88 K.H.J. BUSCHOW
less stable than the hydride, leading to a difference of a factor of 10 in the plateau pressure. This difference can be used to obtain a gas phase enriched in deuterium.
In LaNi» too, the deuteride is less stable than the hydride. Here the plateau pressure difference is comparatively small (van Mal, 1976; Biris et al., 1976).
6.8. Neutron moderators and neutron generators
The extremely large hydrogen density in combination with the high thermal stability of several hydrides makes these materials suitable for applications as moderators in nuclear fission reactors (Keinert, 1971; Mueller et al., 1968). A small-scale application of metal hydrides is found in neutron generators. Here a thin layer of the metal hydride saturated with deuterium or tritium is used as a target for accelerated D and T ions, where the DT reaction leads to a high neutron flux (Reifenschweiler, 1972).
the sorption properties of amorphous materials also deserve more attention than they receive at the moment.
If one looks at the research effort that has been spent on the physical properties of rare earth-base intermetallics one will discover that most of the effort has gone into investigations of the magnetic properties. The results described in this chapter make it clear that the situation is not rauch different in the case of their ternary hydrides. It has been mentioned that the formation of microcracks during charging and decharging has hampered the investigation of transport properties on these materials. The presence of microcracks is less disturbing as rar as the study of superconducting properties is concerned, and it is surprising that from this quarter such relatively little interest has been shown in ternary hydrides. A possible reason is that the few examples studied invariably showed no superconductivity in the ternary hydrides. It should be borne in mind, however, that these examples refer to compounds of a composition susceptible to easy decomposition upon charging. The presence of 3d atom metal clusters may then either suppress superconductivity altogether or mask it from observation. Similar studies are to be recommended on compounds that absorb the hydrogen gas less violently, or studies starting with materials where the hydrogenation is performed under carefully controlled condi- tions. The advantages of studying superconductivity in ternary hydrides are obvious, since it makes it possible to vary the Debye temperature, the density of states and the electron-phonon coupling constant over wide ranges. Of special interest are cases where the fl phase is not a line compound but comprises a range of hydrogen concentrations, making it possible to achieve a gradual variation of the various parameters. Finally, in materials in which rare earths are combined with non- magnetic metals one has the possibility to reduce the interaction between the 4f moments by hydrogen absorption. In compounds of low magnetic ordering tem- peratures, hydrogen absorption could be used to obtain a reduction of the pair- breaking parameter.
Proton N M R experiments have received a relatively large amount of attention.
The study of hydrogen diffusion in the hydrides is of interest both from the technological point of view and from that of fundamental physics. Systematic studies seem to be desirable in order to establish a relationship between the experimentally observed activation energies and the occupancy of particular interstitial sites. The choice should fall on hydrides for which a firm basis regarding the site occupancies has already been laid by neutron diffraction studies on the corresponding deuterides.
Of particular interest is furthermore the mutual interaction of the H atoms in the ternary hydrides. Estimates of a minimum H - H interatomic distance have been made on the basis of theoretical considerations (Switendick, 1978a, b), as weil as on the basis of thermodynamic arguments (Bouten and Miedema, 1980; Buschow et al., 1982). Both estimates are in satisfactory agreement and point to a minimum H - H interatomic distance of about 2.2/~. This minimum distance implies a blocking of nearest neighbour interstitial sites and the presence of a maximum hydrogen concentration. A few structural studies dealing with this blocking phenomenon have been published. Extensions of such studies to other series of compounds would be highly welcome.
9 0 K . H . J . B U S C H O W
Appendix Tables A 1-4
Hydrogen sorption characteristics of some rare earth-base compounds. The composition of the uncharged compounds RMù has been listed in the first column.
The maximal value of x in RMùHx has been listed under x(max), where the H2 pressure applied (atm) has been given in brackets. The composition of the first hydride//1 has been listed under x(/31) and the corresponding plateau pressure under P(«-/~0- In both cases the temperature (°C) at which these data were obtained has been indicated in brackets. From the values reported in the literature we choose those that were as close to room temperature as possible. Experimental values of the formation enthalpy and entropy have been given in columns 5 and 6. The type of the corresponding reaction (whenever such information was specified in the litera- ture) has been indicated in column 7. The compounds and hydrides given in the various tables have been iisted in order of increasing rare earth concentration.
T A B L E A 1
Compounds of rare earths and nickel.
Cornp. x(max) x(fll) P(«-fll) AH AS R e a c t i o n R e f s . (atm) ( k J / r n o l H2) ( J / d e g mol H2) type
L a N i s . 5 5.5 (12) 5 ( 4 0 ° ) 9.2 ( 40 ° ) - « fl~ 1
L a N i 5 6.7 (50) 5.5 ( 4 0 °) 1.9 (25 °) - 3 0 . 2 - 109.1 0~--~1 1 - 1 7
L a N i 4 . 9 6.2 (12) 6 (40 °) 2.9 ( 4 0 °) - - 1
C e N i 5 6 (50) 6 (23 °) 48 ( 25 °) - 14.2 - 8 0 . 0 ct-~~ 15
P r N i 5 6 (9) ~ - 8.3 (23 °) - 3 0 . 5 - 120. 2 ~ /~1 3
N d N i 5 5.5 4 12.7 ( 20 °) - 2 7 . 8 - 1 1 6 . 0 c¢-fli 3 , 1 6
S r n N i 5 3 - 4 30 ( 23 ° ) - - - 3
G d N i s 2 - 3 120 ( 23 ° ) - 3
Y b N i 5 2 - 3 120 ( 25 ° ) - - - 3
Y N i 5 3.5 ( 1 5 5 0 ) 1 (22 °) 300 ( 2 2 °) - - 18
L a 2 N i 7 11.4 (50) 4 (20 °) < 1 ( 2 0 °) - - 1 9 - 2 1
C e 2 N i 7 4.2 (10) 4 (50 ° ) 0.2 ( 5 0 ° ) - 2 2
P r 2 N i 7 9.5 ( 5 0 ) 5.7 (25 °) 9 ( 25 °) 23
Y 2 N i 7 3 (50) 1.1 (50) 2.5 (50 °) - - 2 2
L a N i 3 5 (50) - - 19, 2 4
C e N i 3 4 . 2 (10) 2 . 2 ( 5 0 °) 0 . 0 9 ( 5 0 °) - 4 3 . 9 - 2 2 , 3 2
E r N i 3 3.5 (50) < 2 (50 ° ) - - - 23
Y N i 3 4 (50) 1.5 ( 5 0 °) 0 . 2 5 ( 5 0 °) - - 2 2
L a N i 2 4 . 6 (50) 2 5 4 . 5 - 2 0 , 2 4 , 25, 27
C e N i 2 4 ( 4 0 ) < 10 - 5 2 2
G d N i 2 4.1 - 8 9 . 7 - 136.6 ~z-fl~ 28, 29
D y N i 2 > 4 ( 1 5 0 ) - - 30
Y b N i 2 3.1 (10) - - 5 1 . 9 - - 32
Y N i 2 3.6 - - - 22, 2 6
L a N i 3.6 (50) - 19, 20, 26, 2 7
C e N i 2.7 - 2 6
Y N i 3.0 - - 2 6
TABt,E A1 (cont.)
Comp. x(max) x(flO p(«-,61) AH AS Reaction Refs.
(atm) (kJ/mol H2) (J/deg mol H2) type
La2Ni 3 4.4 (1) 26
LaTNi 3 21 (50) - - 20
La3Ni 8.8 (1) - - 19, 26, 27
Ce3Ni 8.4 - - 26
Y3Ni 8.0 - - - 26
1. Buschow a n d van Mal (1972) 17. Takeshita et al. (1980) 2. van Vucht et al. (1970) 18. Takeshita et al. (1981) 3. A n d e r s o n et al. (1973) 19. Mikheeva et al. (1978) 4. van Mal et al. (1979) 20. Oesterreicher et al. (1976) 5. Biris et al. (1976) 21. Andresen (1978)
6. K o s t and Mikheeva (1976) 22. van Essen and Buschow (1980b) 7. van Mal (1976) 23. G o u d y et al. (1978)
8. T a n a k a et al. (1978b) 24. Maeland et al. (1976) 9. Andreef et al. (1978) 25. K o s t and Shilov (1979) 10. Bowerman et al. (1979) 26.
11. Ohlendorf and Flotow (1980a, b) 27.
12. M u r r a y et al. (1980a, b) 28.
13. C h u n g et al. (1980) 29.
14. van Mal et al. (1974) 30.
15. Lundin et al. (1977) 31.
16. G r u e n et al. (1977) 32.
van Mal et al. (1976) Carstens (1978)
Jacob and Shaltiel (1979) Malik and Wallace (1977) C o h e n et al. (1980c) Jacob et al. (1981) Oesterreicher et al. (1982)
92 K.H.J. BUSCHOW
ù~
0 0
-,q
a::
I
~s
~Z
g
*d"
I I I I
G"
ù~
r~ c~ 'q. T v-:.
