• Tidak ada hasil yang ditemukan

COMPUTER PROGRAMME F612. ESTIMATION OF REFERENCE CROP EVAPOTS.ANSPIRATIÒN

Dalam dokumen FAO IRRIGATION AND DRAINAGE PAPER (Halaman 129-154)

by S.K. Gupta, W.O. Pruitt, J. Lonczak and K.K . Tanji

Water Science and Engin.eering Section, University of California, Davis, USA-1/

Introduction

The computer progranune is based on the methods to calculate reference crop evapotranspiration (ETo) as presented in Part 1.1. The progranune can be used to calculate on a routine basis the daily, weekly or monthly ETo data for several locations in development projects. Also, it can be used to process climatological data of a given country and to provide in tabular form or on maps the evapo- transpiration data needed for general project planning. Particularly for areas with considerable annual or monthly variation in climate, frequency analysis of ETo using each year Of climatic record would provide improved estimations of water requirement data for planning purposes. Since large amounts of computations are involved, the progranune will provide an efficient means to perform these calculations at a reasonable cost. It would replace the graphical and computational techniques as presented in Part 1.1.

Capabilities of the Computer Programme

The progranune determines the values of reference crop evapotranspiration (ETo); conversion to evapotranspiration for different crops must be done manually using techniques described in Part 1.2.

Estimates of ETo can be computed using daily, weekly, 10-day or monthly average values of climato- logical data. If more frequent data are provided for each month, the average monthly value of ETo is also printed. The programme is designed to handle the input climatological data regardless of units used, with the programme handling the necessary conversions.

Hardware and Software Requirements

The programme was developed and tested on a Burroughs B6700. Provisions for use on other computers with a minimum of difficulty have been made. Local computer consultants may be contacted for minor syntax error to suit a given system. The hardware requirements are:

FORTRAN IV COMPILER

One disk or tape unit Burroughs

Memory (words) 4474

Printer (positions) 122 Compilation (CPU) 0. 15 min Description of the Programme

The nrograrrune consists of one main progranune, five subroutines, and a function. subprograrnme.

The subroutines are: BLANEY, RAD1AT, PENMAN, CORPEN, ETPAN. CORPEN is the subroutine for Part 1.1.3 whereas PENMAN relates to use of the basic-equation only (or with C = 1.0). All climatological data are read in the main programme and if no error in input data from a given station occurs, estimation of ETo by use of various, subroutines is done. -A macro-flow chart of progranune functions is shown in Figure 1 of this Appendix. The main features

are:

Print option . Through variable "NPR1NT" user has choice of getting different levels .of outputs as given below.

NPR1NT 0 prints only station name and ETo estimates.

1 prints above + converted data. (See example for Davis, California at end of this Appendix.)

= 2 prints above + input data \without conversion. (See example for Brawley.) Each card is printed as read. For first run this option is reconunended.

This will assist in iden.tifying the specific card with formaterror, if any.

If neither measured sunshine (or cloudiness), solar radiation, nor net radiation data are available calculation by RADIAT is omitted.

Similarly, if neither measured relative hiunidity, sunshine data nor solar radiation data are available, calculation by PENMAN. and CORPEN is omitted.

Estimation by Pan methods needs specification on length of fetch and case as described in Part 1.1.4. These specifications do not change daily or even monthly in many cases and therefore have been omitted from each data set of daily, weekly or monthly average values.

There is an option to change these specifications by specifying "NREAD" as 1. For first data card of daily or average value "NREAD" should be made as 1 and on next ca.rd (not a data card). Fetch and case are to be read if EPAN estimation is desired.

Major portions of programe development were done under NSF-RANN Project on Nitrate in Effluents from Irrigated Lands (GI 34733X, GI 43664 and AEN 74-11136 A01) University of California.

If mean average pressure (PMB) for the year is not d.efined for the station, the progranune automatically uses the following relationship developed by W.O. Pruitt using data from a wid.e range of altitudes in Africa (Griffith, 1971, Climate of Africa, Vol. 10. , World Survey of Climatology): PMB = 1013 - .1152 * ALTITUDE + 5.44 * 10-b * (ALTITUDE)2

Of the three elements of wind data (24 hour wind, d.aytime wind and day/night ratio), two have to be read in and the programme calculates the third missing parameter. If only 24-hr wind or daytime wind is given and no day/night ratio (URATIO) is read in, the programme assumes URATIO = 2.0.

