AND MASS SPECTROMETRY 5
12. CONCLUDING REMARKS
mixtures of interest before they are rigorously characterized using more sophisticated techniques. The specific advantages of separations using monolithic thin layers are possibility of parallel separation of multiple samples, very much welcome in high-throughput techniques, easy implementation of 2D separations, simple hardware, disposable “stationary phase,” static detection, separation and detection that can be separated in time and location, archiving of separated compounds at the layer, and sample integrity. It is possible that in the future, TLC techniques may compete with the current gold standard of 2D gels widely used in proteomics. Further developments of MS techniques enabling ionization
“from-layer,” including DESI and laser ablation electrospray ionization will help to make TLC more attractive, not only in proteomics, and that new horizons will open for this analytical method.
REFERENCES
Afeyan, N.B., Gordon, N.F., Mazsaroff, I., Varady, L., Fulton, S.P., Yang, Y.B., Regnier, F.E., 1990. Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J. Chromatogr. A 519, 1e29.
Bakry, R., Bonn, G.K., Mair, D., Svec, F., 2007. Monolithic porous polymer layer for the separation of peptides and proteins using thin-layer chromatography coupled with MALDI-TOF-MS. Anal. Chem. 79, 486e493.
FIGURE 5.22
Matrix assisted laser desorption/ionization-mass spectrometry spectra of leucine enkephalin and oxytocin ob- tained after ionization from the plate after separation in first (left panels) and second dimension (right panels) a-cyano-4-hydroxycinnamic acid as matrix.
Beilke, M.C., Zewe, J.W., Clark, J.E., Olesik, S.V., 2013. Aligned electrospun nanofibers for ultra-thin layer chromatography. Anal. Chim. Acta 761, 201e208.
Belenkii, B.G., Podkladenko, A.M., Kurenbin, O.I., Mal’tsev, V.G., Nasledov, D.G., Trushin, S.A., 1993.
Peculiarities of zone migration and band broadening in gradient reversed-phase high-performance liquid chromatography of proteins with respect to membrane chromatography. J. Chromatogr. 645, 1e15.
Cheng, S.C., Huang, M.Z., Shiea, J., 2011. Thin layer chromatography/mass spectrometry. J. Chromatogr. A 1218, 2700e2711.
Ciesla, L., Waksmundzka-Hajnos, M., 2009. Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites. J. Chromatogr. A 1216, 1035e1052.
Clark, J.E., Olesik, S.V., 2009. Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase. Anal. Chem. 81, 4121e4129.
Clark, J.E., Olesik, S.V., 2010. Electrospun glassy carbon ultra-thin layer chromatography devices. J. Chromatogr.
A 1217, 4655e4662.
Cooks, R.G., Ouyang, Z., Takats, Z., Wiseman, J.M., 2006. Ambient mass spectrometry. Science 311, 1566e1570.
Fang, X., Olesik, S.V., 2014. Carbon nanotube and carbon nanorod-filled polyacrylonitrile electrospun stationary phase for ultra-thin layer chromatography. Anal. Chim. Acta 830, 1e10.
Gusev, A.I., Proctor, A., Rabinovich, Y.I., Hercules, D.M., 2000. Interfacing matrix-assisted laser desorption/
ionization mass spectrometry with column and planar separations. Fresenius’ J. Anal. Chem. 366, 691e700.
Gusev, A.I., Proctor, A., Rabinovich, Y.I., Hercules, D.M., 1995a. Thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 67, 1805e1814.
Gusev, A.I., Vasseur, O.J., Proctor, A., Sharkey, A.G., Hercules, D.M., 1995b. Imaging of thin-layer chromato- grams using matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 67, 4565e4570.
Han, Y., Levkin, P.A., Abarientos, I., Liu, H., Svec, F., Fre´chet, J.M.J., 2010. Monolithic superhydrophobic layer with photopatterned virtual channel for the separation of peptides using two-dimensional thin layer chromatographyedesorption electrospray ionization mass spectrometry. Anal. Chem. 82, 2520e2528.
Hauck, H.E., Bund, O., Fischer, W., Schulz, M., 2001. Ultra-thin layer chromatography (UTLC) e a new dimension in thin-layer chromatography. J. Planar Chromatogr. Modern TLC 14, 234e236.
