1. The effect of t e m p e r a t u r e on t h e inviscid stability of two- dimensional wake flows is both stabilizing and destabilizing. A s the t e m p e r a t u r e i n c r e a s e s , the c r i t i c a l M a c h number i n c r e a s e s , and the r a n g e of M a c h n u m b e r s o v e r which subsonic d i s t u r b a n c e s c a n e x i s t a l s o i n c r e a s e s . However, as long a s the r e l a t i v e M a c h number i s below the c r i t i c a l M a c h number t h e n e u t r a l inviscid wave number will d e c r e a s e d t h i n c r e a s i n g t e m p e r a t u r e .
2, The numerical calculations indicate t h a t a heated wake will be m o r e s t a b l e than a cool one if the r e l a t i v e M a c h number i s l e s s than the c r i t i c a l M a c h number. F o r a typical hypersonic blunt body wake, using G a u s s i a n p r o f i l e s f o r t e m p e r a t u r e and velocity i n the Dorodnitsyn-Howarth variable, the maximurn d i m e n s i o n l e s s spatial amplification r a t e is constant i n the downstream direction and o c c u r s a t one p r e f e r r e d frequency, T h i s r e s u l t i s s i m i l a r to t h a t f o r the i n c o m p r e s s i b l e f l a t plate wake.
3. The inviscid stability problem f o r a x i - s y m m e t r i c c o m p r e s s i b l e wake flows is d i r e c t l y analogous t o the two-dimensional problem i n a
t r a n s f o r m e d orthogonal velocity space, except f o r a delta function singularity a s s o c i a t e d with the Reynolds s h e a r stres's n e a r the c r i t i c a l point. T h i s s t r e s s is a l w a y s a destabilizing influence. It i s a l s o found that a n e c e s s a r y and sufficient condition f o r the existence of n e u t r a l subsonic d i s t u r b a n c e s is that f o r s o m e w =
-
c R<
'/M[ i n a s y s t e m fixed i n the fluid a t r e s t ]
,
the gradient df the density- vorticity product i n a c e r t a i n d i r e c t i o n m u s t vanish.4. F o r i n c o m p r e s s i b l e axi- s y r n m e t r i c wake flow (using a Gaussian), the only m o d e s that a r e unstable a r e the n 2 1 and n
=
2m o d e s . F o r slowlying varying t e m p e r a t u r e p r o f i l e s t h e s a m e m o d e s a r e unstable. However, f o r a "top-hat" t e m p e r a t u r e profile, the n = 0, 1 m o d e s a r e unstable. By physical a r g u m e n t s i t is shown t h a t t h e n = 1 mode should be the m o s t unstable mode f o r wake-type flows.
108 REFERENCES
1. L e e s , L e s t e r : Hypersonic Wakes and T r a i l s . P a p e r No. 2662-62 p r e s e n t e d at t h e ARS 17th Annual Meeting, 13- 18 November 1962, L o s Angeles, California ( t o be published).
2. Sato, Hiroshi: E x p e r i m e n t a l Investigation of the T r a n s i t i o n of L a m i n a r Separated L a y e r , J o u r n a l of t h e P h y s i c a l Society, Vol. 11, No. 6, pp. 702-709, June, 1956.
Sato, H i r o s h i and Kuriki, Kyoichi: The Mechanism of T r a n s i t i o n i n the Wake of a Thin F l a t P l a t e P l a c e d P a r a l l e l t o a Uniform Flow. J o u r n a l o f F l u i d M e c h a n i c s , Vol. 11, P a r t 3 , pp. 321-352, November, 1961.
Sato, Hiroshi: The Stability a n d T r a n s i t i o n of a Two-Dimensional Jet. J o u r n a l of F l u i d Mechanics, Vol. 7, Part 1, pp. 53-81, January, 1960.
Hollingdale, S. H. : Stability and Configuration of the Wakes P r o d u c e d by Solid Bodies Moving through Fluids. Philosophical Magazine, S e r i e s 7, Vol. 29, No. 194, pp. 209-257, March, 1940.
Chiarulli, P. : Stability of Two-Dimensional Velocity Distributions of the Half- J e t Type. Technical Report No. F- TS- 1228- lA,
H e a d q u a r t e r s A i r M a t e r i a l Command, Wright P a t t e r son A i r F o r c e Base, June, 1959.