I I I I
I
I
p l l r l l J i
I I I I I I I I
l l l l l l l l
~ ~ ~ ~ ~ . - ~ ~
I I I I I l l l
o o o o ~
7 T ? ?
d d d & d d d d & d d M ~ ~ d ~
~ o o o ~ o ~ ~ ~ ~
~ ~ ~ ~ o °
I
A
t--I
t",l
t ~ ~ e ~ ~ ~ ~
I l l l I l I
/ l l l
~ o ~ -
7 ?
X ×
~ N
v
o o
7 ,
X
~ ~ 7 7
V ~ ~
v v
%
1¢3
g"
"2.
g.., «-,
m.
I I
~ v
A ~
E
O
E E E E E
õ,
o ~
• . ~ o~ V _ ~ ~ ~ ~ ~ . ~ ~ x~ ~ ù~ ~a ~a ~ ~ . ~ o , ~ , ~ .~ ~ ' ~ ~ ~ ~ ~a ~ ~ ~
~ ~ ~ t,'-,l ~--,,i t,'xl t,..,l ¢.,i t,.xl ~,,1 ¢ x l t-N t,~l e¢3 re3
94 K . H . J . B U S C H O W
TABLE A 3
C o m p o u n d s o f r a r e e a r t h s a n d i r o n o r m a n g a n e s e .
C o m p . x ( m a x ) x(~ 0 p(Œ ~) AH AS Reaction Refs.
(atm) (kJ/mol H2) (J/deg mol H2) type
Ho6Fez3 16 (40) - - - I
Er6Fea3 14 (40) - - - 1
LuöFe23 - - 2
YöFe23 22.5 - < 10 -5 (50 °) - - - 3
G d F e 3 3.2 - 0.18 (150 °) - 5 0 . 7 - ~ Ô2 4
T b F e 3 4.2 - 0.13 (125 °) - 48.2 - «-/~2 4
D y F e 3 3.9 (13) 2 (0 °) 1.05 x 10 3 (20 ° ) - 4 5 . 7 - 9 9 . 5 « /31 5 , 6
H o F e 3 3.6 - 0.28 (125 °) - 4 4 . 8 ~-]~2 4
E r F e 3 4 (13) - 0.53 (125 °) - 4 3 . 5 c~-fl2 4
Y F e 3 4.2 - < 10 - 5 (50 o) _ 3
C e F e 2 ~ 4 - 7
S m F e 2 ~ 4 - 8
G d F e 2 4.1 (20) - - 2 9 . 3 - 58.7 9
T b F e 2 4 - - - 8
D y F e 2 8 (1400) 2.0(20 °) 5 × 10 -6 (20 °) - 5 8 . 2 - 9 6 . 4 12, 14
H o F e s 4.5 - - 10
E r F e z 4.2 (13) 2 5 x 10 -5 (20 °) - 5 7 . 8 - 109.8 «-/~~ 11, 14
- 4 6 . 1 - 1 1 0 . 2 /~t ]~2 14
T m F e 2 3 . 5 4 . 3 - 10
L u F e z 4 - - 1.15
Y F e 2 4.2 2 < 10 - » (50 °) - 3
ScFe 2 3.2 (67) 2 (20 °) 0.06 (20 °) - 22, 23
NdöMn23 ~ 23 - - - 24
Sm6Mn23 ~ 23 - - 24
Gd6Mn23 ~ 26 < 1 (20 °) - 33
TböMn23 23 (60) - - - 19
DyöMn23 23 (60) - 19
TmöMnz3 23 - 25
LuöMilz3 ~ 20 (1) < 1 (20 °) - 17
YöMn23 23 (60) < 1 (20 °) - 18, 20
G d M n 2 3 (20) - - 87.6 - 134.0 3
D y M n 2 > 4 (150) 16
E r M n 2 4.9 (13) 4 ( 2 2 ° ) < 1 . 3 x 10 - t (22 ° ) - - 21
L u M n 2 > 4 - - 17
Y M n 2 3.4 (2) - - 18
1. B o l t i c h et al. ( 1 9 8 1 ) 2. G u b b e n s et al. ,(1981)
3. v a n E s s e n a n d B u s c h o w ( 1 9 8 0 b ) 4. B e c h m a n et al. ( 1 9 7 6 )
5. K i e r s t e a d ( 1 9 8 0 c ) 6. N i a r c h o s et al. ( 1 9 8 0 b ) 7. v a n D i e p e n a n d B u s c h o w ( 1 9 7 7 ) 8. B u s c h o w ( 1 9 7 7 d )
9. J a c o b a n d S h a l t i e l ( 1 9 7 9 ) 10. G u a l t i e r i et al. ( 1 9 7 6 b ) 11. K i e r s t e a d et al. ( 1 9 7 9 ) 12. P o u r a r i a n ( 1 9 8 0 c ) 13. B u s c h o w et al. ( 1 9 8 0 )
14. K i e r s t e a d ( 1 9 8 0 a )
15.- B u s c h o w a n d D o n k e r s l o o t ( u n p u b l i s h e d r e s u l t s ) 16. C o h e n et al. ( 1 9 8 0 c )
17. B u s c h o w a n d S h e r w o o d ( 1 9 7 7 b ) 18. v a n M a l et al. ( 1 9 7 6 )
19. P o u r a r i a n et al. ( 1 9 8 0 b ) 20. C o m m a n d r é a n d S a u v a g e ( 1 9 7 9 ) 21. V i c c a r o et al. ( 1 9 8 0 )
22. S m i t et al. ( 1 9 8 2 ) 23. N i a r c h o s et al. ( 1 9 8 0 a ) 24. B u s c h o w ( 1 9 8 2 b ) 25. G u b b e n s et al. ( 1 9 8 2 )
TABLE A 4 M i s c e l l a n e o u s c o m p o u n d s .
C o m p . x ( m a x ) x(~ 0 p(Œ~) AH AS Reaction Refs.
(atm) ( k J / m o l Hz) (J/deg m o l H2) type
LaMg12 20 (30) - - 1
CeMgl2 20 (30) 2 (325 °) 3 (325 °) - - 1, 3
La2Mg17 33 (30) - - 1, 3, 4
Ce2Mgt7 31 - - - 4
CesMg41 86 (30) - - - 3
LaMg2 4 (65) - - 5
C e M g 2 4.5 (12) . . . . 5
N d M g 2 4 (28) - - 5
S m M g 2 3 (2) - - 5
EuMg2 - - 6
L a C u 5 2.2 0.3 (20 °) - - - 8
P r C u 5 2.6 - - - 4
N d C u » 3.0 - - - 4
LaRu2 4.5 (3.4) - - - 5 , 7 , 9
C e R u 2 5.2 (10) - - 5, 14
G d R u 2 3.7 (70) 2.7(164 °) 0.05(164 °) - 6 0 . 3 4 - 125.7 - 7 , 9
D y R u 2 3.1 (10) - - 5 6 . 6 - 16
Y R u 2 3.3 (62) - - - 5
L a R h 2 4.9 (70) 1.4 (115 °) 0.05 (195 °) - 44.40 - 85.06 «-fll 7, 9
E u R h 2 5 (1) . . . . 10, 11
G d R h 2 3.3 (10) 2.8 (101 °) 0.9 (83 °) - 4 9 . 4 - 134.0 - 7 , 9
E u P d 2.9 (1) < 1 (20 °) - - - 10
Y b P d 2.2 . . . . 13
Y P d 3.1 (2) . . . . 12
LaP% 4 (1350) 1.2 (21 °) 200 (20 °) - - 8
L a P t 2.8 . . . . 15
1. D a r r i e t e t al. ( 1 9 7 9 ) 2. Y a j i m a a n d K a y a n o ( 1 9 7 7 ) 3. P e z a t et al. ( 1 9 8 0 ) 4. R e i l l y a n d W i s w a l l ( 1 9 7 2 ) 5. S h a l t i e l ( 1 9 7 8 )
6. O l i v e r et al. ( 1 9 7 8 ) 7. J a c o b a n d S h a l t i e l ( 1 9 7 9 ) 8. T a k e s h i t a et al. ( 1 9 8 1 )
9. S h a l t i e l et al. ( 1 9 7 7 ) 10. B u s c h o w et al. ( 1 9 7 7 ) 11. C o h e n e t al. ( 1 9 7 8 ) 12. v a n M a l e t al. ( 1 9 7 6 ) 13. N e w k i r k ( 1 9 7 2 ) 14. T e s s e m a et al. ( 1 9 7 9 ) 15. A n d e r s o n e t al. ( 1 9 7 3 ) 16. O e s t e r r e i c h e r et al. ( 1 9 8 2 )
96 K . H . J . B U S C H O W
Table A 5
Selected examples of several hydrogen absorbing non-rare earth intermetallics and the corresponding hydrogen sorption parameters. The compounds are arranged in order of increasing concentration of the strongly hydrogen attracting component in ABùHx. The second column gives the values of maximum hydrogen content with the H2 pressures applied in parentheses. The plateau pressures (first plateau) given in the third column are those closest to room temperature available in the literature. Values of the sorption enthalpies and entropies are listed in the 4th and 5th columns.
