• Tidak ada hasil yang ditemukan

Categorical traces of rigid monoidal categories

Chapter XII: The categorical trace

12.3 Categorical traces of rigid monoidal categories

We letR =LincatΞ›. Categorical traces of rigid monoidal categories have particu- larly nice formal properties. Namely, the rigidity implies (in fact is equivalent to) the monadicity of Hochschild complex.

Lemma 12.3.1. Assume that 𝐴 is rigid and 𝐹 is an 𝐴-bimodule. Then for every 𝛼: [𝑛] β†’ [π‘š], the diagram

HH(𝐴, 𝐹)π‘š+1 //

𝑑HH

0

HH(𝐴, 𝐹)𝑛+1

𝑑HH

0

HH(𝐴, 𝐹)π‘š //HH(𝐴, 𝐹)𝑛

(12.15)

is right-adjointable. I.e., the cosimplicial objectHH(𝐴, 𝐹)β€’obtained fromHH(𝐴, 𝐹)β€’ by passing to the right adjoints satisfies the Beck-Chevalley conditions. In particu- lar,

|HH(𝐴, 𝐹)β€’| Tot(HH(𝐴, 𝐹)β€’) LMod𝑇(𝐹), with𝑇 the monad given to𝑑HH

0 β—¦ (𝑑HH

1 )𝑅.

Proof. To prove the first statement, we may assume that𝛼 is either a coboundary map or a coface map. In the case that 𝛼 is a coboundary map, the induced map HH(𝐴, 𝐹)π‘š = π΄βŠ—π‘š βŠ—πΉ β†’ HH(𝐴, 𝐹)𝑛 = π΄βŠ—π‘› βŠ—πΉ is a right 𝐴-module morphism with respect to the right𝐴-action on the last factor𝐹. As such morphism is induced by inserting the unit at an appropriate position, it admits a continuous right adjoint, which by (Dennis Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.3.6) is an 𝐴- module morphism. This exactly means that the commutative diagram in the lemma is right-adjointable when𝛼is a coboundary map.

Next, assume that 𝛼 = 𝑑𝑖 is a coface map. As explained in (Dennis Gaitsgory and Rozenblyum, 2017a, Lemma 1.9.3.2), for a left 𝐴-module 𝑀, the action map π‘Ž : π΄βŠ— 𝑀 β†’ 𝑀 admits a continuous right adjointπ‘Žπ‘… given by

𝑀 ModΞ› βŠ— 𝑀

(π‘šπ‘…β—¦1𝐴)βŠ—id𝑀

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’ π΄βŠ— π΄βŠ— 𝑀 id

π΄βŠ—π‘Ž

βˆ’βˆ’βˆ’βˆ’β†’ π΄βŠ— 𝑀

and moreover the functorπ‘Žπ‘… is a morphism of 𝐴-modules (a-priori it is only lax).

Similar statements hold for right 𝐴-modules. From these facts, one sees that the commutative diagram is right-adjointable for 𝛼 = 𝑑𝑖. Indeed, since each of the functors only these claim reduce to the diagrams with[𝑛] ≀ 1. and the requirement of right adjointability is exactly the fact that 𝐹 β†’ 𝐴 βŠ— 𝐹 and 𝐴 β†’ 𝐴 βŠ— 𝐴 are morphisms of𝐴-modules.

That |HH(𝐴, 𝐹)β€’| Tot(HH(𝐴, 𝐹)β€’) follows from (9.1) and the last equivalence follows from the first assertion and Theorem 9.0.5. β–‘ The following statements directly follow from the proof.

Corollary 12.3.2. Assume that𝐴is rigid. Let𝐹

1 β†’ 𝐹

2be a fully faithful functor of 𝐴-bimodules. Then the induced functor

Tr(𝐴, 𝐹

1) β†’Tr(𝐴, 𝐹

2) is fully faithful.

Proof. By Lemma 12.3.1 the functor between the trace categories can be realized as a limit of functors between Hochschild complexes, so to get fully faithfulness it is enough to have level-wise fully faithfulness of the functorsπ΄βŠ—π‘›βŠ—Ξ›πΉ

1β†’ π΄βŠ—π‘›βŠ—Ξ›πΉ

2

for all𝑛 β‰₯ 0. Each of these can be realized via a bar construction with ModΞ› so it is enough to show that As 𝐴 is rigid, it is canonically self-dual as an object of R, it is enough to show that the functor LFunΞ›(𝐴, 𝐹

1) β†’ LFunΞ›(𝐴, 𝐹

2) between categories of Ξ›-linear functors, is fully faithful. Fully faithfulness is then known (see for example (Gepner, Haugseng, and Nikolaus, n.d., Lemma 5.2.) β–‘ Corollary 12.3.3. An 𝐴-bimodule functor 𝐹

1 β†’ 𝐹

2 induces a functor between cosimplicial objectsHH(𝐴, 𝐹

1)β€’β†’HH(𝐴, 𝐹

2)β€’. In addition, the following diagram is right adjointable

𝐹1 [βˆ’]𝐹

1//

Tr(𝐴, 𝐹

1)

𝐹2 [βˆ’]𝐹

2//Tr(𝐴, 𝐹

2) If𝐹

1 β†’ 𝐹

2admits a continuous right adjoint (as plainΞ›-linear presentable stable categories), then the following diagram is right adjointable

𝐹1 [βˆ’]𝐹

1 //𝐹

2 [βˆ’]𝐹

2

Tr(𝐴, 𝐹

1) //Tr(𝐴, 𝐹

2)

Remark 12.3.4. Assume that 𝐴 is rigid. Let 𝑀 be a left 𝐴-module. LetModΞ› β†’ 𝑁 βŠ—π΄ 𝑀 and 𝑀 βŠ— 𝑁 β†’ 𝐴be the duality datum for 𝑀 as a left 𝐴-module. Then it follows easily from the above corollary that𝑁 is the dual of𝑀 inLincatΞ› with the duality datum given by

ModΞ› β†’ 𝑁 βŠ—π΄ 𝑀

[βˆ’]𝑅

βˆ’βˆ’βˆ’β†’π‘ βŠ— 𝑀 , 𝑀 βŠ—π‘ β†’ 𝐴 Hom

(1𝐴,βˆ’)

βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’ ModΞ›, where [βˆ’]𝑅 denotes the continuous right adjoint of[βˆ’]π‘€βŠ—π‘.

One can also easily deduce the following corollary, which has appeared in (D.

Gaitsgory et al., 2019, Theorem 3.8.5).