Hauck, H.E., Schulz, M., 2003. Ultra thin-layer chromatography. Chromatographia 57, S/313eS/315.
Hileman, F.D., Sievers, R.E., Hess, G.G., Ross, W.D., 1973. In situ preparation of open pore polyurethane chromatographic columns. Anal. Chem. 45, 1126.
Hjerte´n, S., Liao, J.L., Zhang, R., 1989. High-performance liquid chromatography on continuous beds.
J. Chromatogr. A 473, 273e275.
Ifa, D.R., Wiseman, J.M., Song, Q.Y., Cooks, R.G., 2007. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int. J. Mass Spectrom.
259, 8e15.
Izmailov, N.A., Shraiber, M.S., 1938. A drop-chromatographic method of analysis and its utilization in pharmacy.
Farmatsiya (Mosc. 1938e47) 1e7.
Kertesz, V., Van Berkel, G.J., 2008. Scanning and surface alignment considerations in chemical imaging with desorption electrospray mass spectrometry. Anal. Chem. 80, 1027e1032.
Kertesz, V., Van Berkel, G.J., Vavrek, M., Koeplinger, K.A., Schneider, B.B., Covey, T.R., 2008. Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ioni- zation tandem mass spectrometry and autoradiography. Anal. Chem. 80, 5168e5177.
Kirkland, J.J., 1992. Superficially porous silica microspheres for the fast high-performance liquid chromatography of macromolecules. Anal. Chem. 64, 1239e1245.
Kubı´n, M.,Spa cek, P., Chromecek, R., 1967. Gel permeation chromatography on porous poly(ethylene glycol methacrylate). Collect. Czechoslov. Chem. Commun. 32, 3881e3887.
Liao, J.L., Zhang, R., Hjerte´n, S., 1991. Continuous beds for standard and micro high-performance liquid chromatography. J. Chromatogr. A 586, 21e26.
Liapis, A.I., Meyers, J.J., Crosser, O.K., 1999. Modeling and simulation of the dynamic behavior of monoliths.
Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles. J. Chromatogr. A 865, 13e25.
Lu, T., Olesik, S.V., 2013a. Electrospun nanofibers as substrates for surface-assisted laser desorption/ionization and matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 85, 4384e4391.
Lu, T., Olesik, S.V., 2013b. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.
J. Chromatogr. B 912, 98e104.
Lv, Y., Lin, Z., Tan, T., Svec, F., 2013. Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection. J. Chromatogr. A 1316, 154e159.
Majors, R.E., 2015. Historical developments in HPLC and UHPLC column technology: the past 25 years. LC-GC N. Am. 33, 818e840.
Martin, A.J.P., Synge, R.L.M., 1941. A new form of chromatogram employing two liquid phases. Biochem. J. 35, 1358e1368.
Maya, A., Svec, F., 2014. A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using external crosslinkers and application of these monolithic columns for separation of small molecules. Polymer 55, 340e346.
Mehl, J.T., Gusev, A.I., Hercules, D.M., 1997. Coupling protocol for thin layer chromatography/matrix-assisted laser desorption ionization. Chromatographia 46, 358e364.
Meyers, J.J., Liapis, A.I., 1999. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. J. Chromatogr. A 852, 3e23.
Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., Tanaka, N., 1996. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 68, 3498e3501.
Moravcova´, D., Rantamaki, A.H., Dusa, F., Wiedmer, S.K., 2016. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 37, 880e912.
Mould, D.L., Synge, R.L.M., 1952. Electrokinetic ultrafiltration analysis of polysaccharides. A new approach to the chromatography of large molecules. Analyst 77, 964e970.
Mould, D.L., Synge, R.L.M., 1954. Separations of polysaccharides related to starch by electrokinetic ultrafil- tration in collodion membranes. Biochem. J. 58, 571e585.
Nicola, A.J., Gusev, A.I., Hercules, D.M., 1996. Direct quantitative analysis from thin-layer chromatography plates using matrix-assisted laser desorption/ionization mass spectrometry. Appl. Spectrosc. 50, 1479e1482.
Nir, A., Pismen, L.M., 1977. Simultaneous intraparticle forced convection, diffusion and reaction in a porous catalyst. Chem. Eng. Sci. 32, 35e41.