TABLE A 5
Compound x ( m a x ) p(ot-fl) AH AS Refs.
(atm) (k J / m o l e H2) ( J / K mole H0
CaNi» 4.2 (25) 0.5 (25 °) - 34.2 - 1
ZrV2 5.3' (1) 10 -8 (20 ° ) - 1 9 9 . 7 - 2
Z r C r 2 3.8 (1) 0.01 (20 °) - 4 6 . 1 - 9 8 2 Z r M n 2 "3.6 (8) 0.01 (20 °) - 5 3 . 2 - 1 2 1 . 5 2
TiCr2 1.2 (50) - - 23 - 3
T i C u 1 (1) - - 7 5 - 1 1 3 4
Z r C o 2.5 (1) - - 8 4 . 2 - 133.7 5
H f N i 3.2 (20) 0.02 (50 °) - - 6
LiPt 0.7 - - 134 - 149 7
Mg2Ni 4 (14) 1.2 (298 °) - 6 4 . 5 - 122.3 8
1. Murray et al. (1980) 2. Shaltiel et al. (1977) 3. Machida et al. (1978) 4. Maeland et al. (1978)
5. Irvine a n d H a r r i s (1978) 6. van Essen and Buschow (1979) 7. Nacken and Bronger (1978) 8. Reilly (1978a)
Tables A 6-A 10
Magnetic properties of compounds of rare earth elements and 3d transition metals (RMù) before and after charging with hydrogen gas. The composition of the ternary hydride has been listed as RMùHx if no details were given regarding the hydrogen concentration. The abbreviation n.l.o, in the second column indicates no long-range order as deduced from the absence of reflection lines in the X-ray diagram of the hydrides. The magnetic ordering temperatures have been listed under T c. The values of
Tcomp
refer to the minimum in the temperature dependence of the magnetization, corresponding to a cancellation of the R and M sublattice contributions. The satur- ation moments /~s are expressed in #B per formula unit. Values expressed per 3d moment are given in column 6 only when R is non-magnetic or when more detailed information is available from neutron diffraction. The various compounds and hy- drides have been listed in the order of increasing rare earth concentration. For a given concentration n the sequence is R -- Y, La through Lu.TABLE A6
Magnetic properties of rare earth-nickel compounds and their hydrides.
Compound Structure Magnetic properties Refs.
LaNi5 c a c u » Zg = 5 x 10 - 6 e m u / g 1, 2 LaNisH6. 9 CaCu» Xg = 1 × 1 0 - 6 e m u / g 1, 2 Y2Ni7 Gd2Co 7 T c = 57 K, #s = 0.08/la/Ni 3 Y2Ni7Hx Gd2Co 7 Tc = 98 K,/~~ = 0.05 #B/Ni 3
La2Ni 7 Ce2Ni 7 T N = 54 K 3
La2Ni7H x - Xg= 1 × 1 0 - S e m u / g 3 Y N i 3 P u N i 3 To = 35 K, #8 = 0.06/~B/Ni 4 YNi3H4 PuNi3 Xg = 7 × 10- 6 e m u / g 4 CeNi3 CeNi3 Zg = 2 × 1 0 - 6 e m u / g 5 CeNi3H x CeNi 3 0p < 0,/ten- = 2.5 #B/Ce 5 G d N i 2 M g C u 2 T c = 8 K, Ps = 6.9 #B 6 GdNi2H3. » n.l.o. T c = 8 K, #s = 4.2/~B 6 1. Palleau and Chouteau (1980)
2. Stucki and Schlapbach (1980) 3. B u s c h o w (1982c)
4. Buschow and van Essen (1979) 5. B u s c h o w (1980a)
6. Malik and Wallace (1977)
98 K . H . J . B U S C H O W
TABLE A 7
M a g n e t i c p r o p e r t i e s o f r a r e e a r t h - c o b a l t c o m p o u n d s a n d t h e i r h y d r i d e s .
C o m p o u n d S t r u c t u r e T~ ( K ) T~omp ( K ) #~ ( / i ß / F U ) /tco (/~B/Co) R e i s .
L a C o 5 C a C u 5 8 4 0 - 7.3 1.5 1
LaCosH0.17 C a C u » > 3 0 0 - - - 2
LaCosH3.35 o r t h o r . > 3 0 0 - 5.60 1.14 2
L a C o s H 4 . 3 o r t h o r . - - 1.64 0 . 3 3 2
C e C o 5 C a C u » 7 3 7 - 6.5 - 1
C e C o s H z 5 » o r t h o r . - - 4 . 4 0 . 9 8 2, 3
P r C % C a C u 5 9 1 2 - 9 . 9 5 - 1
P r C o » H 2 . 8 o r t h o r . - - 1.05 2
P r C o s H 3 . 6 o r t h o r . > 3 0 0 - 3 . 7 0 0 . 8 3 2, 3
N d C o 5 C a C u 5 9 1 0 - 10.6 - 1
N d C o s H 0 . 3 C a C u » > 3 0 0 - - 1.45 2
N d C % H z s o r t h o r . > 3 0 0 - 5 . 0 6 - 2, 4
S m C % C a C u 5 1020 - 7.3 - 1
S m C o » H z s o r t h o r . > 3 0 0 - - 0 . 2 2
Y 2 C o 7 G d 2 C o 7 6 3 9 - 8.75 1,3 1, 5
Y 2 C o 7 H 3 G d 2 C o 7 - 1.5 0.3 5, 6
L a 2 C o 7 G d 2 C o 7 4 9 0 - 7 . 0 1.0 7
L a 2 C o 7 H 5 G d 2 C o 7 > 3 0 0 - 4 . 2 0 . 6 7, 8
Ce2Co 7 C e 2 N i 7 50 - 0 . 9 - 10
C e 2 C o T H 7 C e 2 N i 7 2 3 3 3.8 - 9, I 0
Y C o 3 P u N i 3 305 - 2 . 4 0 . 8 1, 8
Y C o 3 H P u N i 3 - - 1.0 0.3 8, 9
Y C o 3 H 3 P u N i 3 - - ~ 0 ~ 0 8, 9
C e C o 3 P u N i 3 < 10 - < 0.1 - 10
C e C o 3 H « P u N i 3 80 - 0.8 - 10
G d C o 3 P u N i 3 611 - 2 . 2 9 - 1
G d C o 3 H 2 . 2 P u N i 3 > 3 0 0 - 3 . 3 7 1.2 11
G d C o 3 H 4 . 6 P u N i 3 28 3 . 9 2 1.03 11
D y C o 3 P u N i 3 4 5 2 - 4 . 4 - 1
D y C o 3 H a . 3 P u N i 3 18 - 3 . 8 2 - 11
H o C o 3 P u N i 3 4 1 8 5.45 - 1
H o C o 3 H 4 . 2 P u N i 3 15 - 3 . 1 6 - 11
E r C o 3 P u N i 3 3 9 5 2 2 6 4 . 2 - 1, 14
E r C o 3 H 4 . 2 P u N i 3 - 170 1.04 - 14
T m C % P u N i 3 401 122 3.0 - 1, 14
T m C o 3 H 3 . 3 P u N i 3 - 164 2 . 0 4 - 14
Y C o 2 M g C u 2 P a u l i p a r a r n a g n e t i c 1
Y C o 2 H 4 n . l . o , c o m p l e x b e h a v i o r 12, 15
P r C o 2 M g C u 2 4 9 - 2 . 8 3 1
P r C o 2 H 4 n , l . o , c o m p l e x b e h a v i o r 13
TA~LE A7(cont.)
C o m p o u n d Structure Tc (K) Tcomp (K) #s (#B/FU) Vco (vB/Co) Refs.