Corollary 12.3.5. Assume that 𝐴is rigid, equipped with a monoidal endomorphism πœ™ : 𝐴→ 𝐴. Then

tr(𝐴, πœ™) EndTr(𝐴,πœ™)( [1𝐴]πœ™π΄)

asΞ›-algebras. Let𝑀be a left𝐴-module equipped with an𝐴-module homomorphism 𝛼 : 𝑀 β†’ πœ™π΄βŠ—π΄ 𝑀 = πœ™π‘€. Assume that 𝑀 is dualizable inLincatΞ›. Then under the above isomorphism, HomTr(𝐴,πœ™)( [1𝐴]πœ™π΄,[𝑀 , 𝛼]πœ™π΄) is isomorphic to tr(𝑀 , πœ™) as modules.

Proof. Applying the monad from Lemma 12.3.1 to1𝐴, we see that EndTr(𝐴,πœ™)( [1𝐴]πœ™π΄) is isomorphic to Homπœ™π΄(1𝐴, 𝑇(1𝐴))as algebras, which is given by

ModΞ› 1𝐴

βˆ’βˆ’β†’ 𝐴

π‘šπ‘…

βˆ’βˆ’β†’πœ™π΄βŠ— 𝐴sw π΄βŠ—πœ™π΄

βˆ’β†’π‘š 𝐴

1𝑅𝐴

βˆ’βˆ’β†’ ModΞ›. By (Dennis Gaitsgory and Rozenblyum, 2017a, Β§9.2.1), the pair ModΞ›

π‘šπ‘…β—¦1𝐴

βˆ’βˆ’βˆ’βˆ’βˆ’β†’ π΄βŠ—π΄ and π΄βŠ— 𝐴

1𝑅

π΄β—¦π‘š

βˆ’βˆ’βˆ’βˆ’β†’ModΞ›form a duality datum of 𝐴(regarded as object in LincatΞ›).

It follows that Homπœ™π΄(1𝐴, 𝑇(1𝐴)) tr(𝐴, πœ™). The case of module is similar. β–‘ The following description of hom spaces between certain objects in Tr(𝐴, πœ™) is useful in practice.

Corollary 12.3.6. Assume that 𝐴 is rigid and is compactly generated, with {𝑐𝑖} being a set of compact generators. Then for 𝑋 , π‘Œ ∈ 𝐴with𝑋 compact in 𝐴,

HomTr(𝐴,πœ™)( [𝑋]πœ™π΄,[π‘Œ]πœ™π΄) colim

πΆβŠ—πΆ

/π‘šπ‘…(π‘Œ)

Hom𝐴(𝑋 , 𝑐𝑗 βŠ— πœ™(𝑐𝑖)), where𝐢 βŠ—πΆ βŠ‚ π΄βŠ— 𝐴denotes the full subcategory spanned by{π‘π‘–βŠ π‘π‘—}𝑖, 𝑗.

Note that a morphismπ‘π‘–βŠ π‘π‘— β†’ π‘šπ‘…(π‘Œ)inπ΄βŠ—π΄is equivalent to a morphismπ‘π‘–βŠ—π‘π‘— β†’ π‘Œ in 𝐴. So informally, this corollary says that every morphism [𝑋]πœ™π΄ β†’ [π‘Œ]πœ™π΄ in Tr(𝐴, πœ™)can be represented as a pair of morphisms(𝑋 β†’π‘π‘—βŠ—πœ™(𝑐𝑖), π‘π‘–βŠ—π‘π‘— β†’π‘Œ) in 𝐴(compare with (Zhu, 2016b, Β§3.1)).

Proof. We have

HomTr(𝐴,πœ™)( [𝑋]πœ™π΄,[π‘Œ]πœ™π΄) Homπœ™π΄(𝑋 , π‘šβ—¦swβ—¦π‘šπ‘…(π‘Œ)).

As𝐴is compactly generated, so isπ΄βŠ— 𝐴with a set of compact generators given by {π‘π‘–βŠ π‘π‘—}𝑖, 𝑗. Then π‘šπ‘…(π‘Œ) = colimπ‘π‘–βŠ π‘π‘—β†’π‘Œπ‘π‘–βŠ π‘π‘—. As 𝑋 is compact, the corollary

follows. β–‘

Remark 12.3.7. In fact, the above corollary admits a more economic form. Namely, suppose we write π‘šπ‘…(1𝐴) colim𝑖(𝑐𝑖,

1 ⊠ 𝑐𝑖,

2) as a filtered colimit of compact objects in 𝐴 βŠ— 𝐴. Then as π‘šπ‘… is a right 𝐴-module homomorphism, we have π‘šπ‘…(π‘Œ) colim𝑖(𝑐𝑖,

1⊠(𝑐𝑖,

2βŠ—π‘Œ)). Therefore, HomTr(𝐴,πœ™)( [𝑋]πœ™π΄,[π‘Œ]πœ™π΄) colim

𝑖 Hom𝐴(𝑋 , 𝑐𝑖,

2βŠ—π‘Œ βŠ— πœ™(𝑐𝑖,

1)).

As mentioned above, if 𝐴 is rigid, then it is dualizable as object in LincatΞ›. It follows from (Dennis Gaitsgory and Rozenblyum, 2017a, Proposition 9.5.3) that 𝐴𝑐 and 𝐴𝑒 from (12.6) admit left duals, denoted by𝑆𝐴 and𝑇𝐴 respectively, which we can identify with 𝐴-bimodules under the equivalence 𝐴revβŠ—π΄BMod1 𝐴BMod𝐴 (resp. 1BModπ΄βŠ—π΄rev 𝐴BMod𝐴). By (Lurie, 2017, Remark 4.6.5.4), there is an automorphism 𝜎𝐴 of 𝐴 (as a monoidal category), usually called the Serre functor of 𝐴, such that𝑆𝐴 =𝜎𝐴𝐴as 𝐴-bimodules.

Example 12.3.8. We recall that a pivotal category is a rigid monoidal category equipped with an isomorphismid𝐴 πœ‘π΄. If 𝐴is compactly generated, this means that forπ‘Ž ∈ 𝐴compact,π‘Žβˆ¨, 𝐿 andπ‘Žβˆ¨, 𝑅are functorially isomorphic.

Assume that 𝐴is pivotal. Assume that𝑄is an𝐴-bimodule, dualizable as aΞ›-linear category, withβˆ¨π‘„its left dual. ThenTr(𝐴, 𝑄)is dualizable withTr(𝐴, π‘„βˆ¨)is dual.

The unit is given by ModΞ›

βˆ’π‘’

β†’ 𝐴

[βˆ’]𝐴

βˆ’βˆ’βˆ’β†’Tr(𝐴, 𝐴) β†’ Tr(𝐴,βˆ¨π‘„βŠ—π΄π‘„) β†’Tr(𝐴, 𝑄) βŠ—Tr(𝐴,βˆ¨π‘„).

