hanif, M. (1983). Sampling with unequal probabilities, volume 15.
Springer Science & Business Media.
BIBLIOGRAPHY
Cassel, C. M., S¨arndal, C.-E., and Wretman, J. H. (1976). Some results on general- ized difference estimation and generalized regression estimation for finite populations.
Biometrika, 63(3):615–620.
Chao, M. T. (1982). A general purpose unequal probability sampling plan. Biometrika, 69(3):653–656.
Chauvet, G., Haziza, D., and Lesage, ´E. (2017). Examining some aspects of balanced sampling in surveys. Statistica Sinica, pages 313–334.
Chauvet, G. and Till´e, Y. (2006). A fast algorithm for balanced sampling. Computational Statistics, 21(1):53–62.
Chen, B., Wang, J., Zhao, H., and Principe, J. (2016). Insights into entropy as a measure of multivariate variability. Entropy, 18(5):196.
Chun, Y. and Griffith, D. A. (2018). Impacts of negative spatial autocorrelation on frequency distributions. Chilean Journal of Statistics, 9(1):3–17.
Cliff, A. D. and Ord, J. K. (1973). Spatial autocorrelation. London : Pion. Includes index.
Cliff, A. D. and Ord, J. K. (1981). Spatial Processes: Models & Applications. Pion.
Cochran, W. G. (1939). The use of the analysis of variance in enumeration by sampling.
Journal of the American Statistical Association, 34(207):492–510.
Cochran, W. G. (1946). Relative accuracy of systematic and stratified random samples for a certain class of populations. The Annals of Mathematical Statistics, 17(2):164–177.
Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons, 3rd edition.
Das, A. C. (1950). Two dimensional systematic sampling and the associated stratified and random sampling. Sankhy¯a: The Indian Journal of Statistics, pages 95–108.
Deville, J.-C. (1992). Constrained samples, conditional inference, weighting: Three as- pects of the utilisation of auxiliary information. In Proceedings of the Workshop on Uses of Auxiliary Information in Surveys, pages 5–7.
Deville, J.-C. (1999). Variance estimation for complex statistics and estimators: lineariza- tion and residual techniques. Survey methodology, 25(2):193–204.
Deville, J.-C. (2000). Generalized calibration and application to weighting for non- response. InCOMPSTAT, pages 65–76. Springer.
BIBLIOGRAPHY
Deville, J.-C., Grosbras, J., and Roth, N. (1988). Efficient sampling algorithms and balanced samples. InCompstat, pages 255–266. Springer.
Deville, J.-C. and S¨arndal, C.-E. (1992). Calibration estimators in survey sampling.
Journal of the American Statistical Association, 87(418):376–382.
Deville, J.-C. and Till´e, Y. (1998). Unequal probability sampling without replacement through a splitting method. Biometrika, 85(1):89–101.
Deville, J.-C. and Till´e, Y. (2004). Efficient balanced sampling: The cube method.
Biometrika, 91(4):893–912.
Deville, J.-C. and Till´e, Y. (2005). Variance approximation under balanced sampling.
Journal of Statistical Planning and Inference, 128(2):569–591.
Dickson, M. M., Benedetti, R., Giuliani, D., and Espa, G. (2014). The use of spatial sampling designs in business surveys. Open Journal of Statistics, 2014.
Dickson, M. M., Grafstr¨om, A., Giuliani, D., and Espa, G. (2019). Efficiency and feasi- bility of sampling schemes in establishment surveys. Mathematical Population Studies, 26(2):114–122.
Dumelle, M., Kincaid, T., and Olsen, T. (2021). spsurvey: Spatial Sampling Design and Analysi. R package version 5.1.0.
Durbin, J. (1953). Some results in sampling theory when the units are selected with un- equal probabilities. Journal of the Royal Statistical Society: Series B (Methodological), 15(2):262–269.
Estevao, V. M. and S¨arndal, C.-E. (2000). A functional form approach to calibration.
Journal of Official Statistics, 16(4):379.
Filipponi, D., Piersimoni, F., Benedetti, R., Dickson, M. M., Espa, G., and Giuliani, D.
(2019). Sampling design and analysis using geo-referenced data. In Zhang, L.-C. and Chambers, R. L., editors,Analysis of Integrated Data, chapter 10, pages 219–245. CRC Press, Boca Raton.
Fuller, W. A. (2009a). Sampling Statistics. Wiley Series in Survey Methodology. Wiley.
Fuller, W. A. (2009b). Some design properties of a rejective sampling procedure.
Biometrika, 96(4):933–944.
Gabler, S. and Schweigkoffer, R. (1990). The existence of sampling designs with preas- signed inclusion probabilities. Metrika, 37(1):87–96.
BIBLIOGRAPHY
Godambe, V. P. (1955). A unified theory of sampling from finite populations. Journal of the Royal Statistical Society: Series B (Methodological), 17(2):269–278.