GdCo 2 MgCu 2 398 - 4.8 12
GdCo2H 4 MgCu 2 ~ 90 - 4.7 12
TbCo 2 MgCu 2 230 - 6.65 16
TbCo2H3. 2 MgCu 2 50 - 4.15 16
DyCo2 MgCu2 140 6.75 16
DyCozH3. 3 MgCu 2 40 - 4.1 16
H o C % MgCu2 76 - 7.4 17
HoCo2H3. 5 MgCu 2 40 - 4.7 17
ErCo 2 MgCu 2 35 - 7 17
ErCo2H3. 4 MgCu z 25 - 4.35 17
1. Buschow (1977a) 7. Buschow et al. (1980) 2. Kuijpers (1973) 8. Buschow and de Chätel (1979) 3. Kuijpers and Loopstra (1974) 9. van Essen and Buschõw (1980b) 4. Kuijpers (1972b) 10. Buschow (1980b)
5. Buschow (1982c) 11. Malik et al. (1978b) 6. Buschow and van Essen (1980b) 12. Buschow (1977b)
13. De Jongh et al. (1981) 14. Malik et al. (1981) 15. Buschow and
van der Kraan (1983) 16. Pourarian et al. (1982a) 17. Pourarian et al. (1982b)
100 K . H . J . B U S C H O W
TABLE A 8
M a g n e t i c p r o p e r t i e s o f r a r e e a r t h - i r o n c o m p o u n d s a n d t h e i r h y d r i d e s .
C o m p o u n d S t r u c t u r e To ( K ) Teomp ( K ) /q ( # B / F U ) #F0 ( # B / F e ) R e f s .
Y6Fe23 T h 6 M n 2 3 481 - 43.1 1.65 1
YöFe23H2o T h 6 M n 2 3 6 3 0 - 3 9 . 6 1.72 2
Y6Fe23H22 T h ö M n 2 3 743 - 45.1 1.96 3
Ho6Fe23 T h ö M n 2 3 530 2 0 5 14.6 - 1
Ho6Fe23H16 T h ö M n 2 3 > 3 0 0 75 7.8 - 4
Er6Fe23 T h 6 M n 2 3 4 9 4 112 6 . 4 - 1
Er6Fe23H14 t e t r . > 3 0 0 19.5 8.0 - 4
T m 6 F e 2 3 T h 6 M n 2 3 4 8 0 - 15.2 5
T m ö F e 2 3 H x T h 6 M n 2 3 5 5 0 - 2 3 . 6 - 5
LuöFe23 T h ö M n 2 3 - - 3 5 . 4 1.54 6
L u ö F e 2 3 H 8 T h 6 M n 2 3 - - 3 7 . 7 1.64 6
Y F e 3 P u N i 3 549 - 5.01 1.67 2
Y F e 3 H 5 P u N i 3 545 - 5 . 7 0 1.90 2
G d F e 3 P u N i 3 7 2 9 6 1 8 1.79 - 1
G d F e 3 H 3 . 1 P u N i 3 - 170 1.39 - 7
D y F e 3 P u N i 3 6 0 6 4 6 5 3 . 9 7 - 1
D y F e 3 H t . 6 7 P u N i 3 - 3 1 0 - - 8
D y F e 3 H z » P u N i 3 - 2 1 0 - - 8
D y F e 3 H 3 P u N i 3 - 175 2 . 2 - 7, 9
DyFe3H4.28 P u N i 3 - 145 - - 8
H o F e 3 P u N i 3 571 393 4 . 5 3 - 1
H o F e 3 H 3 P u N i 3 - 112 2.53 - 7
E r F e 3 P u N i 3 5 5 2 2 3 6 3.45 - 1
E r F e 3 H x P u N i 3 . . . . 10
Y F e 2 M g C u 2 545 - 2 . 9 0 1.45 11
Y F e 2 H x M g C u 2 308 - 3 . 4 1.7 11
C e F e 2 M g C u 2 2 3 0 - 2 . 5 9 1.24 11
C e F e 2 H x - 358 - 4 . 8 - 11
S m F e 2 M g C u 2 6 7 6 - 2 . 7 5 - 11
S m F e 2 H x M g C u 2 333 - 3.2 - 11
G d F e 2 M g C u 2 785 - 2 . 8 0 - 11
G d F e 2 H x M g C u 2 388 - 4 . 0 - 11
G d F e 2 H 4 . l M g C u 2 338 180 5 . 3 9 - 12
T b F e 2 M g C u 2 711 - 4 . 7 2 - 11
T b F e 2 H x M g C u 2 303 - 4 . 6 - 11
T b F e 2 H 3 M g C u 2 > 3 0 0 - 7.8 - 13
D y F e 2 M g C u 2 6 3 5 - 5.50 - 11
D y F e 2 H i . 9 M g C u 2 > 500 - 3.5 1.7 14
D y F e 2 H x M g C u 2 3 8 5 - 4 . 9 - 11
D y F e 2 H 3 . 5 - > 3 0 0 - 7.5 - 13, 15
TABLE A 8 (cont.)
C o m p o u n d S t r u c t u r e Tc ( K ) Tcomp (K) #s ( # B / F U ) #Fe (/IB/Fe) Reis.
H o F e 2 M g C u 2 612 - 5.50 1.5 11, 16
HoFe2D3. 5 M g C u 2 - - - 1.9 16
H o F e z H x M g C u 2 298 - 5.5 - 11
H o F e 2 H 4 . 5 M g C u 2 287 60 2.35 - 17
E r F e 2 M g C u 2 587 4 8 6 4.85 1.6 1, 16
ErFe2H0.» M g C u 2 - 395 - - 12
E r F e 2 H 2 M g C u 2 - 251 - - 12
ErFe2H3. 4 M g C u 2 - 152 - - 12
ErFe2D3. 5 M g C u 2 440 - - 1.6 16
ErFe2H3. 6 M g C u 2 2 7 0 - - - 18
ErFe2H3. 9 M g C u 2 280 42 5.60 - 17
E r F e 2 H 4 M g C u 2 < 4 - - - 12
ErFe2H4.1 - < 4 . 2 - - ~ 0 . 2 18, 19
T m F e 2 M g C u z 599 2 3 6 2.61 - 1
T m F e 2 H 4 3 M g C u 2 2 7 0 18 6.45 - 17
L u F e z M g C u 2 596 - 2.70 1.35 1, 20
L u F e 2 H 4 M g C u 2 - - 3.34 1.67 20
ScFe2 M g Z n 2 542 - 2.30 1.15 21, 22
ScFe2HI. 7 M g Z n 2 - - 2.9 1.45 21
S c F e 2 H 2 M g Z n 2 < 542 - 4 . 4 6 2.23 22
ScFe2Hz5 M g Z n 2 - - 4.2 2.1 21
ScFe2H3.2 M g Z n 2 - - 4.6 2.3 21
1. B u s c h o w ( 1 9 7 7 a )
2. O e s t e r r e i c h e r a n d B i t t n e r (1977) 3. B u s c h o w (1976)
4. B o l t i c h et al. (1981) 5. G u b b e n s et al. ( 1 9 8 3 b ) 6. G u b b e n s et al. (1981) 7. M a l i k et al. (1976) 8. N i a r c h o s et al. ( 1 9 8 0 b ) 9. W a l l a c e ( 1 9 7 9 ) 10. N i a r c h o s et al. ( 1 9 7 9 ) 11. B u s c h o w ( 1 9 7 7 d )
12. O e s t e r r e i c h e r a n d B i t t n e r ( 1 9 8 0 b ) 13. P o u r a r i a n et al. ( 1 9 8 2 a ) 14. V i c c a r o et al. ( 1 9 7 9 b ) 15. P o u r a r i a n et al. ( 1 9 8 0 c ) 16. F i s h et al. (1979) 17. G u a l t i e r i et al. ( 1 9 7 6 b ) 18. V i c c a r o et al. ( 1 9 7 9 a ) 19. D u n l a p et al. (1979) 20. B u s c h o w et al. (1980) 21. N i a r c h o s et al. ( 1 9 8 0 a ) 22. S m i t a n d B u s c h o w ( 1 9 8 0 )
102 K . H . J . B U S C H O W
TABLE A 9
M a g n e t i c p r o p e r t i e s o f r a r e e a r t h - m a n g a n e s e c o m p o u n d s a n d t h e i r h y d r i d e s . C o m p o u n d S t r u c t u r e T~ ( K ) Tcomp (K) /q ( # B / F U ) /IMn ( # B / M n ) R e f s .