C h a p t e r 13

GEOMETRIC TRACES IN SHEAF THEORY

Following ideas of (Ben-Zvi and Nadler, 2009) (Ben-Zvi, Nadler, and Preygel, 2017) to develop a method to calculate the (twisted) categorical trace of monoidal categories arising from convolution pattern in algebraic geometry. As mentioned before, Compared with the work of loc. cit., we will first calculate a geometric version of categorical trace. Then we will compare the geometric version with the usual version in favorable cases. Our approach allows us to bypass integral transform of sheaf theories, which usually do not hold in theβ„“-adic setting.

13.1 Geometric Hochschild homology

We use the formalism of category of correspondences and sheaf theory as in Chap- ter 10.

Let 𝐴 be an associative algebra object in Corr(C)𝑣 π‘’π‘Ÿ 𝑑 , β„Žπ‘œπ‘Ÿ 𝑖 𝑧, and let 𝑀 be a left 𝐴- module object in Corr(C)𝑣 π‘’π‘Ÿ 𝑑 , β„Žπ‘œπ‘Ÿ 𝑖 𝑧. AsDis a lax symmetric monoidal functor,D (𝐴) is an algebra object in LincatΞ›andD (𝑀)is aD (𝐴)-module object in LincatΞ›, with multiplication and action maps given by

D (𝐴) βŠ— D (𝐴)βˆ’β†’ D (⊠ 𝐴× 𝐴) β†’ D (𝐴) D (𝐴) βŠ— D (𝑀)βˆ’β†’ D (⊠ 𝐴×𝑀) β†’ D (𝑀)

Similarly, if 𝐹 is an 𝐴-bimodule, then D (𝐹)is an D (𝐴)-bimodule. Then one can form its Hochschild homology (a.k.a categorical trace) of (D (𝐴),D (𝐹))

Tr(D (𝐴),D (𝐹)) =D (𝐴) βŠ—D (𝐴)βŠ—D (𝐴)rev D (𝐹) ∈LincatΞ›.

In practice, however, we need to consider a variant Trgeo(D (𝐴),D (𝐹)), which we call the geometric trace ofD (𝐹). Namely, we consider the Yoneda embedding

Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 β†’ P (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧),

whereP (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧)is the category of presheaves on Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧equipped with the induced symmetric monoidal structure, which by definition preserves col- imits in each variable (see (Lurie, 2017, Corollary 4.8.1.12). Then we have the Hochschild homology of the 𝐴-bimodule𝐹 inP (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧)

Tr(𝐴, 𝐹) :=|HH(𝐴, 𝐹)β€’| ∈ P (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧).

By the universal property ofP (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧), the functorD : Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 β†’ LincatΞ›extends to a continuous functorD :P (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧) β†’ LincatΞ›. Then we define thegeometric traceofD (𝐹)as

Trgeo(D (𝐴),D (𝐹)) :=D (Tr(𝐴, 𝐹)).

Explicitly, Trgeo(D (𝐹),D (𝐴))can be computed in the following way. We first apply the functorDto the standard Hochschild complex (12.4) (which now is a simplicial object in Corr(C)𝑣 π‘’π‘Ÿ 𝑑 , β„Žπ‘œπ‘Ÿ 𝑖 𝑧) to obtain a simplicial objectD (HHβ€’(𝐴, 𝐹))in LincatΞ›. Then the geometric trace Trgeo(D (𝐴),D (𝐹)) is the geometric realization of this simplicial object in LincatΞ›

Trgeo(D (𝐴),D (𝐹)) |D (HH(𝐴, 𝐹)β€’) |. (13.1) We emphasize that Trgeo(D (𝐴),D (𝐹)) depends not only on D (𝐹), but on the 𝐴-bimodule𝐹 itself (and of course the functorD).

In particular, for 𝐴 equipped with an algebra endomorphism πœ™ : 𝐴 β†’ 𝐴we have the 𝐴-bimodule𝐹 =πœ™π΄in Corr(C)𝑣 π‘’π‘Ÿ 𝑑 , β„Žπ‘œπ‘Ÿ 𝑖 𝑧 as before. We write

Trgeo(D (𝐴), πœ™) =Trgeo(D (𝐴),D (πœ™π΄)).

Remark 13.1.1. As D is equipped with a lax monoidal structure we get a natural comparison functor

Tr(D (𝐴),D (𝐹)) ≃ |D (𝐴)βŠ—β€’βŠ— D (𝐹) | β†’ |D (π΄βŠ—β€’βŠ— 𝐹) | =Trgeo(D (𝐴),D (𝐹)) (13.2) from the usual trace ofD (𝐹) to the geometric trace. This functor is not an equiva- lence in general. Of course, if for each𝑛, the functorD (𝐴)βŠ—π‘›βŠ— D (𝑄) β†’ D (𝐴𝑛×𝑄) is an equivalence, then the comparison map(13.2) is an equivalence. We will see later that this functor is an equivalence in many more cases of interest.

13.2 Fixed point objects and geometric traces of convolution categories We specialize the previous constructions to the situation appearing in our applica- tions. Let𝑋 ∈ Csatisfying conditions as in Example 10.1.2 (that is,Δ𝑋 : 𝑋 β†’ 𝑋×𝑋 and πœ‹π‘‹ : 𝑋 β†’ pt belong to πΆβ„Žπ‘œπ‘Ÿ 𝑖 𝑧). Let 𝑓: 𝑋 β†’ π‘Œ in C𝑣 π‘’π‘Ÿ 𝑑 and assume that the relative diagonal mapΔ𝑋/π‘Œ : 𝑋 β†’ 𝑋 Γ—π‘Œ 𝑋 belongs to 𝑣 π‘’π‘Ÿ 𝑑. Let 𝑋‒ β†’ π‘Œ denote the Čech nerve of 𝑓. From Example 10.3.3 and Remark 10.3.6, it gives rise to an object Alg(EndCorr(C)(𝑋))which induces

𝑋1:= π‘‹Γ—π‘Œ 𝑋

with the structure of an associative algebra object in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧. The multi- plication and unit maps are given by

π‘‹Γ—π‘Œ π‘‹Γ—π‘Œ 𝑋 (π‘‹Γ—π‘Œ 𝑋) Γ— (𝑋 Γ—π‘Œ 𝑋)

𝑋 Γ—π‘Œ 𝑋

id×Δ𝑋×id

id×𝑓×id ,

𝑋 pt

π‘‹Γ—π‘Œ 𝑋

Δ𝑋/π‘Œ ,

Let𝑍 ∈ Cequipped with two morphisms𝑔𝑖: 𝑍 β†’π‘Œ , 𝑖 =1,2 inCand let 𝑄= π‘‹Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋 = π‘Γ—π‘ŒΓ—π‘Œ (𝑋× 𝑋).