Godambe, V. P. and Joshi, V. M. (1965). Admissibility and bayes estimation in sampling finite populations. I. The Annals of Mathematical Statistics, 36(6):1707–1722.
Goldstein, H. (1991). Multilevel modelling of survey data. Journal of the Royal Statistical Society. Series D (The Statistician), 40(2):235–244.
Grafstr¨om, A. (2012). Spatially correlated poisson sampling. Journal of Statistical Plan- ning and Inference, 142(1):139–147.
Grafstr¨om, A. and Lisic, J. (2019). BalancedSampling: Balanced and Spatially Balanced Sampling. R package version 1.5.5.
Grafstr¨om, A. and Lundstr¨om, N. L. (2013). Why well spread probability samples are balanced. Open Journal of Statistics, 3(1):36–41.
Grafstr¨om, A., Lundstr¨om, N. L., and Schelin, L. (2012). Spatially balanced sampling through the pivotal method. Biometrics, 68(2):514–520.
Grafstr¨om, A. and Till´e, Y. (2013). Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics, 24(2):120–131.
Gr¨aler, B., Pebesma, E., and Heuvelink, G. (2016). Spatio-temporal interpolation using gstat. The R Journal, 8:204–218.
Griffith, D. A. (2003). Spatial Autocorrelation and Spatial Filtering: Gaining Under- standing Through Theory and Scientific Visualization. Advances in Spatial Science.
Springer.
Griffith, D. A. (2011). Positive spatial autocorrelation impacts on attribute variable frequency distribution. Chilean Journal of Statistics, 2(2):3–28.
Griffith, D. A. (2019). Negative spatial autocorrelation: One of the most neglected con- cepts in spatial statistics. Stats, 2(3):388–415.
Griffith, D. A. and Arbia, G. (2010). Detecting negative spatial autocorrelation in georef- erenced random variables. International Journal of Geographical Information Science, 24(3):417–437.
H´ajek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, pages 1491–1523.
BIBLIOGRAPHY
H´ajek, J. (1981). Sampling from a finite population. M. Dekker.
Hanif, M. and Brewer, K. R. W. (1980). Sampling with unequal probabilities without replacement: a review. International Statistical Review/Revue Internationale de Statis- tique, pages 317–335.
Hansen, M. H. and Hurwitz, W. N. (1943). On the theory of sampling from finite popu- lations. Ann. Math. Statist., 14(4):333–362.
Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953a). Sample survey methods and theory: Volume 1. Wiley publications in statistics. Wiley.
Hansen, M. H., Hurwitz, W. N., and Madow, W. G. (1953b). Sample survey methods and theory: Volume 2. Wiley publications in statistics. Wiley.
Hartley, H. O. and Rao, J. N. K. (1962). Sampling with unequal probabilities and without replacement. The Annals of Mathematical Statistics, pages 350–374.
Haziza, D., Mecatti, F., and Rao, J. N. K. (2004). Comparison of variance estimators under rao-sampford method: a simulation study. In Joint Statistical Meeting, pages 3638–3643. US.
Haziza, D., Mecatti, F., and Rao, J. N. K. (2008). Evaluation of some approximate vari- ance estimators under the Rao-Sampford unequal probability sampling design. Metron, 66(1):91–108.
Hedayat, A. S. and Majumdar, D. (1995). Generating desirable sampling plans by the technique of trade-off in experimental design. Journal of Statistical Planning and In- ference, 44(2):237–247.
Hedayat, A. S., Rao, C. R., and Stufken, J. (1988). Sampling plans excluding contiguous units. Journal of Statistical Planning and Inference, 19(2):159–170.
Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47(260):663–685.
Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association, 77(377):89–96.
Jauslin, R. and Till´e, Y. (2020). Spatial spread sampling using weakly associated vectors.
Journal of Agricultural, Biological and Environmental Statistics, 25(3):431–451.
BIBLIOGRAPHY
Jones, K. (1993). Using multilevel models for survey analysis. JOURNAL-MARKET RESEARCH SOCIETY, 35:249–249.
Kiær, A. N. (1896). Observations and experiments on representative enumeration. Bulletin de L’Institute International de Statistique, 9(livre 2):176–83.
Kish, L. (1965). Survey Sampling. A Wiley Interscience Publication. Wiley.
Kosiorowski, D. and Zawadzki, Z. (2022).DepthProc An R Package for Robust Exploration of Multidimensional Economic Phenomena.
Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W., et al. (2005). Applied linear statistical models, volume 5. McGraw-Hill Irwin New York.
Lahiri, D. B. (1951). A method for sample selection providing unbiased ratio estimates.
Bull. Int. Stat. Inst., 33(2):133–140.
Leuenberger, M., Eustache, E., Jauslin, R., and Till´e, Y. (2022). Balancing a sample almost perfectly. Statistics & Probability Letters, 180:109229.