If from the three humidity terms(Td.ewpoint,vapour pressure and relative humidity) only one parameter is given, the progranune approximates the others from knov.rn physical and mathe-

matical relationships.

The equation used in the programme to estimate RS is: RS = (0.25 + 0.50 n/N) RA where RS = solar radiation; RA = extra-terrestrial radiation; n/N .7 ratio of actual to maximum possible bright sunshine hours. If a local reliable relationship based on a wide range of n/N and RS is available, the card given at sequence 2340 may be modified.

Card Preparation

Preparation of data deck as listed below is specific for the given progranune. The data for each station are grouped into two parts:(i) data which remain constant for the station (Al, A2 and A3) and (ii) daily, weekly or monthly (or any number of days) average values. It is advised that data available on punched cards for any location, be converted into the following form through a separate, inde- pend.ent programme.

Al 1st Card for each station:

Col 1-30 (5A6) STA (30 character alphanumeric station code) Col 31-35 (F5.0) ALT (altitude of station in metres)

Col 36-40 (F5.0) LAT (latitude of station in decimal) Col 41 (Al) HEMIS (hemisphere "N" or "S")

Col 42-50 Blank

Col 51-55 (F5.0) UHT (height (metres) of wind measurements)

Col 56-60 (F5.0) PMB (mean annual pressure in millibars if available)

Programme will use a computed value if not given here.

A2 2nd Card for each station: factors for conversion, identification of status of data and selection of print option. For most of the factors see the comment cards in the programme.

Col 1-5 (F5-0) FU24 (factor for converting 24-hr wind data to km/day) Col 6-10 (F5.0) FUDAY (Factor for converting daytime wind data to m/sec) Col 11-15 (F5.0) FACTED (factor for converting vapour pressure (ED) values to

millibars)

Col 16-20 (F5.0) FACTRS (factor for converting solar radiation (RS) to equivalent mm/day) (see comment cards in the programme)

Col 21-25 (F5.0) FACTEP (factor for converting EPAN data to mm/day) (Monthly total evaporation in mm or inches must be converted to daily mean evaporation since programme will not handle this data.)

Col 26 (Al) UN1TT (flag for temperature data "C" or "F") Col 27-36 Blank

Col 37 (11) UNIT N (flag for identifying the sunshine/cloudinesS data)

= 1, 2, 3, 4, or 5 (see comments in programme for details, sequence nos. 925-990)

Col 38 Blank

Col 39 (11) RHFLAG (flag for identification of RH data)

= 1 if RH data are based on measurements (if actual dewpoint temp- eratt-re data or vapour pressure are used, then RHFLAG = 1

since programme will automatically calculate RHmax, RIlmean and RHmin.)

= 2 if RH data are estimated

Col 40 Blank

Col 41 (Ti) UFLAG (flag for wind. data)

= 1 if 1J24 or UDAY are measured data

= 2 if U24 or UDAY are estimated data

Col 42 Blank

Col 43 (11) NFLAG (flag for sunshine or NRATIO (n/N) data)

= 1 if measured or RS is measured

= 2 if estimated

Col 44 Blank

Col 45 (11) NPRINT (option for printing input data)

= 0, only results are printed

= 1, prints above + converted data

2, prints above + unconverted input data as read - - suggested for first run.

(NOTE: RHFLAG, UFLAG and NFLAG are provided to compute at least the Blaney method if no measured data on relative humidity, vrind and sunshine are available for a particular station, but reason.able estimates can be made. In this case the use of Radiation or Penman is generally not desirable. However, for some regions there may be enough first-order weather stations to allow climate maps to be prepared with reasonably accurate isolines of n/N, Tdewpoint or vapour pressure wind, etc. The necessary data for stations having only temperature data can be obtained by interpolation and calculations based on Radiation and Penman methods can thus be made. A "1" should be used in Col. 39,. 41 and 43 as if data were measured.)

A3 3rd Card of each station specifying the options for various methods. Selection of one up to all of the methods can be specified depending on the status of climatological data.

Blank

NBLANY (-1, estimates ET by Blaney and - 0, omits it) Blank

NRADIA (-1, estimates ET by Radiation method provided sunshine, n/N , or solar radiation are the measured data, or obtained as indicated a few comments back.

A zero (0) in Col 10 indicates calculations based on Radiation method should not be made.)