Clenshaw, C. W. a n d Elliott, D. : A N u m e r i c a l T r e a t m e n t of the O r r - S o m m e r f e l d Equation i n the C a s e of a L a m i n a r Jet. Q u a r t e r l y J o u r n a l of Mechanics a n d Applied Mathematics, Vol. 13, Pt. 3, pp. 300-313, 1960.
Curle, N. : A Note on Hydrodynamic Stability i n Unlimited F i e l d s of Viscous Flow. Aeronautical R e s e a r c h Council, R e p o r t No.
17953, 21 October 1955,
Curle, N. : Hydrodynamic Stability of L a m i n a r Wakes. A e r o - nautical R e s e a r c h Council, R e p o r t No. 18275, 5 M a r c h 1956.
See a l s o , The P h y s i c s of Fluids, Vol. 1, No. 2, pp. 159- 160, March-April, 1958.
Curle, N. : Hydrodynamic Stability of the L a m i n a r Mixing Region between P a r a l l e l S t r e a m s . Aeronautical Re s e a r c h Council,
R e p o r t No. 18426, 9 May 1956.
11. Curle, No : On Hydrodynamic Stability of Unlimited Anti- s y m m e t r i c a l Velocity P r o f i l e s . Aeronautical R e s e a r c h Council, Report No. 185 64,
10 J u l y 1956.
12. Curle, N. : S y m m e t r i c a l Oscillations of Unlimited Two-Dimensional P a r a l l e l Flows. Aeronautical R e s e a r c h Council, R e p o r t No. 18590, 31 July 1956.
13. Curle, N. : On Hydrodynamic Stability i n Unlimited F i e l d s of Viscous Flow. P r o c e e d i n g s of the Royal Society of London, S e r i e s A, Vol. 238, No. 1215, pp, 489-501, January, 1957.
14. Drazin, P. G. : Discontinuous Velocity P r o f i l e s f o r the O r r - Sommerfeld Equation. J o u r n a l of Fluid Mechanics, Vol. 10, pp. 571-583, June, 1961.
15. Drazin, P. G. and Howard, L. N. : The Instability to Long Waves of Unbounded P a r a l l e l Inviscid Flow. J o u r n a l of Fluid Mechanics, Vol. 14, pp. 257-283, October, 1962.
16. Esch, Robin E. : The Instability of a Shear L a y e r Between Two P a r a l l e l S t r e a m s . J o u r n a l of Fluid Mechanics, Vol. 3, P a r t 3, pp. 289-303, December, 1957.
17. Foote, J. R. and Lin, C. C. : Some Recent Investigations i n the T h e o r y of Hydrodynamic Stability. Q u a r t e r l y of Applied Mathematics, Vol. 8, No. 3, pp. 265-280, October, 1950.
18. Howard, Louis N. : Hydrodynamic Stability of a Jet. J o u r n a l of M a t h e m a t i c s a n d P h y s i c s , Vol. 37, No. 4, pp. 283-304, January,
1959.
19. L e s s e n , M a r t i n : On the Stability of the F r e e L a m i n a r Boundary L a y e r Between P a r a l l e l S t r e a m s . NACA Technical Note No. 1929, August, 1949.
20. L e s s e n , Martin: Note on a Sufficient Condition for the Stability of General, P l a n e P a r a l l e l Flows. Q u a r t e r l y of Applied Mathe- m a t i c s , Vol. 10, No. 2, pp. 184-186, 1952.
21. Lessen, Martin; Lew, Henry G. ; Pai, Shih I. ; Fanucci, J e r o m e B. ; a n d Fox, John A. : Hydrodynamic Stability. Pennsylvania State
University, Department of Aeronautical Engineering and Department of Engineering, Technical Report No. 2, May, 1954.
22. Lin, C. C. : The T h e o r y of Hydrodynamic Stability. Cambridge University P r e s s , 1955.
23. Lin, C. C. : On the Stability of the L a m i n a r Mixing Region Between Two P a r a l l e l S t r e a m s i n a Gas. NACA Technical Note No. 2887, January, 1953.
24. McKoen, C. H. : On the Stability of a L a m i n a r Wake. Aeronautical R e s e a r c h Council, C. P. No. 303, 1956.
25. Pai, S. I. : On t h e Stability of Two-Dimensional L a m i n a r J e t Flow of Gas. J o u r n a l of Aeronautical Sciences, Vol. 18, No. 11,
pp. 731-742, November, 1951.