Y6Mn23 ThöMn23 4 8 6 - 13.2 1 . 8 - 2 . 8 1
Y6Mn23H9 Th6Mn23 563 - 5 - 2
YöMn23H2z Th6Mn23 - - ~ 0 - 4 - 7
NdöMn23 ThöMn23 4 4 5 10.1 - 8
N d ö M n 2 3 H « Th6Mn23 220 - 20.8 - 9
SmóMn23 Th6Mn23 4 4 2 - 10.3 - 8
S m ó M n 2 3 H x ThöMn23 230 - 15.3 - 9
G d ö M n 2 3 Th6Mn23 461 - 4 9 - 4
G d ö M n 2 3 H x Th6Mn23 145 - 14.2 - 4, 7
Tb6Mn23 ThöMn23 455 - 4 4 . 4 - 10
T b ö M n 2 3 H x ThöMn23 2 2 0 - 17.7 - 7
DyöMn23 T h 6 M n z 3 435 - 4 9 . 8 - 10, 11
D y 6 M n 2 3 H x Th6Mn23 > 10 - - - 7, 11
Ho6Mn23 Th6Mn2~ 4 3 4 - 4 9 . 2 - 10
H o ö M n 2 3 H x Th6Mn23 - - - 7
EröMn23 Th6Mn23 4 2 0 - 4 5 . 6 - 10, 3
E r 6 M n 2 3 H x Th6Mn23 85 - - - 12
T m ö M n 2 3 Th6Mn23 4 0 4 - 2 9 . 5 - 15
T m 6 M n 2 3 H x ThöMn23 - 6.5 15
LuöMn23 Th6Mn23 378 - 8.9 - 3, 6
L u 6 M n 2 3 H x Th6Mn23 266 - 3.4 - 3, 6
Y M n 2 M g C u 2 - - 0 - 10
Y M n ~ H x M g C u 2 2 8 4 - 0 - 0 . 5 - 3, 4, 6
G d M n 2 M g C u 2 (10) - 4.8 - 4
G d M n 2 H x M g C u 2 260 - 3.2 - 4
D y M n 2 M g C u 2 41 - 6.7 11
D y M n 2 H x n . l . o . < 4.2 - - - 11
E r M n 2 M g Z n 2 25 7.9 - 10
E r M n 2 H 4 M g Z n 2 > 4 . 2 - - 13
E r M n 2 H 4 . 6 M g Z n 2 < 1.5 - - 13
L u M n 2 M g Z n 2 - - 4, 6
L u M n 2 H x M g Z n 2 201 - 0 . 1 6 - 4, 6
S c M n 2 M g Z n 2 - - ~ 0 - 14
S c M n2Hx M g Z n 2 217 - 0.1 - 14
1. D e l a p a l m e et al. ( 1 9 7 9 ) 2. C o m m a n d r é et al. ( 1 9 7 9 , 1980) 3. B u s c h o w ( 1 9 7 7 b )
4. B u s c h o w a n d S h e r w o o d ( 1 9 7 7 b ) 5. M a l i k et al. ( 1 9 7 7 b )
6. B u s c h o w a n d S h e r w o o d ( 1 9 7 7 a ) 7. P o u r a r i a n et al. ( 1 9 8 0 a , b ) 8. P a r k e r a n d O e s t e r r e i c h e r ( 1 9 8 2 ) 9. B u s c h o w ( 1 9 8 1 )
10. B u s c h o w ( 1 9 7 7 a )
11. G u b b e n s et al. ( 1 9 8 3 ) 12. S t e w a r t et al. ( 1 9 8 1 b ) 13. V i c c a r o et al. ( 1 9 8 0 ) 14. B u s c h o w ( 1 9 8 2 a ) 15. G u b b e n s et al. ( 1 9 8 3 a )
TABL~ A 1 0
M a g n e t i c p r o p e r t i e s o f i n t e r m e t a l l i c c o m p o u n d s a n d t e r n a r y h y d r i d e s c o n s i s t i n g o f r a r e e a r t h e l e m e n t s a n d n o n - m a g n e t i c m e t a l s .
C o m p o u n d S t r u c t u r e Te, TN ( K ) 0p ( K ) #s (pB/R) #orf (#B/R) Refs.
G d C u 2 C e C u 2 T N = 37 + 7 - 8.70 1
G d C u 2 M o S i 2 Te = 4 5 + 57 1.62 8.63 1
G d R u 2 M g Z n 2 T0 = 83 100 7.9 7.9 2
G d R u 2 H 3 - T c = 65 - - - 3
G d R h 2 M g C u 2 T c = 73 77 6.9 7.9 2
G d R h 2 H 3 o r t h o r h . T c = 35 - 6.2 - 3
E u R h 2 M g C u 2 n o C u r i e - W e i s s b e h a v i o u r
E u R h 2 H 5 M g C u 2 15.5 9 5 7.85 4
G d C u C s C I TN = 150 -- 86 - 8.45 5
G d C u H x Tc = 30 15 3.6 8.40 6
G d A g CsC1 TN = 123 - - 57 - 8.81 6
G d A g H x Tc = 25 50 4.38 7.81 6
G d A u CsC1 - 25 - 8.52 6
G d A u H x - 27 2.85 8.16 6
G d P d C r B T c = 32 29 - - 6
G d P d H x Tc = 4 0 16 3.36 8.27 6
G d 3 P d 4 Pu3Pd4 TN = 18 -- 18 - 8.80 6
G d 3 P d 4 H x T e ~ 20 - 10 3.83 8.70 6
G d 3 P d 2 Tr~ = 30 - 30 - 9.85 6
G d 3 P d 2 H x - ~ 0 2.04 8.17 6
G d 7 P d 3 T h 7 F e 3 Tc = 311 276 8.24 8.22 6
GdTPd3Hx - - 15 - 8.11 6
E u P d C r B 48 ~ 0 8.2 9
E u P d H 2 9 CsC1 21 5 1.5 7.5 4
E u 2 R u . . . . .
E u 2 R u H 6 S r z R u H 6 T~ = 29 + 29 - 7.5 7, 8
1. d e G r a a f et al. ( 1 9 8 2 b ) 2. B u s c h o w (1979) 3. J a c o b et al. ( 1 9 8 0 c ) 4, B u s c h o w et al. (1977) 5. v a n D o n g e n et al. (1983)
6. B u s c h o w (1982c) 7. T h o m p s o n et al. (1975) 8. L i n d s a y a n d M o y e r (1981) 9. B u s c h o w (1979)
104 K.H.J. BUSCHOW References
Adachi, G.Y., K.I. Niki and J. Shiokawa, 1981, J. Less-Common Met. 81, 345-348.
Adachi, G., K. Niki, H. Nagai and J. Shiokawa, 1982, J. Less-Common Mer. 88, 213-216.
Anderson, J.L., T.C. Wallace, A.L. Bowman, C.L. Radosevich and M.L. Courtney, 1973, Los Alamos Sci. Lab. Rept. LA-5320-MS.
Andreef, B.M., Ya.D. Zelvenskii, A.I. Shaviev and V.V. Shitikov, 1978, Russ. J. Phys. 52, 879-880.
Andreev, A.V., A.V. Deryagin, V.N. Moskalev and N.V. Mushnikov, 1982, Phys. Stat. Sol. (a) 73, K69-71.
Andresen, A.F., 1978, in: Hydrides for Energy Storage, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 61-66.
Andresen A.F. and A.J. Maeland, eds., 1978, Hydrides for Energy Storage (Pergamon, Ox- ford).
Antonov, V.E., I.T. Belash, B.K. Ponomarev, E.G. Ponyatovskii and V.G. Tissen, 1978, Sov.
Phys. Solid State 20, 242.
Archard, J.C., C. Lartigue, A. Percheron- Guégan, J.C. Mathieu, A. Pasturel and F.
Tasset, 1981, J. Less-Common Met. 79, 161-164.
Archard, J.C., C. Lartigue and A. Percheron- Guégan, 1982, J. Less-Common Met. 88, 89-96.
Avrami, M., 1940, J. Chem. Phys. 8, 212.
Azoulay, J. and L. Ley, 1979, Solid State Com- mun. 31, 31-34.
Barnes, R.G., W.C. Harper, S.C. Nelson, D.K.
Thome and D.R. Torgeson, 1976, J. Less- Common Met. 49, 483M91.
Bauminger, E.R., D. Davidov, I. Felner, I. No- wick, S. Ofer and D. Shaltiel, 1977, Physica 86-88B, 201.
Bechman, C.A., A. Goudy, T. Takeshita, W.E.
Wallace and R.S. Craig, 1976, Inorg. Chem. 15, 2184.
Beck, P.A., 1972, J. Less-Common Met. 28, 193.
Belkbir, L., E. Joly, N. Gerard, J.C. Archard and A. Percheron-Guégan, 1980, J. Less-Common Met. 73, 69-77.
Belkbir, L., E. Joly and N. Gerard, 1981, J.
Less-Common Met. 81, 199-206.
Bergsma, J., J.A. Goedkoop and J.H.N. van Vucht, 1963, Acta Crystallogr. 14, 223-228.
Besnus, M.J., A. Herr and G. Fischer, 1979, J.
Phys. F: Metal Phys. 9, 745 751.
Biris, A., R.V. Bucur, P. Ghete, E. Indrea and D.
Lupu, 1976, J. Less-Common Met. 49, 477-482.
Bläsius, A. and U. Gonser, 1980, J. Appl. Phys.