Col 1-4

Col 5 (11)

Col 6-9

Col 10 (11)

Col 11-14 Blank

Col 15 (11) NPENMN (-1, estimates ET by Penman-FAO equation (with C - 1.0), provided relative humidity, wind, and

sunshine data are measured data, or as indicated above, and - 0, omits it)

Col 16-19 Blank

Col 20 (11) NCORPN (=1, estimates ET by corrected Penman method if the data of relative humidity, wind and sunshine are measured data or as indicated above, and - 0, omits it)

Col 21-24 Col 25 (I1) A4 4th Card of each station.

SID

Col 11-15 (F5.0) Col 16-20 (F5.0) Col 21-25 (F5.0)

Col 26-30 (F5.0) Col 31-35 (F5.0) Col 36-40(F5.0)

- 122 -

Blank

NETPAN (-1, estimates ETo by EPAN provided actual pan evaporation, FETCH and CASE are specified, and - 0, omits it)

(station identification in alphanumeric code in 3 characters on each card. These may be left blank if desired since these are not used in the programme.)

MONTH

'DAY (should be inputted - 0 if only average monthly data are used, or - day of first date for weekly or 10-day periods, e.g. 1, 11, 21 for 10-day periods)

YEAR (last two digits of year, or 00 if mean data for multi- year records are used)

NREAD (flag for changing the FETCH and CASE values of ETPAN. 1, needs next card "A5" and - 0, or blank

for no change)

TMAX (daily or average daily maximum temperature. If no no decimal is used Col 15 must serve as location for unit digit)

TMIN (daily or average daily minimum temperature)

TDEW (dewpoint temperature -- see sequence nos- 830-840) Note: If no vapour pressure or RH data are available a

reliable estimate of TDEW is by assuming TDEW TMIN, that the air is saturated at TMIN). This is reasonable for sub-humid climates but not for drier climates, especially when windy at time of TM IN.

RHMAX (maximum relative humidity -- see sequence nos 702- 785). Note: If no dewpoint or vapour pressure data are available, RHMAX must be estimated if a Radiation method estimate-of ETo is desired.

RHM1N (minimum relative humidity -- see sequence nos 790- 815). Note: If no dew-point or vapour pressure data are available, RHMIN must be estimated to obtain even a Blaney-Criddle estimate of ETo.

ED (vapour pressure -- sequence nos 440-450) Col 1-3 (A3)

Col 4-5 (12)

Col 6-7 (12)

Col 8-9 (12) Col 10 (11)

Col 41-45 (F5.0) UDAY (mean d.aytime 9700-1900 hrs') wind -- see sequence nos 875-900). Note: If 24-hr wind data is not available, UDAY (or U24) must be estimated to obtain ETo

estimates.

Col 46-50 (F5.0) U24 (24 hour wind total)

Col 51-55 (F5.0) NACT (hours of bright sunshine or cloudiness in oktas or tenths)

Col 56-60 (F5.0) NRATIO.(ratio of actual to possible sunshine hours).Note: If no sunshine, cloudiness or RS data are available, NRATIO must be estimated to obtain even a Blaney- Criddle estimate of ETo.

Col 61-65 (F5.0) RS (solar radiation)

Col 66-70 (F5.0) RN (net radiation -- included in programme for research institutes where Rn may be measured)

Col 71-75 (F5.0) EPAN (24-hour evaporation from USA Class A pan -- see sequence nos 460-470)

Col 76-80 (F5.0) URATIO (ratio of daytime wind (0700-1900) to nighttime wind (1900-0700). Programme uses 2.0 if no basis for estimating)

Card. A4 is repeated for all data sets for a given station.. Blank card at the end of the data sets, reads the data for new station from Card Al. Whenever Col 10 is non-zero, the Card A5 has to be provided as next card.

A5 Card for reading new value of FETCH and CASE.

Col 1-10 (F10.0). FETCH in metres (if no decimal is used Col 10 must serve as location for unit digit)

Co1.11 (Al) CASE ("A" or "B" -- see Part 1.1 for details) (Present programme does not include methodology involving data from other than Class A pans.)

Test Data and Examples of Output

Examples from two locations in California are provided to illustrate the programme. The input data, column by column and Card by card are provided not only for illustrative reasons but also as samples of test data to check newly punched progranunes for a given computer.