26. Pai, Shih-I. : On the Stability of a Vortex Sheet i n a n Inviscid
C o m p r e s s i b l e Fluid. J o u r n a l of the Aeronautical Sciences, Vol. 2 1, No. 5
,
pp. 325-328, May, 1954.27. Pai, S. I. : On t h e Stability of A x i s y m m e t r i c a l Flows. G e n e r a l E l e c t r i c M i s s i l e and Space Division, Space Sciences Laboratory, R62SD75, July, 1962.
28. Pai, S. I. and Li, H. : On t h e Stability of A x i - s y m m e t r i c a l Wakes of a Binary Mixture of C o m p r e s s i b l e Fluids. G e n e r a l E l e c t r i c M i s s i l e a n d Space Division, Space Sciences Laboratory, R62SD79, August, 1962.
29. Savic, P. : On Acoustically Effective Vortex Motion i n G a s e o u s J e t s . Philosophical Magazine and J o u r n a l of Science, Vol. 32, pp. 245-252, 1941.
30. Tatsurni, T. and Gotoh, K.: The Stability of F r e e Boundary L a y e r s Between Two Uniform S t r e a m s . J o u r n a l of Fluid Mechanics,
Vol. 7, P a r t 3, pp. 433-441, March, 1960,
31. Tatsumi, T. and Kakutani, T. : The Stability of a Two-Dimensional L a m i n a r Jet. J o u r n a l of Fluid Mechanics, Vol. 4, P a r t 3,
pp. 261-275, 1958.
32. L e e s , L e s t e r a n d Lin, Chia Chiao: Investigation of the Stability of the L a m i n a r Boundary L a y e r i n a C o m p r e s s i b l e Fluid. NACA Technical Note No. 11 15, September, 1946.
33. Landau, L. : Stability of Tangential Discontinuities i n C o m p r e s s i b l e Fluid. Akedemiia Nauk S. S. S. R., Comptes Rendus (Doklady), Vol. 44, No. 4, pp. 139-141, 1944.
34. Miles, John W. : On t h e Disturbed Motion of a Plane Vortex Sheet. J o u r n a l of F l u i d Mechanics, Vol. 4, P a r t 5, pp. 538-552, September, 1958.
35. Hatanka, Hiroshi: On the Stability of a S u r f a c e of Discontinuity in a C o m p r e s s i b l e Fluid. J o u r n a l Soc. Sci. Culture, Japan, Vol, 2, pp. 3-7, 1947: cited by Applied Mechanics Reviews, Vol. 2 , p. 897, July, 1949.
36. Batchelor, G. K. a n d Gill, A. E. : Analysis of the Stability of Axi- s y m m e t r i c J e t s . J o u r n a l of F l u i d Mechanics, Vol. 14, P a r t 4, pp. 529-551, Dec., 1962.
37. Gill, A. E. : On the O c c u r r e n c e of Condensation on Steady A x i s y m m e t s i c J e t s , J o u r n a l of Fluid Mechanics, Vol. 14,
P a r t 4, pp. 557-567, December, 1962.
38. Squire, H. B. : On the Stability f o r Three-Dimensional Disturbances of Viscous Flow Between P a r a l l e l Walls. P r o c e e d i n g s of the Royal Society of London, S e r i e s A, Vol. 142, pp. 621-628, 1933.
39. Dunn, D. W. and Lin, C. C. : The Stability of the L a m i n a r Boundary L a y e r i n a C o m p r e s s i b l e Fluid f o r the C a s e of Three-Dimensional Disturbances. J o u r n a l of the Aeronautical Sciences, Vol. 19, No. 7, p. 491, July, 1952.
40. Case,
K.
M. : Stability of Inviscid P l a n e Couette Flow. The P h y s i c s of Fluids, Vol. 3, pp. 143-148, March-April, 1960.41. Case, K. M. : Stability of a n Idealized Atmosphere. I. Discussion of Results. The P h y s i c s of Fluids, Vol. 3, No. 2, pp. 149-154,
, March-April, 1960.