22, 331-332.
Bloch, D., D.M. Edwards, M. Shimizu and J.
Voiron, 1975, J. Phys. F: Metal Phys. 5, 1217.
Block, F.R. and H.J. Bahs, 1983, J. Less- Common Met. 89, 77-84.
Boltich, E., W.E. Wallace, F. Pourarian and S.K.
Malik, 1982, J. Magn. Magn. Mater. 25, 295-298.
Boltich, H.B., F. Pourarian, W.E. Wallace, H.K.
Smith and S.K. Malik, 1981, Solid State Com- mun. 40, 117-120.
Boom, R., F.R. de Boer and A.R. Miedema, 1976, J. Less-Common Met. 45, 237; 46, 271.
Bos, W.G. and K~H. Gayer, 1966, J. Nucl. Mater.
18, 1-30.
Boser, O., 1976, J. Less-Common Met. 46, 91-99.
Boureau, G., O.J. Kleppa and Pd. Antonioni, 1979, J. Solid State Chem. 28, 223.
Bouten, P.C.P. and A.R. Miedema, 1980, J.
Less-Common Met. 71, 147-160.
Bowerman, B.S., C.A. Wulff and T.B. Flanagan, 1979, Z. Phys. Chem. 116, 179-181.
Bowerman, B.S., C.A. Wulff, G.E. Biehl and T.B.
Ftanagan, 1980, J. Less-Common Met. 73, 1-15.
Bowman, A.L., J.L. Anderson and N.G. Nere- son, 1973, Proc. 10th Rare Earth Research Conf., Carefree, AZ (1973), eds. C.J. Kevane and T. Moeller, pp. 485M91.
Bowman, R.C. and W.E. Tadlock, 1979, Solid State Commun. 32, 313-318.
Bowman, R.C., A. Attalla and A.J. Maeland, 1978, Solid State Commun. 72, 501-505.
Bowman, R.C., D.M. Gruen and M.H. Mendel- sohn, 1979, Solid State Commun. 32, 501-506.
Bowman, Jr., R.C., B.D. Craft and A. Attalla, 1980, J. Less-Common Met. 73, 227-232.
Bronoel, G., J. Saradin, M. Bonnemey, A.
Percheron, J.C. Achard and J.L. Schlapbach, 1976, Int. J. Hydr. Energy 1, 251.
Brouha, M. and K.H.J. Buschow, 1975, J. Phys.
F: Metal Phys. 5, 543-554.
Brouha, M., K.H.J. Buschow and A.R. Mie- dema, 1974, IEEE Trans. Magn. MAG-10, 182-185.
Buchner, H., 1976, U.S. Patent 3.940.912; J.
Phys. F: Metal Phys. 9, L141-142.
Buchner, H., 1978a, in: Hydrides for Energy Storage, eds. A.F. Andresen and A. J. Maeland (Pergamon, Oxford) pp. 569-573.
Buchner, H., 1978b, Int. J. Hydr. Energy 3, 85.
Buchner, H., 1981, Chemie-Techn. 10, 289-292.
Buchner, H., M.A. Gutjahr, K.D. Beccu and H.
Säufferer, 1972, Z. Metallkde 63, 497.
Bührer, W., A. Furrer, W. Hälg and L. Schlap- bach, 1979, J. Phys. F: Metal Phys. 9, L141-142.
Burnasheva, V.V., A.V. Ivanov and K.N. Semen- enko, 1978, Izv. Akad. Nauk SSSR, Neorg.
Mater. 14, 1302-1307,
Busch, G. and L. Schlapbach, 1978, Helv. Phys.
Acta 51, 5.
Busch, G., L. Schlapbach, W. Thoeni, Th. von Waldkirch, P. Fischer, A. Furrer and W. Haelg, 1977, Proc. 2nd Intern. Cong. Hydrogen in Metals (Paris), paper 1D7.
Busch, G., L. Schlapbach and A. Seiler, 1978a, in:
Hydrides for Energy Storage, eds. A.F. An- dresen and A.J. Maeland (Pcrgamon, Oxford) pp. 293-300.
Busch, G., L. Schlapbach and Th. von Wald- kirch, 1978b, J. Less-Common Met. 60, 83.
Busch, G., L. Schlapbach and Th. von Wald- kirch, 1978c, in: Hydrogen for Energy Storage,
eds. A.F. Andresen and A.J. Maeland (Per- gamon, Oxford) pp. 287-292.
Buschow, K.H.J., 1971, Philips Res. Repts. 26, 49-64.
Buschow, K.H.J., 1974, J. Less-Common Met.
37, 91-101.
Buschow, K.H.J., 1976, Solid State Commun. 19, 421-423.
Buschow, K.H.J., 1977a, Repts. Prog. Phys. 40, 1179.
Buschow, K.H.J., 1977b, J. Less-Common. Met.
51, 173-175.
Busehow, K.H.J., 1977c, Solid State Commun.
21, 1031-1033.
Buschow, K.H.J., 1977d, Physica 86--88B, 79-80.
Buschow, K.H.J., 1978, in: Hydrides for Energy Storage, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 273-285.
Buschow, K.H,J., 1979, Repts. Prog. Phys. 42, 1373-1477.
Buschow, K.H.J., 1980a, in: Ferromagnetic Ma- terials, Vol. 1, ed. E.P. Wohlfarth (North- Holland, Amsterdam) pp. 297-414.
Buschow, K.HJ., 1980b, J. Less-Common Met.
72, 257 263.
Buschow, K.H.J., 1981, Solid State Commun. 40, 207-210.
Buschow, K.H.J., 1982a, J. Magn. Magn. Mater.
29, 91-99.
Buschow, K.H.L, 1982b, Solid State Commun.
Buschow, K.H.J., 1982c, unpublished results.
Buschow, K.H.J. and N.H. Beekmans, 1979, Phys. Stat. Sol. (a) 60, 193-200.
Buschow, K.H.J. and P.F. de Chätel, 1979, Pure Appl. Chem. 52, 135-140.
Buschow, K.H.J. and A.R. Miedema, 1978, in:
Hydrides for Energy Storage, eds. A.F. An- dresen and A.J. Maeland (Pergamon, Oxford).
pp. 253-259.
Buschow, K.H.J. and R.C. Sherwood, 1977a, IEEE Trans. Magn. MAG-13, 1571-1573.
Buschow, K.H.J. and R.C. Sherwood, 1977b, J.
Appl. Phys. 48, 4643-4648.
Buschow, K.H.J. and R.C. Sherwood, 1978, J.
Appl. Phys. 49, 1480-1485.
Buschow, K.H.L and A.M. van der Kraan, 1983, J. Less-Common Met. 91.
Buschow, K.H.J. and A.S. van der Goot, 1969, Phys. Stat. Sol. 35, 515-522.
Buschow, K.H.J. and A.M. van Diepen, 1976, Solid Stare Commun. 19, 79-81.
Buschow, K.H.J. and A.M. van Diepen, 1979, Solid State Commun. 31, 469-471.
Buschow, K.H.J. and R.M. van Essen, !979, Solid State Commun. 32, 1241-1242.
Buschow, K.H.J. and H.H. van Mal, 1972, J.
Less-Common Met. 29, 203.
Buschow, K.H.J. and H.H. van Mal, 1982, in:
Intercalation Chemistry, eds. M.S. Whit- tingham and A.J. Jacobson (Academic Press, New York) Ch. 13, pp. 405-444.
Buschow, K.H.J. and R.P. van Stapele, 1970, J.
Appl. Phys. 41, 4066-4069.
Buschow, K.H.J. and J.H.N. van Vucht, 1967, Philips Res. Repts. 22, 233-245.
Buschow, K.H.J., R.L. Cohen and K.W. West, 1977, J. Appl. Phys. 48, 5289-5295.
Buschow, K.H.J., A.M. van Diepen, N.M. Beek- mans and J.W.M. Biesterbos, 1978, Solid State Commun. 28, 181-185.
Buschow, K.H.J., P.H. Smit and R.M. van Essen, 1980, J. Magn. Magn. Mater. 15--18, 1261-1263.
Buschow, K.H.J., P.C.P. Bouten and A.R. Mie- dema, 1982a, Repts. Prog. Phys. 45, 937-1038.
Buschow, K.H.J., P.C.M. Gubbens, W. Ras and A.M. van der Kraan, 1982b, J. Appl. Phys. 53, 8329-8331.
Carstens, D.H.W., 1978, J. Less-Common Met.
61, 253-259.
Carter, F.L., 1980, J. Less-Common Met. 74, 245.
Cho, Y.K., R. Yamamoto, M. Doyama, S. Ono, K. Imanari and T. Tabata, 1982, J. Less- Common Met. 88, 125-131.