The examples provide first an illustration to compute ETo from mean climatological data. for a multi-year record. For the pan data for Brewley, the reason for changing Case and FETCH relates to the particular situation found. The Class A pan is in a 10 m x 10 m weather station planted to Bermuda grass with the surrounding 4 ha field assumed to be non-cropped continuously. The chan.ge in Case (B to A and back to B) relates to the generally dormant condition of the Bermuda grass within the weather station during the November-February period (CASE B) as compared to its green-growing characteristic from March-October (CASE A). Assuming the 4 ha upwind field is dry all year, this results in a 5 m fetch of green grass for the Case A period of the year, but With the grass dormant, a fetch for the Case B situation of 5 m plus the 4 ha field or say around 200 m in the direction from which the prevailing winds come.

The Davis data are presented for a particular month (October 1960) to illustrate: (i) daily ETo calculation from daily weather data; (ii) 10-day mean ETo calculated from mean weather data for 10- day-periods ; and (iii) monthly mean ETo from mean weather data for the.month (not mean of several years as for Brewley). The use of a "1" in Col 45 of Card A2 illustrates the case where only con- verted weather data are presented, as compared to the use of a "2" for Brawley with both original.

and converted data printed out. The use of a "0" would result in a printing of only the calculated ETo data.

As to the results the following observations can be made:

For Brewley a reasonable agreement exists month by month for all methods, although EPAN values run 10-14% low. This may be due to the fact that the 4 ha field was in crops about half the years of record. During such years the fetch in Case A periods would be some 200 with Kp values some 15% higher than selected by the programme.

For Brawley, little difference is noted between Perunan and corrected Penman. The need for correction, however, is demonstrated by the daily Davis computations.

For Davis, the very high estimates by the Penman equation (C = 1.0) on days involving strong day and night winds combined with medium radiation d.uring October and the low RHmax at night, are quite unrealistic. The agreement between corrected Perunan and the other methods is quite good.

The Davis data illustrate the considerably better response of the Blaney-,Criddle and Radiation methods to day by day weather changes than could possibly be expected using for example the original Blaney-Criddle, Makkink or Jensen-Haise methods. The availability of u/N, RH and wind data (or their reasonable estimates) remains a crucial requirement.

The rather close agreement (for each method) between ETo calculated from daily, 10-day or monthly weather data is surprisingly good for this particular set of data. Such close agreement may be somewhat fortuitous but at least is encouraging considering the rather extreme variability of wind and relatiVe humidity day by day.

Figurs 1. MACRO-FLOW CHRT

(

Slat Rion

)

Read station 10. month. day. yew. N11111/10.

lemperalum. RU. tapa measure. *Incl. solP radmlian. E mot and daymegat 0.nd ratio

Read belch. cm

II (PAPAD NE 01 Palm Illicit, 00INT indel data as read

Conant ;afoul dale la amInc data

Rad statIon name. altolude. laletude. hamisphert. h..9Pl al swag ateasuremants, moan possum lar the yam.

Read lectors tor connortine TI-hour wind. dayllom wend. vows pressure. talas radials. and E.pan data, unils ot tereparatur data: flag la edanlItyenq the

slate. Imainured at opmesad) dala al CICKOMOM. RN. Wm/. and ...shine:

and nab for wontinga 0161111106 IMPRINT) al metal and COINII.Mi 01111B.

Rad Ilaq for idanlifylne grbalhor 011111.81101 by Blaney. Radial..

Penman. Corrected Penmen ano,or EMIR dearest

Yee

- 124 -

IRedd (ENOz Al tack dot. eel Iran dmIt

Estintahoo by Radalmn specified and sun- SPIRI m solar radialsan ar rneasurm1

dam iEshmw ET by lliseay

IlEsImmle ET by Rodulhan

Elimm. ET by ERAN premed

EsInnekt month ay.