Nurok, D., Habibi-Goudarzi, S., Kleyle, R., 1987. Statistical approach to solvent selection as applied to two-dimensional thin-layer chromatography. Anal. Chem. 59, 2424e2428.
Orinak, A., Arlinghaus, H.F., Vering, G., Orinakova, R., Hellweg, S., 2005. Introduction to time-of-flight secondary ion mass spectrometry application in chromatographic analysis. J. Chromatogr. A 1084, 113e118.
Pasilis, S.P., Kertesz, V., Van Berkel, G.J., 2007. Surface scanning analysis of planar arrays of analytes with desorption electrospray ionization-mass spectrometry. Anal. Chem. 79, 5956e5962.
Peterson, D.S., Hilder, E.F., Luo, Q., Svec, F., Fre´chet, J.M.J., 2004. Porous polymer monolith for matrix-free laser desorption ionization time of flight mass spectrometry of small molecules. Rapid Commun. Mass Spectrom.
18, 1504e1512.
Petro, M., Svec, F., Gitsov, I., Fre´chet, J.M.J., 1996. Molded monolithic rod of macroporus poly(styrene-co- divinylbenzene) as a novel separation medium for HPLC of synthetic polymers. “On column” precipitation and redissolution chromatography as an alternative to size exclusion chromatography. Anal. Chem. 68, 315e321.
Poole, C.F., 2003a. The Essence of Chromatography. Elsevier, Amsterdam.
Poole, C.F., 2003. Thin-layer chromatography: challenges and opportunities. J. Chromatogr. A 1000, 963e984.
Poole, C.F., Poole, S.K., 1995. Multidimensionality in planar chromatography. J. Chromatogr. A 703, 573e612.
Poole, S.K., Poole, C.F., 2011. High performance stationary phases for planar chromatography. J. Chromatogr. A 1218, 2648e2660.
Rodrigues, A.E., Lopes, J.C., Lu, Z.P., Loureiro, J.M., Dias, M.M., 1992. Importance of intraparticle convection in the performance of chromatographic processes. J. Chromatogr. A 590, 93e100.
Rodrigues, A.E., Lu, Z.P., Loureiro, J.M., Carta, G., 1993. Peak resolution in linear chromatographyeeffects of intraparticle convection. J. Chromatogr. A 653, 189e198.
Rodrigues, A.E., Mata, V.G., Zabka, M., Pais, L., 2003. Flow and mass transfer. In: Svec, F., Tennikova, T.B., Deyl, Z. (Eds.), Monolithic Materials: Preparation, Properties and Applications, pp. 325e350.
Rojanarata, T., Plianwong, S., Su-uta, K., Opanasopit, P., Ngawhirunpat, T., 2013. Electrospun cellulose acetate nanofibers as thin layer chromatographic media for eco-friendly screening of steroids adulterated in traditional medicine and nutraceutical products. Talanta 115, 208e213.
Ross, W.D., Jefferson, R.T., 1970. In situ formed open pore polyurethane as chromatography support.
J. Chromatogr. Sci. 8, 386e389.
Salo, P.K., Salomies, H., Harju, K., Ketola, R.A., Kotiaho, T., Yli-Kauhaluoma, J., Kostiainen, R., 2005. Analysis of small molecules by ultra thin-layer chromatography-atmospheric pressure matrix-assisted laser desorption/
ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 906e915.
Schnecko, H., Bieber, O., 1971. Foam filled columns in gas chromatography. Chromatographia 4, 109e112.
Skerı´kova´, V., Urban, J., 2013. Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography. J. Sep. Sci. 36, 2806e2812.
Svec, F., 2008. Stellan Hjerte´n’s contribution to the development of monolithic stationary phases. Electrophoresis 29, 1593e1603.
Svec, F., 2010. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation.
J. Chromatogr. A 1217, 902e924.
Svec, F., Fre´chet, J.M.J., 1992. Continuous rods of macroporous polymer as high performance liquid separation media. Anal. Chem. 64, 820e822.
Svec, F., Fre´chet, J.M.J., 1995. Kinetic control of of pore formation in macroporous polymers. The formation of
“molded” porous materials with high flow characteristics for separation and catalysis. Chem. Mater. 7, 707e715.
Svec, F., Hradil, J.,Coupek, J., Ka´lal, J., 1975. Reactive polymers 1. Macroporous methacrylate copolymer containing epoxy groups. Angew. Macromol. Chem. 48, 135e143.