Christian, J.W., 1965, in: Physical Metallurgy, ed.
R.W. Cahn, (North-Holland, Amsterdam) pp.
443-540.
Christian, J.W., 1975, The Theory of Trans- formations in Metals and Alloys, Part 1 (Per- gamon, Oxford).
Chung, Y., T. Takeshita, O.D. McMasters and K.A. Gschneidner, 1980, J. Less-Common Met.
74, 217-223.
Clinton, J., H. Bittner and H. Oesterreicher, 1975, J. Less-Common Met. 41, 187-189.
Coey, J.D.M., D.H. Ryan, D. Gignoux and A.
Lienard, 1982, J. Appl. Phys. $3, 7804-7805.
Cohen, R.L. and J.H. Werniek, 1982, Science.
Cohen, R.L., K.W. West and K.H.J. Buschow, 1978, Solid State Commun. 25, 293-295.
Cohen, R.L., K.W. West and J.H. Wernick, 1980a, J. Less-Common Met. 73, 273-279.
Cohen, R.L., K.W. West and J.H. Wernick, 1980b, J. Less-Common Met. 70, 229-241.
Cohen, R.L., K.W. West, F. Oliver and K.H.J.
Buschow, 1980c, Phys. Rev. 21, 941-944.
Commandré, M., D. Fruchart, A. Rouault, D.
Sauvage, C.B. Shoemaker and D.P. Shoe- maker, 1979, J. Physique 40, L639-642.
Commandré, M., D. Sauvage, D. Fruchart, A.
Rouault, C.B. Shoemaker and D.P. Shoe- maker, 1980, J. Less-Common Met. 74, 14.
Cotts, R.M., 1972, Ber. Bunsenges. Phys. Chem.
76, 760.
Crowder, C., W.J. James and W. Yelon, 1982, J.
Appl. Phys. 53, 2637-2639.
Cyrot, M., D. Gignoux, F. Givord and M. Lava- gna, 1979, J. Physique 40, C5-171-176.
Darriet, B., M. Pezat, A. Hbika and P. Hagen- muller, 1979, Mat. Res. Bull. 14, 377-385.
Dayan, D., M.H. Mintz and M.P. Dariel, 1980, J. Less-Common Met. 73, 15-24.
De Boer, F.R., W.H. Dijkman, W.C.M. Mattens and A.R. Miedema, 1979, J. Less-Common Met. 64, 241.
De Gennes, P.G., 1962a, J. Phys. Radium 23, 510-520.
De Gennes, P.G., 1962b, J. Phys. Radium 23, 630-641.
De Graaf, H., R.C. Thiel and K.H.J. Buschow, 1982a, J. Phys. F: Metal Phys. 12, 1239-1245.
De Graaf, H., R.C. Thiel and K.H.J. Busehow, 1982b, J. Phys. F: Metal Phys. 12, 2079-2090.
106 K.H.J. BUSCHOW De Jongh, L.J., J. Bartholomé, F.J.A.M.
Greidanus, H.J.M. de Groot, H.L. Stipdonk and K.H.J. Buschow, 1981, J. Magn. Magn.
Mater. 25, 207-214.
Delapalme, A., J. Déportes, R. Lemaire, K.
Hardman and W.J. James, 1979, J. Appl. Phys.
50, 1987-1989.
Den Broeder, F.J.A. and K.H.J. Buschow, 1980, J. Less-Common Met. 70, 289-292.
Didisheim, J.J., K. Yvon, D. Shaltiel, P. Fischer, P. Bujard and E. Walker, 1979a, Solid State Commun. 32, 1087-1090.
Didisheim, J.J., K. Yvon, D. Shaltiel and P.
Fischer, 1979b, Solid State Commun. 31, 47-50.
Didisheim, J.J., K. Yvon, P. Fischer and D.
Shaltiel, 1980, J. Less-Common Mer. 73, 355-362.
Didisheim, J.J., K. Yvon, P. Fischer and P.
Tissot, 1981, Solid State Commun. 38, 637-641.
Dunlap, B.D., G.K. Shenoy, J.M. Friedt, P.J.
Viccaro, D. Niarchos, H. Kierstead, A.T. A1- dred and D.G. Westlake, 1979, J. Appl. Phys.
50, 7682-7686.
Dunlap, B.D., P.J. Viccaro and G.K. Shenoy, 1980, J. Less-Common Met. 74, 75-79.
Earl, M.W. and J.D. Dunlop, 1974, Proc. 26th Power Sources Symposium,. Atlanta City, NJ (June 1974), (PSC Publications Committee, Red Bank, NJ) p. 24.
Elemans, J.B.A.A., K.H.J. Buschow, H.W.
Zandbergen and J.P. de Jong, 1975, Phys. Stat.
Sol. (a) 29, 595-600.
Evans, J., I.R. Harris and P.F. Martin, 1980, J.
Less-Common Met. 75, 49-53.
Ewe, H., E.W. Justi and K. Stephen, 1973, En- ergy Conversion 13, 109.
Fischer, P., A. Furrer, G. Busch and L.
Schlapbach, 1977, Helv. Phys. Acta 50, 421.
Fischer, P., W. Hälg, L. Schlapbach and K.
Yvon, 1978a, J. Less-Common Met. 60, 1-9.
Fischer P., W. Haley, L. Schlapbach, F. Stucki and A.F. Andresen, 1978b, Mat. Res. Bull. 13, 931.
Fish, G.E., J.J. Rhyne, S.G. Sankar and W.E.
Wallace, 1979, J. Appl. Phys. 50, 2003 2006.
Flanagan, T.B., 1978a, in: Hydrides for Energy Storage, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 43-60.
Flanagan, T.B., 1978b, in: Hydrides for Energy Storage, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 135-150.
Flanagan, T.B. and G.E. Biehl, 1981, J. Less- Common Met. 82, 385-389.
Fromm, E. and G. Hörz, 1980, Int. Metals Rev.
5/6, 269-283.
Fruchart, D., M. Commandré, D. Sauvage, A.
Raoult and R. Tellgren, 1980a, J. Less- Common Met. 74, 55-63.
Fruchart, D., A. Raoult, C.B. Shoernaker and D.P. Shoemaker, 1980b, J. Less-Common Met.
73, 362; Phys. Stat. Sol. (a) 57, Kll9-122.
Fujii, H., F. Fujimoto, S. Takeda, T. Hihara and T. Okamoto, 1983, J. Magn. Magn. Mater.
31-34, 223-224.
Furrer, A., P. Fischer, W. Hälg and L.
Schlapbach, 1978, in: Hydrides for Energy Stor- age, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 73-79.
Gavra, Z., H.H. Mintz, G. Kimmel and Z.
Hadari, 1979, Inorg. Chem. 18, 3595.
Gelatt, C.D., 1978, in: Hydrides for Energy Stor- age, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 193-204.
Gelatt, C.D., 1980, in: Theory of Alloy Phase Formation, ed. L.D. Bennett (The Metal- lurgical Soc. AIME) p. 451.
Gignoux, D., R. Lemaire, P. Molho and F.
Tasset, 1980, J. Magn. Magn. Mater. 21, 307-315.
Goodell, P.D., G.D. Sandrock and E.L. Huston, 1980a, J. Less-Common Met. 73, 135-142.
Goodell, P.D., G.D. Sandrock and E.L. Huston, 1980b, Sandia Nat. Lab. Rept. SAND79-7095, UC-94d.
Goodell, P.D. and P.S. Rudman, 1983, J. Less- Common Met. 83, 117-125.
Goudy, A., W.E. Wallace, R.S. Craig and T.
Takeshita, 1978, Adv. Chem. 157, 212-226.
Gruen, D.M., M.H. Mendelsohn and I. Sheft, 1977, The Electrochem. Soc. Proc. 77-6, 482-488.
Gruen, D.M., F. Schreiner, I. Sheft, 1978, Int. J.
Hydro. Energy 3, 303-310.
Gschneidner, K.A., 1961, Rare Earth Alloys, (Van Nostrand, Princeton, NJ).
Gschneidner, K.A., T. Takeshita, Y. Chung and O.D. McMasters, 1982, J. Phys. F: Metal. Phys.
12, LI-6.
Gualtieri, D.M. and W.E. Wallace, 1977, J. Less- Common Met. 55, 53-59.
Gualtieri, D.M. and W.E. Wallace, 1978, J. Less- Common Met. 61, 261-267.
Gualtieri, D.M., K.S.V.L. Narasimhan and T.
Takeshita, 1976a, J. Appl. Phys. 47, 343~3435.
Gualtieri, D.M., K.S.V.L. Narasimhan and W.E.
Wallace, 1976b, AIP Conf. Proc. 34, 219-221.
Gubbens, P.C.M., A,M. van der Kraan and K.H.J. Buschow, 1981, Solid State Commun.