Finish 'zara or set (Al, A2, A3, and deck of A4 & AS) of new cards for new stzltion

Blank card terminates estimation of given station Card A4 & AS-data input deck of daily or average daily values

Card A3-specifying options for various methods

W1111111111111.-

Card A2-conversion factors, identification data, specifying print option

(CardAl-station name, altitude, latitude, hernie, wind height measurement, PMB

Figure 2. DECK SETUP FOR INPUT DATA OF PROGRAM

11000000 01010000 60010000 66010000 06010000 500 10000 01(10000 61E10000 01(10000 00010000 Gi(00000

66010000 06110000 mlnotoxv.m0

.wzr 1.11010.001211,m1.00.00'0'001'10'61.00/11

GZ 10010000 000/0000 60010000

Paa 5011000%00 0.1 .001010 00301 ONV

Im/1r1021,0 00110000

64010000 0110010,01,03.00,61°.011100.A5vm .020Av011001*.1y.6000.0.010/..10/8001d 0010000 0,41000

/0z0

40105 3115,151.3.1.009 011110000

10104(0.30.00311.1.11

O( 14/00 Lml/Ao .000 001, 111100)010006 10100 GZ9 0(0

11110J A.114 IZ0

01 OZ

WWI) 00

01 00 0/ St

0t'10°101000)J/

0.0013

ALAVOI 1

AAAVO/

01 C001,610010 3613.0300J

0.0/191

VVVVVVVVV Imy3m.11

(f1010001 viva 3100ym)dR35

00E10000 xlv5,

G130 36 Svm 05 3000 03081 Omv 9800

01300 1 01010000

01110001 Di 01

001013.01,11.041 00 ict 6(110000

00(0.63.5yipome0.03'/140.I41 01/10',..40,0.60,01,11Wv,i50,01110000010g.010., 01(10000

g 0010.11,0700,m1n1,X1m1,00/1400v3A41,00.41.61..0160601.0.30001061003d 00 001 000611 61010000 0/110000

6 ilt10000 01(10000

'00v) 1831 10030 /N0

/010 Omy .15^1,' I, ,,,,, 01 631111 30391 514.0435 64/0 100 Ca 4010000 10190" 00y 5350/3103 0101161 031110 0. 010160 301 o30330 00110000 '11436000 0131010).ml SINIVI 301 yil: 1)16 ,/nO, a: 03.1 6160,0v 66110000

ON, (loo 001 1001 00030 ml .303 011,0 *5 0,00900 MO OW 011010000 61010000 08(10003 64(10000 01110000 60110001 01110000 66110000 00(10000 40/13000 00110000 G(010000 00(10000 62(10000 0/010000 (1(10000 1,8010i0.113 53001 .1)

01000.01 100,31010 01011)003100, 40

vi

2 3 35066 10,10013/4m0J1 '63 SI 0301110 .0114 (101 6N01 11140611' 3115 .00 1111110001.00°8 0.0 004 0381*10 AO 1110 001 01(10000 102;0000 00(10000 66110000 06110000 40053m

/540034

*..1)40 .10666 5mv/110 10/6/61

063, LNIN5401140/9/10 60110000

o 0630 Olio/ 1011111 (016.6, 10001013100006/ 301 1111 104011003 /0/1499oml100,55111/4313,4/11101,J/011364/6v00411n4 00311 °RV ry11 Om, '03411111 /11y 1011135103 /101 /11439 11101303 /i4n JO Oad 3m; 4301/ 01110000 64110000 0111000D 09110000 01110000 00110000 0(116000

659000..86)1w0NOS 06110000

.111130.1v)110401 .10(00 01110000

.11/010106 61110000

01110000 01I10000 00110000

035,11/11531113 61110000

6.1513.1121136163 16110 01110000

.((/1)1)1113 6,0110000

.1y0i39.611,11/31103 00110000

66010000 /111010002

1005004 06010060

66010000 00010000 61010000 .0/110

1131101130

30010 300 i Agm 31 0101110 11A3 000015 30001124931 1100 01000000

Ovli 011000 10302 61010000

1m11

A40110, 0301 1,003 1l011 JO 5411000

01010000 101034

JO I

SO.

40114 31001/y5w 311 0110 031110103101

J1 '0101/1000,m1 56010000

01001,1m 101191011 41 1100 VIVO 30! MORON 1164141) 0,11011 JD 060:0000

NO

61010000

11110m3.1 300 JO 210111113 oi 0030 .1 091.10 309 11114flegglg.m 046

,3600 00010000

6(010000 /

11! 11030 LSO 011 S11010 JO 0030 '311 101 01010000

61010000 '0311115

313%

11111311111111 Owl%

01010000 0019. 111

11531 0w

00000 0004 6113130 imellm m1

imn Al OM 11111 104 /14116.1103 0.2 30100 SI 01010000030016, 01010000 0t11a0

11510010100 mi)51111i0/5000 01111 40

(0010000 1130364y4

(310030 31, NI

vivo 50411

J 11 AI LANNI 1110 lvy TI 1330030 000:13) 00010000

D

66000000

!1!0 101,19904031 110J

0614 11100

06600000 '03001311

1311 11 0010010 311101i000 /030113 15.150; 616000001004 '011V19

00600000450500;