Then via the construction of Section 10.4 the object 𝑄 admits the structure of an (π‘‹Γ—π‘Œ 𝑋)-bimodule in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧. In particular, the left action is given by the diagram

π‘‹Γ—π‘Œ 𝑋 Γ—π‘Œ π‘Γ—π‘Œ 𝑋 (𝑋 Γ—π‘Œ 𝑋) Γ— (π‘‹Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋)

π‘‹Γ—π‘Œ π‘Γ—π‘Œ 𝑋

id×𝑓×idΓ—id

and we have a similar diagram for the right action. Consider the following diagram π‘‹Γ—π‘ŒΓ—π‘Œ 𝑍

𝛿0=(Δ𝑋×id𝑍)//

π‘ž=(𝑓×id𝑍)

(𝑋×𝑋) Γ—π‘ŒΓ—π‘Œ 𝑍

π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍 ,

(13.3)

which induces a functorπ‘žβ€ β—¦ (𝛿

0)β˜…: D (π‘‹Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋) β†’ D (π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍). Proposition 13.2.1. The following diagram is commutative

D (π‘‹Γ—π‘Œ π‘Γ—π‘Œ 𝑋) (𝛿0)

β˜… //

D (𝑋 Γ—π‘ŒΓ—π‘Œ 𝑍)

π‘žβ€ 

Tr(D (𝑋 Γ—π‘Œ 𝑋),D (π‘‹Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋))

Trgeo(D (π‘‹Γ—π‘Œ 𝑋),D (π‘‹Γ—π‘Œ π‘Γ—π‘Œ 𝑋)) //D (π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍).

Assume that the sheaf theoryD satisfies Assumptions 11.2.1 1-3, and assume that:

1. Δ𝑋 : 𝑋 β†’ 𝑋×𝑋 ∈ Cπ‘ π‘š, 2. 𝑓: 𝑋 β†’π‘Œ ∈ Cπ‘π‘Ÿ π‘œ 𝑝,

3. Δ𝑋/π‘Œ: 𝑋 β†’ π‘‹Γ—π‘Œ 𝑋 is inCπ‘π‘Ÿ π‘œ 𝑝.

Then the bottom horizontal functor of the above diagram is fully faithful, with the essential image is generated under colimits by the image ofπ‘žβ€ β—¦π›Ώβ˜…

0.

The proof of the proposition will be given at the end of Section 13.3. We note that there is no assumption on (𝑔

1, 𝑔

2) : 𝑍 β†’π‘ŒΓ—π‘Œ.

We specialize Proposition 13.2.1 to the following two cases. First, assume we are given morphisms πœ™π‘‹: 𝑋 β†’ 𝑋 and πœ™π‘Œ: π‘Œ β†’ π‘Œ in C intertwined by 𝑓, that is, equipped with an equivalence 𝑓 β—¦πœ™π‘‹ ≃ πœ™π‘Œ β—¦ 𝑓. We will usually abuse notation and denote both maps byπœ™if it is clear from context. We let𝑍 =π‘Œ with the map𝑔

1=id and𝑔

2 = πœ™. In this case, 𝑍 Γ—π‘ŒΓ—π‘Œ π‘Œ is nothing but the πœ™-fixed point objectLπœ™(π‘Œ), defined by the pullback

Lπœ™(π‘Œ) π‘Œ

π‘Œ π‘ŒΓ—π‘Œ .

π‘πœ™ Ξ”π‘Œ

idΓ—πœ™

(13.4)

We assume in addition thatπœ™π‘‹ is an equivalence. In this case the(π‘‹Γ—π‘Œ 𝑋)-module π‘‹Γ—π‘Œπ‘Γ—π‘Œπ‘‹is isomorphic to theπœ™-twisted moduleπœ™(π‘‹Γ—π‘Œπ‘‹), with the isomorphism sending(π‘₯ , 𝑧, π‘₯β€²) ∈ π‘‹Γ—π‘Œ π‘Γ—π‘Œ 𝑋 to (πœ™(π‘₯), π‘₯β€²) ∈ πœ™(π‘‹Γ—π‘Œ 𝑋). Then (13.3) becomes

𝑋 Γ—π‘Œ Lπœ™(π‘Œ) 𝛿0 //

π‘ž

π‘‹Γ—π‘Œ 𝑋

Lπœ™(π‘Œ)

Corollary 13.2.2. Under the same assumption as in Proposition 13.2.1 and given πœ™π‘‹, πœ™π‘Œ as above, there is a canonical factorization

D (π‘‹Γ—π‘Œ 𝑋) D (𝑋×𝑋×𝑋 (π‘‹Γ—π‘Œ 𝑋))

Trgeo(D (π‘‹Γ—π‘Œ 𝑋), πœ™) D (Lπœ™π‘Œ)

(𝛿0)β˜…

π‘žβ€ 

with the lower horizontal arrow is fully faithful. The essential image is generated under colimits by the image ofπ‘žβ€ β—¦π›Ώβ˜…

0. Another case we need to consider is𝑍 =π‘Š

1Γ—π‘Š

2with𝑔𝑖:π‘Šπ‘–β†’π‘Œ two maps inC. In this case,

𝑍 Γ—π‘ŒΓ—π‘Œπ‘Œ =π‘Š

1Γ—π‘Œ π‘Š

2, π‘Γ—π‘ŒΓ—π‘Œ (𝑋 ×𝑋) = (π‘Š

1Γ—π‘Œ 𝑋) Γ— (π‘‹Γ—π‘Œ π‘Š

2),

We denote:

D (π‘Š

1Γ—π‘Œ 𝑋) βŠ—geo

D (π‘‹Γ—π‘Œπ‘‹) D (π‘‹Γ—π‘Œ π‘Š

2) :=Trgeo(D (𝑋 Γ—π‘Œ 𝑋),D (π‘Γ—π‘ŒΓ—π‘Œ (𝑋 ×𝑋)), (13.5) which is the geometric analogue of the relative tensor product.

Corollary 13.2.3. Under the same assumption as in Proposition 13.2.1, we have a canonical square

D ( (π‘Š

1Γ—π‘Œ 𝑋) Γ— (π‘‹Γ—π‘Œ π‘Š

2)) (idπ‘Š1×Δ𝑋×idπ‘Š2)

β˜…

//

D (π‘Š

1Γ—π‘Œ π‘‹Γ—π‘Œ π‘Š

2)

(idπ‘Š1×𝑓×idπ‘Š2)†

D (π‘Š

1Γ—π‘Œ 𝑋) βŠ—D (geo𝑋×

π‘Œπ‘‹) D (π‘‹Γ—π‘Œ π‘Š

2) //D (π‘Š

1Γ—π‘Œ π‘Š

2)

with the bottom functor fully faithful. The essential image is generated under colimits by the image of(idπ‘Š1Γ— 𝑓 Γ—idπ‘Š2)†◦ (idπ‘Š1×Δ𝑋 Γ—idπ‘Š2)β˜….

Again, there is no assumption on𝑔

1and𝑔

2.