Lister, A. J. and Scott, C. T. (2009). Use of space-filling curves to select sample locations in natural resource monitoring studies. Environmental Monitoring and Assessment, 149(1):71–80.
Madow, W. G. (1949). On the theory of systematic sampling, ii. The Annals of Mathe- matical Statistics, 20(3):333–354.
Mahalanobis, P. C. and Fisher, R. A. (1944). On large-scale sample surveys. Philo- sophical Transactions of the Royal Society of London. Series B, Biological Sciences, 231(584):329–451.
Moran, P. A. P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society. Series B (Methodological), 10(2):243–251.
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17–23.
Mullen, K. M. (2014). Continuous global optimization in r.Journal of Statistical Software, 60(i06).
Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society, 97(4):558–625.
BIBLIOGRAPHY
Office for National Statistics (2011). UK census 2011: data by postcode sectors for Southampton.
Office for National Statistics (2019). Living costs and food survey, 2017-2018.
Pantalone, F., Benedetti, R., and Federica, P. (2019). Spbsampling: spatially balanced sampling. R package version 1.3.4.
Pfeffermann, D., Da Silva Moura, F. A., and Do Nascimento Silva, P. L. (2006). Multi- level modelling under informative sampling. Biometrika, 93(4):943–959.
Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., and Rasbash, J. (1998).
Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1):23–40.
Quenouille, M. H. (1949). Problems in plane sampling. The Annals of Mathematical Statistics, pages 355–375.
R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rabe-Hesketh, S. and Skrondal, A. (2006). Multilevel modelling of complex survey data.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 169(4):805–827.
Rao, J. N. K. (1965). On two simple schemes of unequal probability sampling without replacement. Journal of the Indian Statistical Association, 3(4):173–80.
Rao, J. N. K., Hartley, H. O., and Cochran, W. G. (1962). On a simple procedure of unequal probability sampling without replacement. Journal of the Royal Statistical Society. Series B (Methodological), 24(2):482–491.
Rao, J. N. K., Verret, F., and Hidiroglou, M. A. (2013). A weighted composite likelihood approach to inference for two-level models from survey data. Survey Methodology, 39(2):263–282.
Ribeiro Jr, P. J., Diggle, P. J., Christensen, O., Schlather, M., Bivand, R., and Ripley, B.
(2020). geoR: Analysis of Geostatistical Data. R package version 1.8-1.
Robertson, B., Brown, J., McDonald, T., and Jaksons, P. (2013). Bas: Balanced accep- tance sampling of natural resources. Biometrics, 69(3):776–784.
Robertson, B., McDonald, T., Price, C., and Brown, J. (2018). Halton iterative parti- tioning: spatially balanced sampling via partitioning. Environmental and Ecological Statistics, 25(3):305–323.
BIBLIOGRAPHY
Ros´en, B. (1991). Variance estimation for systematic pps-sampling. Report: In Statistics Sweden.
Sampford, M. R. (1967). On sampling without replacement with unequal probabilities of selection. Biometrika, 54(3/4):499–513.
S¨arndal, C.-E., Swensson, B., and Wretman, J. (1992). Model assisted survey sampling.
Springer-Verlag New York, 1st edition.
Sen, A. R. (1953). On the estimate of the variance in sampling with varying probabilities.
Journal of the Indian Society of Agricultural Statistics, 5(1194):127.
Skentelbery, R. (2010). Regression analysis of household expenditure and income. In Family Spending, pages 71–78. Springer.
Skinner, C. J. (1989). Domain means, regression and multi-variate analysis. In Skinner, C. J., Holt, D., and Smith, T. M. F., editors,Analysis of Complex Surveys, pages 59–88.
Wiley.
Skinner, C. J. and de Toledo Vieira, M. (2007). Variance estimation in the analysis of clustered longitudinal survey data. Survey Methodology, 33(1):3–12.
Stevens Jr, D. L. (1997). Variable density grid-based sampling designs for continuous spatial populations. Environmetrics: The official journal of the International Environ- metrics Society, 8(3):167–195.
Stevens Jr, D. L. and Olsen, A. R. (2003). Variance estimation for spatially balanced samples of environmental resources. Environmetrics, 14(6):593–610.
Stevens Jr, D. L. and Olsen, A. R. (2004). Spatially balanced sampling of natural re- sources. Journal of The American Statistical Association, 99(465):262–278.
Thionet, P. (1953). La The´orie des Sondages. Paris: INSEE. Imprimerie Nationale.
Till´e, Y. (2006). Sampling algorithms. Springer-Verlag New York.
Till´e, Y. (2011). Ten years of balanced sampling with the cube method: an appraisal.
Survey methodology, 37(2):215–226.
Till´e, Y., Dickson, M. M., Espa, G., and Giuliani, D. (2018). Measuring the spatial balance of a sample: A new measure based on morans i index. Spatial Statistics, 23:182–192.
Till´e, Y. and Matei, A. (2021). sampling: Survey Sampling. R package version 2.9.