111e

',II

000 0.,1010 0elv

vi10 SI

.10100 .11 J1 00:013/3posunS INI III *3N! 61600000

C

01600000 .40013 060

600131 JD JO

60600000 6.03:

a1010 wl 30v 0100 3.1m1NOS

C 1/ JO 11590 40 00301011013 00660000

66600000 19030

. gal 10311111 10010 vis0 omy 30191001 JI

z 10,1330 1m100 06600000 69600000

AO y 0000110035 1318011 Sa10. OM/

Sy

01600000 WOK

301116m00 R016 mi

1110 311 1111401210

JI

Z 10 w 10.1310 01600000

01600000 011100

1/01110

m3010 11 61/0 316 301101016

i

*01011310i05 Jt 0014 001 153m10101D/ImimSmnS '1110 01600000 00600000 031..1113

SI ATOO y151 NO

O 1 JI JI 010 00 5000 S/ 0100601. '0100 61000000 01.00000 ',Avg

0111 9014 VOJ 110140

66600000 111001

mADY

0t0 Vt 3010113150 06110001 5301 0'1 004 O10va% 00600000 m000001091 Jo

1190 inbimn/AyOn 11111113 JD

/1001%

Ion 41

06000000 0301030

6$1100000 3110

II

9

000130 I

700 JO 1013 03610 II 1S00 31

000000003/111103/110,1/rnmA 20g

0100 tan 01011 omg

00 3111410 0R01 03100 '30 1131131 0060 0101 6110000000061 11130

AyOn

02100000 '001,3

6160 1191600 01160 MD

116 03011030 No

60000000 '5195x0x

151,

vivo tdoili 41 51110 Nlm 1131 JO

00100000 /111,0

wila 30V 0110 Al 3110111135130 604

nrimisi. NO 119 51/00 .0 11(1900 vivo 00003 10000000

0311116311

06000000 5191901

V100 30!

JI

55N31 11100 JO XVI MVP

(6100000 ..11,0

0100 3MV

010 Al 30010134431 AOA

1011111

01000000 '13616

10.

36175

02 031019001 Al 19001140 110

S(100000 A1si100

lay y110 1,500 41 51110 40

110314

0(000000 'illtiO

VIVO 316 31141110111 Al 10100

1,590 m10 0301

6(000000 .3104

1101115 VAS

02000000 110111000053 141100/1103

10031 JD 0101111001 MI

0000

SO

61000000 .0301010

SI 110110192100 00013* I

3100 11

011000000111110311 35901111/311101,A1 SI

1/

33001 40 3m0m Al

601100000 /13110

11005/105 SI 03 110

0131m9

00000000 00.02

!Ago ilm/mom 011,0 mD 11V

0w0e31 ND

- MV30 JO /1110 mlm 0.mo J1 0100 300 .1101000 60100000

06100000 LVD

1101 3MA

0410110V 301L!'31

*I.

*Iwo II 31113 004111 11 m0l1vl0)112 (1 /0360030 60100000

1/11. 009 /00, c(e5,1,1)011$1.(1.00g.)12viS10(.5,1J8g130163 /130163 /600J /5y0/14 .0.1/.0 031314 1 131/611 0613,1 Z00.1.11) '430314 S )/311 11 51.1.0 '*51050 1 1

Lim" 0(9

1010J 10.03.501Nd1)41 0(9 00 110 6

VVVVV

11.0 .1Ho

'01.3.

'lei

.11,

AyAS 1000 imiud 5Niad Imivd 311)4 0111 of, 139 0 0

330100..000tw0100 .1101ns..(1)1ma01

0610000110111100310 .__

liy.1511/1111,11vAy II Si

331111 3000 JD 41

(1100000 '43110

0100.301 301 0) VD

S13100 NO Ill illy° mo Alm0v0y VIVO 101101 00100000 03019031

. 0130 zgy 80111110 JO 11100 /5101.0m zyy S.mil 110J I/ 0/00 3m1 400 309 .11101140 60100000 00100000