13.3 The geometric trace and relative resolutions

Now we prove Proposition 13.2.1. In fact, (to save notations) we will prove a slightly general statement. We consider the geometric trace for pair BMod(Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧) arising from an associative algebra 𝑋

1 ∈ Alg EndCorr(C)(𝑋

0)

and a bi-module object𝑄 ∈ 𝑋

1BMod𝑋1(EndCorr(C)(𝑋

0)). Roughly speaking, these are pairs(𝑋

1, 𝑄) seen as objects in the category BMod(Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧) consisting of an algebra 𝑋1 ∈Alg(Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧)whose multiplication and unit maps are of the form

𝑋1×𝑋

0 𝑋

1 𝑋

1×𝑋

1

𝑋1

πœ‚

π‘š ,

𝑋0 pt

𝑋1 πœ‹π‘‹

0

𝑒 , (13.6)

and an 𝑋

1-bimodule𝑄 ∈ 𝑋

1BMod𝑋1(Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧) whose action maps are of the form

𝑋1×𝑋

0 𝑄 𝑋

1×𝑄

𝑄

πœ‰π‘™

π‘Žπ‘™ ,

𝑄×𝑋

0 𝑋

1 𝑄×𝑋

1

𝑄

πœ‰π‘Ÿ

π‘Žπ‘Ÿ . (13.7)

Here we require Δ𝑋

0 : 𝑋

0 β†’ 𝑋

0 Γ— 𝑋

0 and πœ‹π‘‹

0 : 𝑋

0 β†’ pt belong to Cβ„Žπ‘œπ‘Ÿ 𝑖 𝑧 (so πœ‚, πœ‰π‘™, πœ‰π‘Ÿ ∈ Cβ„Žπ‘œπ‘Ÿ 𝑖 𝑧 as well) and π‘š, 𝑒, π‘Žπ‘™, π‘Žπ‘Ÿ ∈ C𝑣 π‘’π‘Ÿ 𝑑. See Remark 10.4.1 for more details and references.

We can then consider the geometric trace Trgeo(D (𝑋

1),D (𝑄))=D (Tr(𝑋

1, 𝑄)) |D (HH(𝑋

1, 𝑄)β€’) |

defined in the previous section. On the other hand, the extra structure on the algebra and module allows one to construct a variant of the geometric trace.

In the monoidal category EndCorr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧(𝑋

0) we consider the Bar complex of the algebra object 𝑋

1, which we denoted by Bar𝑋0(𝑋

1)β€’. Under the lax monoidal functor EndCorr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧(𝑋

0) β†’ Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧, it gives a simplicial object in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 (in fact in C𝑣 π‘’π‘Ÿ 𝑑), denoted by the same notation, which can be written as

Bar𝑋0(𝑋

1)β€’ 𝑋‒×𝑋

0×𝑋0 (𝑋

1×𝑋

1), where the two maps 𝑋𝑛 β†’ 𝑋

0 corresponds to {0} βŠ‚ {0,1, . . . , 𝑛} and {𝑛} βŠ‚ {0,1, . . . , 𝑛} respectively and 𝑋

1×𝑋

1 β†’ 𝑋

0Γ— 𝑋

0is given by(𝑑

1, 𝑑

0). The action of(𝑋

1Γ— 𝑋

1) ×𝑄 →𝑄by right and left multiplication gives Bar𝑋0(𝑋

1)β€’βŠ—π‘„ = 𝑋‒×𝑋

0×𝑋0 (𝑋

1×𝑋

1) ×𝑄 β†’ 𝑋‒×𝑋

0×𝑋0𝑄 =: HH𝑋0(𝑋

1, 𝑄)β€’ which is(𝑋

1βŠ— 𝑋

1)-bilinear and therefore induces Bar𝑋0(𝑋

1)β€’βŠ—π‘‹

1βŠ—π‘‹

1 𝑄→ HH𝑋0(𝑋

1, 𝑄)β€’ The lax monoidal functor EndCorr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧(𝑋

0) β†’Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 also induces a natural map of simplicial objects

Bar(𝑋

1)β€’β†’ Bar𝑋0(𝑋

1)β€’

in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧. It follows that we obtain a map of simplicial objects in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧

𝛿‒: HH(𝑋

1, 𝑄)β€’=Bar(𝑋

1)β€’βŠ—π‘‹

1βŠ—π‘‹

1𝑄 β†’Bar𝑋0(𝑋

1)β€’βŠ—π‘‹

1βŠ—π‘‹

1𝑄 β†’HH𝑋0(𝑋

1, 𝑄)β€’, (13.8) which is given on each level𝑛 β‰₯ 0 by the horizontal arrow

𝑋𝑛×𝑋

0×𝑋

0𝑄 ←idβˆ’ 𝑋𝑛×𝑋

0×𝑋

0 𝑄

𝛿𝑛

βˆ’βˆ’β†’ 𝑋𝑛

1 ×𝑄 . Now we define the 𝑋

0-relative Hochschild homologyof𝑄as Tr𝑋0(𝑋

1, 𝑄) =|HH𝑋0(𝑋

1, 𝑄)β€’| ∈ P (Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧),

and define the 𝑋

0-relative geometric trace ofD (𝑄)as the geometric realization in LincatΞ›

Trgeo𝑋0 (D (𝑋

1),D (𝑄)) :=D (Tr𝑋0(𝑋

1, 𝑄)) |D (HH𝑋0(𝑋

1, 𝑄)β€’) |. Then (13.8) gives a functor

π›Ώβ˜…: Trgeo(D (𝑋

1),D (𝑄)) β†’Trgeo𝑋0 (D (𝑋

1),D (𝑄)), which fits into a commutative diagram

D (𝑄) D (𝑋

0×𝑋

0×𝑋

0𝑄)

Tr(D (𝑋

1),D (𝑄))

Trgeo(D (𝑋

1),D (𝑄)) Tr

𝑋0

geo(D (𝑋

1),D (𝑄)).

(𝛿0)β˜…

π›Ώβ˜…

(13.9)

Proposition 13.3.1. Assume that the sheaf theory D satisfies Assumptions 11.2.1 1-3. In addition, in the notations of (13.6)and(13.7)assume that

1. π‘š: 𝑋

1×𝑋

0 𝑋

1 β†’ 𝑋

1and𝑒: 𝑋

0β†’ 𝑋

1are inCπ‘π‘Ÿ π‘œ 𝑝, 2. π‘Žπ‘™: 𝑋

1×𝑋

0 𝑄→ 𝑄andπ‘Žπ‘Ÿ: 𝑄×𝑋

0 𝑋

1→𝑄 are inCπ‘π‘Ÿ π‘œ 𝑝, 3. the diagonalΔ𝑋

0: 𝑋

0β†’ 𝑋

0×𝑋

0is inCπ‘ π‘š, 4. πœ‹π‘‹

0 : 𝑋

0β†’ ptis in Cβ„Žπ‘œπ‘Ÿ 𝑖 𝑧.