Svec, F., Tennikova, T.B., 1991. Polymeric separation media for chromatography of biopolymers in a novel shape.
J. Bioact. Biocompat. Polym. 6, 393e405.
Sy´kora, D., Svec, F., Fre´chet, J.M.J., 1999. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces. J. Chromatogr. A 852, 297e304.
Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G., 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471e473.
Takats, Z., Wiseman, J.M., Cooks, R.G., 2005. Ambient mass spectrometry using desorption electrospray ioni- zation (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40, 1261e1275.
Tennikova, T.B., Svec, F., Belenkii, B.G., 1990. High performance membrane chromatography. A novel method of protein separation. J. Liq. Chromatogr. 13, 63e70.
Tennikova, T.B., Bleha, M., Svec, F., Almazova, T.V., Belenkii, B.G., 1991. High performance membrane chromatography of proteins. A novel method of protein separation. J. Chromatogr. A 555, 97e107.
Tennikova, T.B., Svec, F., 2003. Theoretical aspects of separation using short monolithic beds. In: Svec, F., Tennikova, T.B., Deyl, Z. (Eds.), In Monolithic Materials: Preparation, Properties and Applications, pp. 351e372.
Tswett, M.S., 1906. Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber. Dtsch. Bot. Ges. 24, 384e393.
Urban, J., Skerı´kova´, V., 2014. Effect of hypercrosslinking conditions on pore size distribution and efficiency of monolithic stationary phases. J. Sep. Sci. 37, 3082e3089.
Urban, J., Svec, F., Fre´chet, J.M.J., 2010a. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column. Anal. Chem. 82, 1621e1623.
Urban, J., Svec, F., Fre´chet, J.M.J., 2010b. Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatogr.
A 1217, 8212e8221.
Van Berkel, G.J., Ford, M.J., Deibel, M.A., 2005. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal. Chem. 77, 1207e1215.
Vermillion-Salsbury, R.L., Hoops, A.A., Gusev, A.I., Hercules, D.M., 1999. Analysis of cationic pesticides by thin layer chromatography/matrix-assisted laser desorption ionization mass spectrometry. Int. J. Environ. Anal.
Chem. 73, 179e190.
Viklund, C., Svec, F., Fre´chet, J.M.J., Irgum, K., 1996. Monolithic molded porous materials with high flow characteristics for separation, catalysis, or solid phase chemistry: control of porous properties during polymerization. Chem. Mater. 8, 744e750.
Wahab, M.F., Wimalasinghe, R.M., Wang, Y., Barhate, C.L., Patel, D.C., Armstrong, D.W., 2016. Salient sub-second separations. Anal. Chem. 88, 8821e8826.
Wang, Q., Svec, F., Fre´chet, J.M.J., 1993. Macroporous polymeric stationary phase rod as continuous separation medium for reversed phase chromatography. Anal. Chem. 65, 2243e2248.
Wang, Q., Svec, F., Fre´chet, J.M.J., 1994. Reversed phase chromatography of small molecules and peptides on a continuous rod of macroporous styreneedivinylbenzene. J. Chromatogr. A 669, 230e235.
Wei, B., Rogers, B.J., Wirth, M.J., 2012. Slip flow in colloidal crystals for ultraefficient chromatography. J. Am.
Chem. Soc. 134, 10780e10782.
Wiseman, J.M., Ifa, D.R., Song, Q.Y., Cooks, R.G., 2006. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45, 7188e7192.
Wouters, B., Vanhoutte, D.J.D., Aarnoutse, P., Visser, A., Stassen, C., Devreese, B., Kok, W.T., Schoenmakers, P.J., Eeltink, S., 2013. Visualization procedures for proteins and peptides on flat-bed monoliths and their effects on matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection.
J. Chromatogr. A 1286, 222e228.
Xie, S., Allington, R.W., Svec, F., Fre´chet, J.M.J., 1999. Rapid reversed phase separation of proteins and peptides using optimized “molded” monolithic poly(styrene-co-divinylbenzene) columns. J. Chromatogr. A 865, 169e174.
FURTHER READING
Svec, F., Tennikova, T.B., Deyl, Z., 2003. Monolithic Materials: Preparation, Properties, and Applications.
Elsevier, Amsterdam.