... 1 11 VIVO 3110 03001163 66100000

06.100000 65.0

031331103 0111053, 116 0110 J1

I 1501 30151,139 55101m10 01,0 61400000

9y14

114mil 311 '10110 011100000

11104

10,611111 300103v0 41

my3m

Omd .035111013 01100000

00100000 38

Di

31110

60313 VVVVV 091 JO Amy 1%0 110 U0 11

1 VO 00011 JI Ok 030.0.3 300 0311610 61100000

0 v05 0.10,10 .36 13n1y. 13 .363.0/011110 0(10000031!)) 6y1J

011104 011/m JD 1,0051 11110/10 1100. Di 3111(105 01100000 011114 004 111114 NO/ 3m1m .11111158 01100000 60400006 '01101114

31 DA

311V .1 00111000 01 MI, 350 111011 0100 Iv 00)0 00100000

t 11 3116 01 31 0310110d 66000000

061000004011131503 113111

VIVO Lnd11/01151031 K5ixe1e1y

t 41 JI 10+11 VIVO SI 105 05 36 '0154111e 60000000 1/11,14 0 0 : Ji AI 03111(30 /0m 0111130 00000000 61000000 01000000 01100000 .m01iym1563

13 m015.10611 6,14 vOJ

y1011.15 11014 001 MymIld L3 ,t0/1121001/611113 06000000

0.031M 0017. 000030 100111m 014 0014 701.1 A 11 Ai 110.1 110J 110.1 03101063 0360012m my 03030903 03110111 mOilym05003 NO 13 SI 11113, 0011001113 01610 10 12 113 '10111.1513 *0l1!11 66000000 06000000 61000000 00900000 6(000000 01100000 3

i 11104 341,10011 NO 010100 yi10 6(100000

901A

00149 1134101010 11001 JO 119111 NI (TINO 341.0m91 110 111035 60 2311 1.11214 01900000 61100020 1.30 . 030100.111 CAI 11010 00 090101113031.1311 111 11110 0.1 JD 01011100 .1501 v0v0 .310 000v3 110 01100000 60100000

m/00m m01111,0 10011161 NI 0236530 00 S SI) 11y11y ('loo 00000000

00 3614.111/3N NI ii3 11 16600000

1103, Wow 6Dool 9.11 JI Al Ji lui oin oAn SI SI SI MI 41 01 1100.9 mdm 11010 5v0,6811. 06600000 60600003 00600000 61600000 SI MI

0/0 JI

VI

01(00000 AvOima

000301v MI 110 SI

0' Al NOJ 01036,403 001. vivo 05 '010/0v 60600000

100536 01114

00600000 6100v

Si 91 AVOn

JI

610°0 41 01011 SI %I ... , 60000000

011.0 06000000

II mdm SI 6101

A11.0 '1 0 JI AI 5/01 SI ml 3311m 01000000

I

9'

00600000 00v00000 66100000 06E00000 01(00000 06(00000 01100000 01(00000 66100000 06100000 60E00000 06(00000 50100000

010I001 trwit 1011 JD

01111130 N01001113 SI

3111

.3101 riiinovlins Al

11113 391 311 09101 101010tv JI ADN 43110 Si/v/1103

110119

t m

114303111130 Di 0111

1/110001 1NL 301 030331 Smypt 611111311,3

siim0 511130 0111 VIVO 301

... S 02

1110 111011 11y 10631/ ml

941101104 1300 111

1111100150 Simi

0IP(00000

.0.03/

61.1011491111011 11) 33111

66600900.31y.

90/112 11611 00100 1031111163 Oi

/*sic 1/

3,11,0, JO

3101/

3111

06(00000

60600000I

I 607010 ymOIS A

1110

01E00000 (21/II)Syvii

/601/115myall /101/6)11

/111/111

...

1030

61E00000 01E00000 16111S/(651,0116/11/0/2y117

00I013314 110000

411, MAINn

/35

/540 /mLmo.

1303101

50100000 0011111

.0919 .11110 /11101 elD111 11,16 /AO

00600000 tem301/501Y61111(06t.3014601'0640).

o(3003

10301003119i06(00000

06200000 60(00000 6

101.15101/110d/A1

OTO CS

1100000 DOZ00000 DA200000 1010/11/103

111R101,0m61153d 0/1.11000

co

0/1 0114 5 0OVA)011m135 011.11001

IE

D11100000 101rJ)31001110.

...