Then the functorπ›Ώβ˜…from(13.9)is fully faithful. The essential image is generated un- der colimits by the image ofD (𝑄) (𝛿0)

β˜…

βˆ’βˆ’βˆ’βˆ’β†’ D (𝑋

0×𝑋

0×𝑋

0𝑄) β†’Trgeo𝑋0 (D (𝑋

1),D (𝑄)).

Proof. Passing to right adjoints gives a natural transformation (𝛿‒)β˜…: D (HH𝑋0(𝑋

1, 𝑄)β€’) β†’ D (HH(𝑋

1, 𝑄)β€’)

of cosimplicial categories. To prove the left adjointπ›Ώβ˜…is fully faithful we will use Theorem 9.0.5 and Corollary 9.0.6. The first step is to verify each of the cosimplicial categories satisfies the Beck-Chevalley conditions.

Lemma 13.3.2. Under the assumptions of Proposition 13.3.1, the cosimplicial cate- gories obtained from the simplicial categoriesD (HH(𝑋

1, 𝑄)β€’)andD (HH𝑋0(𝑋

1, 𝑄)β€’) by passing to right adjoints satisfy the Beck-Chevalley conditions.

Proof. For the cosimplicial categoryD (HH𝑋0(𝑋

1, 𝑄)β€’), the face maps correspond- ing to 0↦→0 ∈ [𝑛]are given by the right adjoints(𝑑

0)†of(𝑑

0)†. All the morphisms π‘š,π‘Žπ‘™,π‘Žπ‘Ÿ are inCπ‘π‘Ÿ π‘œ 𝑝 by assumption and therefore all maps of the simplicial object D (HH𝑋0(𝑋

1, 𝑄)β€’) are in Cπ‘π‘Ÿ π‘œ 𝑝 as well. Then from Assumptions 11.2.11 all the necessary Beck-Chevalley maps are equivalences.

It is left to deal with D (HHβ€’(𝑋

1, 𝑄)). For every map𝛼: [π‘š] β†’ [𝑛], we have the diagram

π‘‹π‘š

1 ×𝑄 π‘‹π‘š+1

1 ×𝑄

𝑋𝑛

1 ×𝑄 𝑋𝑛+1

1 ×𝑄

𝑑0π‘š

𝑑𝑛0

(13.10)

in Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 (see (10.1) and after for notations). We need to show that the induced diagram

D (π‘‹π‘š

1 ×𝑄) D (π‘‹π‘š+1 1 ×𝑄) D (𝑋𝑛

1 ×𝑄) D (𝑋𝑛+1 1 ×𝑄)

𝑑0

π‘š

𝑑0

𝑛

(13.11)

is left adjointable. Clearly, it is enough to consider the case when 𝛼 is either a co-face or a co-degeneracy map.

In the case of co-face map, we may assume that 𝛼 = 𝑑𝑛 : [𝑛] β†’ [𝑛+1], that is, 𝛼(𝑖) =𝑖for all𝑖. (The proof is similar in all other cases.) Then the diagram (13.10) is explicitly given by

𝑋𝑛

1 ×𝑄 𝑋𝑛

1 ×𝑄×𝑋

0 𝑋

1 𝑋𝑛+1

1 ×𝑄

𝑋𝑛

1 Γ— 𝑋

1×𝑋

0𝑄 𝑋𝑛

1 ×𝑋

1×𝑋

0𝑄×𝑋

0 𝑋

1 𝑋𝑛+1

1 ×𝑋

1×𝑋

0𝑄

𝑋𝑛+1

1 ×𝑄 𝑋𝑛+1

1 ×𝑄×𝑋

0 𝑋

1 𝑋𝑛+2

1 ×𝑄 ,

πœ‰π‘Ÿ , 𝑛

π‘Žπ‘Ÿ , 𝑛

π‘Žπ‘™ , 𝑛

πœ‰π‘™ , 𝑛

˜ πœ‰π‘Ÿ

˜ π‘Žπ‘Ÿ

˜ π‘Žπ‘™

˜ πœ‰π‘™

π‘Žπ‘™ , 𝑛+1

πœ‰π‘™ , 𝑛+

1

πœ‰π‘Ÿ , 𝑛+

π‘Žπ‘Ÿ , 𝑛+ 1 1

as a diagram inC, whereπ‘Žπ‘™ ,𝑛=id𝑋𝑛

1

Γ—π‘Žπ‘™, etc. Note that all squares are Cartesian in C.

We have 𝑑0

π‘˜ = (πœ‰π‘™ , π‘˜)β˜…β—¦ (π‘Žπ‘™ , π‘˜)†(for π‘˜ = 𝑛, 𝑛+1) with the left adjoint (π‘Žπ‘™ , π‘˜)β€ β—¦πœ‰β˜…

𝑙 , π‘˜, and the vertical arrows in (13.11) are given by (πœ‰π‘™ , π‘˜)β˜…β—¦ (π‘Žπ‘™ , π‘˜)†. Left adjointability of 13.11 then means that the natural map

(π‘Žπ‘™ ,𝑛+

1)†◦ (πœ‰π‘Ÿ ,𝑛+

1)β˜…β—¦ (πœ‰π‘™ ,𝑛+

1)β˜…β—¦ (π‘Žπ‘™ ,𝑛+

1)†→ (πœ‰π‘™ ,𝑛)β˜…β—¦ (π‘Žπ‘™ ,𝑛)†◦ (π‘Žπ‘Ÿ ,𝑛)†◦ (πœ‰π‘Ÿ ,𝑛)β˜…

is an equivalence. It is enough to show that the Beck-Chevalley maps (π‘ŽΛœπ‘Ÿ)†◦ (π‘ŽΛœπ‘™)† β†’ (π‘Žπ‘™ ,𝑛)†◦ (π‘Žπ‘Ÿ ,𝑛)†, (πœ‰π‘Ÿ ,𝑛+

1)β˜…β—¦ (πœ‰π‘™ ,𝑛+

1)β˜…β†’ (πœ‰Λœπ‘™)β˜…β—¦ (πœ‰Λœπ‘Ÿ)β˜… (13.12) (πœ‰Λœπ‘Ÿ)β˜…β—¦ (π‘Žπ‘™ ,𝑛+

1)† β†’ (π‘ŽΛœπ‘™)†◦ (πœ‰π‘Ÿ ,𝑛)β˜…, (π‘Žπ‘Ÿ ,𝑛+

1)†◦ (πœ‰Λœπ‘™)β˜…β†’ (πœ‰π‘™ ,𝑛)β˜…β—¦ (π‘ŽΛœπ‘Ÿ)† (13.13) are equivalences. Note that the maps π‘Žπ‘™ , π‘˜, π‘Žπ‘Ÿ , π‘˜,π‘ŽΛœπ‘™,π‘ŽΛœπ‘Ÿ are in Cπ‘π‘Ÿ π‘œ 𝑝. So the left equivalence of (13.12) holds by Assumptions 11.2.11. As the mapsπœ‰π‘™ , π‘˜, πœ‰π‘Ÿ , π‘˜,πœ‰Λœπ‘™,πœ‰Λœπ‘Ÿ belong toCπ‘ π‘š, the right equivalence of (13.12) holds by Assumptions 11.2.12 and the equivalences (13.13) hold by Assumptions 11.2.1 3 and 4.