37, 635-639.
Gubbens, P.C.M., A.M. van der Kraan and K.H.J. Buschow, 1983a, J. Magn. Magn. Ma- ter. 30, 383-388.
Gubbens, P.C.M., A.M. van der Kraan and K.H.J. Buschow, 1983b, J. Phys. F: Metal.
Phys. (in press).
Guidotti, R.A., G.B. Atkinson and M.M. Wong, 1977, J. Less-Common Met. 52, 13-28.
Guinet, Ph., P. Perroud and J. Rabière, 1980, Int.
J. Hydr. Energy 5, 609-618.
Gurewitz, E., Pinto, M.P. Dariel and H. Shaked, 1983, J. Phys. F: Metal Phys. 13, 545-554.
Gutjahr, M.A., H. Buchner, K.D. Beccu and H.
Säufferer, 1973, Power Sources 4, 79.
Halstead, T.K., 1974, Solid State Commun. 11, 114-117,
Halstead, T.K., N.A. Abood and K.H.J.
Buschow, 1976, Solid State Commun. 19, 425-428.
Hardman, K., J.J. Rhyne, K. Smith and W.E.
Wallace, 1980, J. Less-Common Mer. 74, 97.
Hempelmann, H. and G. Hilscher, 1980, J. Less- Common Met. 74, 103-109.
Hempelmann, R., D. Ohlendorf and E. Wicke, 1978, in: Hydrides for Every Storage, eds. A.F.
Andresen and A.J. Maeland (Pergamon, Ox- ford) pp. 407-415.
Hilscher, G. and H. Rais, 1978, J. Phys. F: Metal.
Phys. 8, 511-520.
Hilscher, G., G. Wiesinger and E. Lebsanft, 1980, J. Magn. Magn. Mater. 15-18, 1273-1274.
Holleck, G.L., J.R. Driscoll and B.E. Paul, 1980, J. Less-Common Met. 74, 379 384.
Huang, Y.C., M. Tada, T. Watanabe and K.
Fusita, 1978, Proc. 2nd World Hydrogen En- ergy Conf., Vol. 3, eds. T.N. Veziroglu and W.
Seifritz (Pergamon, Oxford) p. 1613.
Huston, E.L. and G.D. Sandrock, 1980, J. Less- Common Met. 74, 435-443.
Iandelli, A. and A. Palenzona, 1979, in: Hand- book on the Physics and Chemistry of Rare Earths, Vol. 2, eds. K.A. Gschneidner and L.
Eyring (North-Holland, Amsterdam) pp. 1 54.
Irodova, A.V., V.P. Gluzkov, V.A. Somenkov and S.Sh. Shilstein, 1981, J. Less-Common Mer. 77, 89-98.
Irvine, S.J.C. and I.R. Harris, 1978, in: Hydrogen for Energy Storage, eds. A.F. Andresen and A.J. Maeland (Pergamon, Oxford) pp. 431-446.
Irvine, S.J.C. and I.R. Harris, 1980, J. Less- Common Mer. 74, 33-43.
Jacob, I., 1981, Solid State Commun. 40, 1015 1018.
Jacob, I. and D. Shaltiel, 1979, J. Less-Common Met. 65, 117 128.
Jacob, 1., D. Shaltiel, D. Davidov and I. Milo- slavski, 1977, Solid State Commun. 23, 669-672.
Jacob, I., J.M. Bloch, D. Shaltiel and D.
Davidov, 1980a, Solid State Commun. 35, 155-158.
Jacob, I., D, Davidov and D. Shaltiel, 1980b, J.
Magn. Magn. Mater. 20, 226-230.
Jacob, I., E.R. Bauminger, D. Davidov, I. Felner, S. Ofer and D. Shaltiel, 1980c, J. Magn. Magn.
Mater. 15--18, 1269--1270.
Jacob, I., V. Shargorodski, D. Davidov and D.
Shaltiel, 1981, J. Less-Common Mer. 82, 391 393.
Johnson, W.AI and R.F. Mehl, 1939, Trans. Am.
Inst. Mineral Metall. Petrol. Eng. 135, 416.
Justi, E.W., H.H. Ewe, A.W. Kalberlah, N.M.
Saridakis and H,H. Schaefer, 1970, Energy Conversion 10, 183.
Kadel, R. and A. Weiss, 1979, J. Less-Common Mer. 65, 89-101.
Kalvius, G.M., U.F. Klein and G. Wortrnann, 1974, J. Physique 35, C6-139.
Karlicek, R.F. and I.J. Lowe, 1979, Solid Stare Commun. 31, 163 165.
Karlicek, R.F. and I.J. Lowe, 1980, J. Less- Common Met. 73, 219-225.
Kawamura, M., S. Ono, S. Higano and K. Ka- mino, 1983a, J. Less-Common Met. 89, 359 363.
Kawamura, M., S. Ono and Y. Mizuno, 1983b, J. Less-Common Mer. 89, 365-372.
Keinert, J., 1971, Atomkernenergie (ATKE) 18, 261.
Khodosov, Ye.F., A.I. Linnik, G.F. Kobzenko and V.G. Ivanchenko, 1978a, Fiz. Metal. Met- allogr. 44 (2), 178-180.
Khodosov, E.F., M.I. Eremina, G.F. Kobzenko and V.G. Ivanchenko, 1978b, Izv. Akad. Nauk SSSR, Neorg. Mater. 14, 1632-1634.
Kierstead, H.A., 1980a, J. Less-Common Met.
70, 199 207.
Kierstead, H.A., 1980b, J. Less-Common Met.
73, 61-68.
Kierstead, H.A., 1980c, J. Less-Common Mer.
71, 311-315.
Kierstead, H.A., 1980d, J. Less-Common Met.
71, 303 309.
Kierstead, H.A., 1981a, J. Less-Common Met.
78, 29-34.
Kierstead, H.A., 1981b, J. Less-Common Met.
78, 61-68.
Kierstead, H.A., 1981c, J. Less-Common Mer.
77, 281-285.
Kierstead, H.A., 1981d, J. Less-Common Met.
80, 115-120.
Kierstead, H.A., 1981e, J. Less-Common Met.
81, 221-227.
Kierstead, H.A., P.J. Viccaro, G.K. Shenoy and B.D. Dunlap, 1979, J. Less-Comrnon Met. 66, 219-222.
Kirchmayr, H.R. and C. Poldy, 1979, in: Hand- book on the Physics and Chemistry of Rare Earths, Vol. 2, eds. K.A. Gschneidner and L.
Eyring (North-Holland, Amsterdam) pp.
55-230.
Kost, M.E. and V.I. Mikheeva, 1976, Zh. Neorg.
Khimii 22, 2910-2924.
Kost, M.E. and A.L. Shilov, 1979, lnorg. Mater.
14, 1270-1272.
Kouvel, J.S., 1961, J. Phys. Chem. Sol. 21, 57.
Kübler, J., K.H. Bennemann, R. Lapka, F.
Rösel, P. Oelhafen and H,J. Güntherodt, 1981, Phys. Rev. B23, 5176-5184.
Kuijpers, F.A., 1972a, Phys. Lett. 39A, 240-241.
Kuijpers, F.A., 1972b, Ber. Bunsenges. Phys.
Chem. 76, 122~1223.
Kuijpers, F.A., 1973, Philips Res. Repts. Suppl.
1973 no. 2.
Kuijpers, F.A. and B.O. Loopstra, 1971, J. Phy- sique 32, CI-657-658.
Kuijpers, F.A., B.O. Loopstra, 1974, J. Phys.
Chem. Sol. 35, 301-306.
Kuijpers, F.A. and H.H. van Mal, 1971, J. Less- Common Met. 23, 395 398.
Lacher, J.R., 1973, Proc. Soc. (London) A 161, 525.
Lakner, J.F., F.S. Uribe and S.A. Steward, 1980, J. Less-Common Met. 74, 13.
Landolt, M., F. Meier, P. Zürcher, H. Oes- terreicher, K. Ensslen, J. Hoenigschmid and E.
Bucker, 1979, Solid State Commun. 32, 1009-1011.
Larsen, J.W. and B.R. Livesay, 1978, J. Appl.
Phys. 49, 1506.
Larsen, J.W. and B.R. Livesay, 1980, J. Less- Common Met. 73, 79-88.
Lebsanft, M., D. Richter and J. Töpler, 1979, J.
Phys. F: Metal Phys. 9, 105%1065.
Libowitz, G.G., 1972, Inorg. Chem. Series, Vol.
10, ed. E.J. Roberts (Butterworths, London) p. 79.
Libowitz, G.G. and A.J. Maeland, 1978, in:
Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, eds. K.A. Gschneidner and U Eyring (North-Holland, Amsterdam) pp.
299-336.