(I 10/J1101111M

Et 69100000

0(0000011009/30

00110110, j0 301

110 All VO AI

06200000 10131

1000vvi01101vAD0063 00113

3210030311 131001103 Cl

60000000 01000000 10y31

eImOsivm 03111O /0/1'.1 JO

/40111110

6110000o 1/34011630

113110

OW 0M, 13311136 I/3030010m 113$4013030 OMW

01100000 6Z100000

W0 101

S33010131 131,1 /11011103 000310) 113ald 00 30/116,10

Omy

OZZOODOD

//01101 111100J .0 *0 Oki SOIM30000 .0

.130110311 Simi 31 v AB 113104000 0,11511110 03Syl m0 00113 dliv1

01(00000 01(00000 00(00000 00 001 000 66100000 0016231

01133111N1 33/1131 011

113111

06100000 1104901315

m3/10 /VI/ Om/

/ONO

03 JO

...

30

60100000 10911.1./m

055, /11103401.0 /111110.0.1 .11010'19

61100000 030013630

09.

m11100041 031111103 SIN/

AB 09100000

01100000 6,0100000 01100000 66100000

"00011130001 1136

3515 113100103 MV3

03010 1111100103 JO 11201

06100000 1103 33036134410 NI 00111M

3000 SIMI AgM

00

.03110193 110 36

9/11113011

61100000 01311

Oi 30 SOW JO 13110191

01100000 311 1134

30! SW

$0110031 13111011 JO OMV SI EL 0003311 JO m101131 MONIIVM 0

6(100000 .01103.0.0 3101104130 1114 AB

M01/1110)30 JO 033N

III OVE

3101003 MOJ

0(000000 .030m0m0

oi II 0330 9IM1 AV0 SIDI VVVVVVVV 03610 I 004

61100000 .001VB

sminomon.

el.

si II 3114 1

11011001330 JO POO,

60100000 43511.5t

/61.011112010/t2.0110310/1/1101/11111/111013.1 3114

3 01100000

/y"1,11 1111041113 161610

/111100J1163 JO

'08./681330

AI 3

01600000 ylyo

06/

3m11 smliv3A101 AvO 001

0013114

06094 03010036 001.00 1119/31 AND JD 0100 04100 331J0OS .11 Ned 413110 004 MOILV1003 3510 61043 6 0004 311,A ITO 110.1 21 3110 0311030 y 66600000 01000000 6(600000 111111

01600000 6.9/111000

Mg

11 3111

al MO

06'0 JI 1110 lav 11 540/113 00600000

610°0 JI yi10 311y 0013116 NI 610/m 01600000 t MOI 03 ... 001 S.: VLy0 0101 0901001 60600000 00/30,

0111204 V.61 JI 0/00 301 MI AVOAM1 D0600000

6000000

AVO/wm 5013111 NI 3111 9110 J1

1

06000000 110/0.

Olmi VOTO 5y01 0114031103

1104

001314

011300 tt'l 0'1 t1.t1 J1 Al AI 03 Ji 03 01 VIVO 1/10 16/0 lvy 3110 3m0 %I MI Cl Smell 13M3111 1h11. JO 91313l AO 01,1111Im 0003131 JO 10031130 61000000 00000000 04600000 01100000 00101111N 130116 Oi

.03.

... 911 sEls 03

10014 031004

616610000 03111130 11110 311

00110mOdwA3 41 OTO

4100 031110111

01000000 110145.

3116

viy0 6.5003 J1 11100 JO

MIlm 110111,11010A3 10114 66012 T IV. 66000000 6,662

0y41 16001100 11030 JO AlIVO 511 0311311111 0.00 II MD MOJ 0416,31311 30, 010090.4 036v1321 0600000 61000000 01600000 01110

II,

Viv0 31T11311 Ji

10,162 111130 1.1,10 01

61000000 00102

'Avg

£11110.

£1110 ONV 111

01110031 JI 01m1900 NO V4y0 3111, 0610 0t600000

OD

61000000 911 100

/00 JO 1101191131304311 11510

011

Ay0 I 39190 031110511 V MD I 11 3101 03111130 6110 01111/30 Al III MI 00110iO41A3 03540113 101 310111113 JO 013 01.00000 61000000 01000000 3903

3011100 1015,50 ily

3 3 5 3 3 3 3 5 3 3 3 3 3 3 a 3 a 3 3

3 3 5 3

Dalam dokumen FAO IRRIGATION AND DRAINAGE PAPER (Halaman 129-154)