In the case of co-degeneracy map, we can assume𝛼 =𝑠

0: [𝑛+1] β†’ [𝑛] given by 𝑠(0) =0 and𝑠(𝑖) =π‘–βˆ’1 for 1≀ 𝑖 ≀ 𝑛. As in the previous case, the diagram (13.10) is explicitly given as

𝑋𝑛+1

1 ×𝑄 𝑋𝑛+1

1 ×𝑄×𝑋

0 𝑋

1 𝑋𝑛+2

1 ×𝑄

𝑋𝑛

1 ×𝑋

0×𝑄 𝑋𝑛

1 ×𝑋

0×𝑄×𝑋

0 𝑋

1 𝑋𝑛+1

1 Γ— 𝑋

0×𝑄

𝑋𝑛

1 ×𝑄 𝑋𝑛

1 ×𝑄×𝑋

0 𝑋

1 𝑋𝑛+1

1 ×𝑄 ,

πœ‰π‘Ÿ , 𝑛+1

π‘Žπ‘Ÿ , 𝑛+1

𝑒𝑛

πœ‹π‘›

˜ πœ‰π‘Ÿ

˜ π‘Žπ‘Ÿ

˜ 𝑒

˜ πœ‹

𝑒𝑛+

1

πœ‹π‘›+

1

πœ‰π‘Ÿ , 𝑛

π‘Žπ‘Ÿ , 𝑛

where all squares are Cartesian. As before, in order to show the corresponding adjointability equivalence it is enough to show the corresponding commutativity in each square. As the map 𝑒: 𝑋

0 β†’ 𝑋

1 is in Cπ‘π‘Ÿ π‘œ 𝑝, the upper two squares of the diagram can be handled as in the co-face map case. For the remaining squares, we need the maps

(πœ‰π‘Ÿ ,𝑛)β˜…β—¦ (πœ‹π‘›+

1)β˜…β†’ (πœ‹Λœ)β˜…β—¦ (πœ‰Λœπ‘Ÿ)β˜…, (π‘Žπ‘Ÿ ,𝑛)†◦ (πœ‹Λœ)β˜…β†’ (πœ‹π‘›)β˜…β—¦ (π‘ŽΛœπ‘Ÿ)† to be equivalences. Asπœ‹π‘‹

0 : 𝑋

0 β†’ pt is inCβ„Žπ‘œπ‘Ÿ 𝑖 𝑧 the same is true forπœ‹π‘˜,πœ‹Λœ so the

equivalences hold by Assumptions 11.2.1, 2 and 4. β–‘

We continue to prove Proposition 13.3.1. Passing to the right adjoint of (13.9) gives

D (𝑄) D (𝑋

0×𝑋

0×𝑋0𝑄)

Trgeo(D (𝑋

1),D (𝑄)) Trgeo𝑋0 (D (𝑋

1),D (𝑄)).

(𝛿0)β˜…

π›Ώβ˜…

with horizontal arrows monadic (by Lemma 13.3.2). Let 𝑇 denote the monad corresponding to the cosimplicial categoryD (HH𝑋0(𝑋

1, 𝑄)β€’)and by𝑉 the monad corresponding toD (HH(𝑋

1, 𝑄)β€’). Then to show thatπ›Ώβ˜…is fully faithful it is enough to show that the natural map

𝑉 β†’ (𝛿

0)β˜…β—¦π‘‡ β—¦ (𝛿

0)β˜…, is an equivalence. The monad𝑇 is given by(𝑑

0)†◦ (𝑑

1)†with 𝑑1, 𝑑

0: 𝑋

1×𝑋

0×𝑋0𝑄 β†’ 𝑋

0×𝑋

0×𝑋0 𝑄 . Recall that the map𝑑

1is induced by the left action of𝑋

1on𝑄inEndCorr(C)(𝑋

0)by 𝑋1×𝑋

0×𝑋0𝑄 ≃ 𝑋

0×𝑋

0×𝑋0 (𝑋

1×𝑋

0𝑄) β†’ 𝑋

0×𝑋

0×𝑋0 𝑄 Likewise, the map𝑑

0is induced by the right action via 𝑋1×𝑋

0×𝑋

0 𝑄≃ 𝑋

0×𝑋

0×𝑋

0 (𝑄×𝑋

0 𝑋

1) β†’ 𝑋

0×𝑋

0×𝑋

0𝑄 . The monad𝑉 is given by

𝑉 ≃ (π‘Žπ‘Ÿ)†◦ (πœ‰π‘Ÿ)β˜…β—¦ (πœ‰π‘™)β˜…β—¦ (π‘Žπ‘™)†.

These maps fit into a commutative diagram diagram inC:

𝑋1×𝑄 𝑋

1×𝑋

0 𝑄 𝑄

𝑄×𝑋

0 𝑋

1 𝑋

1×𝑋

0×𝑋

0𝑄 𝑋

0×𝑋

0×𝑋

0𝑄

𝑄 𝑋

0×𝑋

0×𝑋

0𝑄

π‘Žπ‘™ πœ‰π‘™

π‘Žπ‘Ÿ πœ‰π‘Ÿ

𝑑1

𝑑0

𝜁 πœ’

𝛿0

𝛿0

(13.14)

such that the two upper squares are Cartesian. Then it is enough to show that the natural maps

(πœ‰π‘Ÿ)β˜…β—¦ (πœ‰π‘™)β˜…β†’ πœ’β˜…β—¦πœβ˜…, πœβ˜…β—¦ (π‘Žπ‘™)†→ (𝑑

1)†◦ (𝛿

0)β˜…, (π‘Žπ‘Ÿ)β€ β—¦πœ’β˜…β†’ (𝛿

0)β˜…β—¦ (𝑑

0)† are equivalences, which hold by Assumptions 11.2.1, 2, 3 and 4, respectively, and the fact thatπœ‰π‘™, πœ‰π‘Ÿ, 𝜁 , πœ’βˆˆ Cπ‘ π‘šandπ‘Žπ‘™, π‘Žπ‘Ÿ, 𝑑

0, 𝑑

1 ∈ Cπ‘π‘Ÿ π‘œ 𝑝. β–‘

Now we specialize the above discussions to the case𝑋

1= π‘‹Γ—π‘Œπ‘‹and𝑄= π‘‹Γ—π‘Œπ‘Γ—π‘Œπ‘ as in Proposition 13.2.1. In this case, the relative Hochschild complex has a simple interpretation. Consider the fiber product

π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍 π‘Œ

𝑍 π‘Œ Γ—π‘Œ

Ξ”π‘Œ

𝑔=𝑔

1×𝑔

2

inCand consider the mapπ‘ž = 𝑓 Γ—id𝑍 : π‘‹Γ—π‘ŒΓ—π‘Œ 𝑍 β†’π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍.

Lemma 13.3.3. There is a canonical equivalence of simplicial objects in𝐢. HH𝑋(π‘‹Γ—π‘Œ 𝑋 , 𝑋 Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋)‒≃ π‘‹β€’Γ—π‘ŒΓ—π‘Œ 𝑍

where the right hand side is the Čech nerve ofπ‘ž : π‘‹Γ—π‘ŒΓ—π‘Œ 𝑍 β†’π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍. Under the identification, the map𝛿

0from(13.8)is the horizontal map in(13.3).

Proof. The construction of the left hand side is natural in 𝑋 and applying it to the identity mapπ‘Œ β†’ π‘Œ gives the right hand side. Thus, 𝑓: 𝑋 β†’ π‘Œ induces an augmentation HH𝑋(π‘‹Γ—π‘Œ 𝑋 , π‘‹Γ—π‘Œ π‘Γ—π‘Œ 𝑋)β€’of the corresponding simplicial object.

In order to identify this augmented simplicial object with the Čech nerve ofπ‘ž, can use the characterization (Lurie, 2009, Proposition 6.1.2.11) as it is easy to check

that the necessary squares are pullbacks. β–‘

Proof of Proposition 13.2.1. Only fully faithfulness requires a proof. Consider the augmented simplicial category associated to the Čech nerve ofπ‘ž. As 𝑓 ∈ Cπ‘π‘Ÿ π‘œ 𝑝 so is the mapπ‘‹Γ—π‘ŒΓ—π‘Œπ‘Œ β†’π‘ŒΓ—π‘ŒΓ—π‘Œ 𝑍. Using Lemma 13.3.3 we identify the Čech nerve of this map with the relative Hochschild complex. By passing to right adjoints and using Corollary 9.0.6 we get a fully faithful functor

D (HH𝑋(π‘‹Γ—π‘Œ 𝑋 , π‘Γ—π‘ŒΓ—π‘Œ (𝑋×𝑋))β€’)

β†’ D (π‘Γ—π‘ŒΓ—π‘Œ π‘Œ). (13.15) Composition with the fully faithful functor from Proposition 13.3.1 gives the desired functor. The essential image of (13.15) is generated by the image of π‘ž

† so the

description of the essential image follows. β–‘

We record the following functorality for later purpose. Let (𝑓 : 𝑋 β†’ π‘Œ) ∈ C𝑣 π‘’π‘Ÿ 𝑑, with Δ𝑋, πœ‹π‘‹ ∈ Cβ„Žπ‘œπ‘Ÿ 𝑖 𝑧 and Δ𝑋/π‘Œ ∈ C𝑣 π‘’π‘Ÿ 𝑑. Let 𝑍 ← 𝐢 β†’ 𝑍′ be a morphism in Corr(C/π‘ŒΓ—π‘Œ)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧, i.e. all 𝑍 , 𝑍′, 𝐢 are equipped with morphisms toπ‘Œ Γ—π‘Œ and 𝐢 β†’ 𝑍 and𝐢 β†’ 𝑍′are(π‘ŒΓ—π‘Œ)-morphisms inC.

Let 𝑋‒ be as above and let𝑄′ = 𝑋 Γ—π‘Œ π‘β€²Γ—π‘Œ 𝑋 and𝑄 = 𝑋 Γ—π‘Œ 𝑍 Γ—π‘Œ 𝑋. Then the following diagram is commutative

D (𝑄′) //

Tr(D (𝑋

1),D (𝑄′)) //

Trgeo(D (𝑋

1),D (𝑄′)) //

D (π‘Œ Γ—π‘ŒΓ—π‘Œ 𝑍′)

D (𝑄) //Tr(D (𝑋

1),D (𝑄)) //Trgeo(D (𝑋

1),D (𝑄)) //D (π‘ŒΓ—π‘ŒΓ—π‘Œ 𝑍). (13.16) Remark 13.3.4. When we take Cto be the category of (nice) algebraic stacks over Cand the sheaf theoryD to beD-modules, one always hasTrgeo(D(π‘‹Γ—π‘Œ 𝑋), πœ™)= Tr(D(𝑋 Γ—π‘Œ 𝑋), πœ™) as D(𝑋) βŠ— D(π‘Œ) D(𝑋 Γ—π‘Œ). Therefore, Corollary 13.2.2 recovers (Ben-Zvi and Nadler, 2009, Theorem 6.6). In loc. cit., instead of directly consideringD(HH𝑋(π‘‹Γ—π‘Œπ‘‹ , π‘‹Γ—π‘Œ 𝑋)β€’), the authors used the relative bar resolution for the monoidal categoryD(𝑋 Γ—π‘Œ 𝑋)and then used integral transforms to embed each level in the resulting simplicial object of this relative resolution fully faithfully into the corresponding level ofD(HH𝑋(𝑋 Γ—π‘Œ 𝑋 , 𝑋 Γ—π‘Œ 𝑋)β€’). Our method bypasses using the integral transforms, which might fail in other sheaf theoretic content. See Section 13.4 for discussions.

13.4 Comparison between geometric and ordinary traces

In practice, we need to compare the geometric trace defined and studied as above with the ordinary traces reviewed in Section 12.1. The easiest situation has been discussed in Remark 13.1.1. On the other hand, the monadicity of the simplicial objects in Lemma 13.3.2 can be used to compare the usual trace and the geometric trace in other situations. Recall notations in (13.6).

Proposition 13.4.1. Assume that the sheaf theoryD : Corr(C)𝑣 π‘’π‘Ÿ 𝑑;β„Žπ‘œπ‘Ÿ 𝑖 𝑧 β†’LincatΞ›

satisfies the following condition: for every𝑋 , π‘Œ ∈ C, the exterior tensor product

⊠ :D (𝑋) βŠ— D (π‘Œ) β†’ D (π‘‹Γ—π‘Œ)

is fully faithful and admits a continuous right adjoint βŠ π‘… (see Remark 11.1.1.) In addition, Assumptions 11.2.1 1-6 hold forD.

Let𝑋‒,𝑄as in the statement of Proposition 13.3.1. Assume that 1. the unit objectΛ𝑋

0 ∈ D (𝑋

0)(for the symmetric monoidal structure ofD (𝑋

0) as in Section 11.1) is compact;