42. Case, K. M. : Edge E f f e c t s and the Stability of P l a n e Couette Flow.
The P h y s i c s of Fluids, Vol. 3, No. 3, pp, 432-435, May-June, 1960.
43. Case,
K.
M. : Hydrodynamic Stability a n d the Inviscid Limit.J o u r n a l of Fluid Mechanics, Vol. 10, P a r t 3, pp. 420-429, May, 1961.
44. Case, K. M. : Hydrodynamic Stability a n d the Initial Value P r o b l e m . P r o c e e d i n g s of Syrnposia i n Applied Mathematics, Hydrodynamic Stability, A m e r i c a n M a t h e m a t i c a l Society, Vol, 13, pp. 25- 33, 1962.
45. Lin, C. C. : Some M a t h e m a t i c a l P r o b l e m s i n the T h e o r y of t h e Stability of P a r a l l e l Flows. J o u r n a l of F l u i d Mechanics, Vol. 10, P a r t 3, pp. 430-438, May, 1961.
46. Whitham, G. B. : G r o u p Velocity and E n e r g y Propagation f o r T h r e e - Dimensional Waves. Communications on P u r e a n d Applied Mathematics, K. 0. F r i e d r i c h s A n n i v e r s a r y I s s u e , Vol. 14, No. 3, pp. 675-691, August, 1961.
47. von Karman, Th., and Rubach, H. : Uber d i e M e c h a n i s m u s d e s F l u s s i g k e i t s und Luftwider standes. Physik. Z ,
,
13:49, (1 912).48. Roshko, A. : On the Development of Turbulent Wakes f r o m Vortex S t r e e t s . NACA R e p o r t 1191, 1954.
49. Taneda, Sadatoshi: Studies of Wake V o r t i c e s (11), E x p e r i m e n t a l Investigation of t h e Wake Behind C y l i n d e r s and P l a t e s a t Low Reynolds Numbers. R e p o r t s of R e s e a r c h Institute f o r Applied Mechanics, Japan, Vol. 4, No. 14, pp. 29-40, October, 1955.
50. Schlichting, Hermann: Boundary L a y e r Theory. T r a n s l a t e d by J. Kestin. 4th Edition, McGraw-Hill, 1960.
51. Dewey, C. F.
,
Jr. : M e a s u r e m e n t s i n Highly Dissipative Regions of Hypersonic Flows: I. Hot W i r e M e a s u r e m e n t s inLow Reynolds Number Hypersonic Flows. 11. The Near Wake of a Blunt Body a t Hyper sonic Speeds. California Institute of Technology, Ph. D.Thesis, June, 1963.
52. Chapman, D. R. ; Kuehn, D. M.; and Larson, Hp Ko : Investigation of Separated F l o w s i n Supersonic and Subsonic S t r e a m s with
E m p h a s i s on the Effect of Transition. NACA Report 1356, 1958.
53. L a r s o n , H. K. : Heat T r a n s f e r i n Separated Flows. J o u r n a l of the A e r o s p a c e Sciences, Vol. 26, No, 11, pp. 731-738,
November, 1959.
54. McCarthy, John F., Jr.: Hypersonic Wakes. GALCIT Hypersonic R e s e a r c h P r o j e c t , Memorandum No. 67, J u l y 2, 1962.
55. Kubota, T. : L a m i n a r Wake with S t r e a m w i s e P r e s s u r e Gradient
-
11. GALCIT I n t e r n a l M e m o r a n d u m No. 9, April, 1962.56. Pai, Shih-I.. : Viscous Flow Theory. I
-
L a m i n a r Flow.D. Van Nostsand Company, Inc., 1956.
57. Tollmien, W. : Asymptotische Integration d e r Storungsdifferential- gleichung e b e n e r l a m i n a r e r Stromun e n bei hohen Reynoldsschen Zahlen. Z. angew. Math. Mech. 25727, pp. 33-50, 70-83, 1947.
58. Heisenberg, W. : On the Stability of L a m i n a r Flow. P r o c . Int. Congr. Math., pp. 292-6, 1950.
59. Reshotko, Eli: Stability of the C o m p r e s s i b l e Boundary L a y e r . GALCIT Hypersonic R e s e a r c h P r o j e c t , Memorandurn No. 52, J a n u a r y 15, 1960.
\60. Slattery, R. E. and Clay, W. G, : R e e n t r y P h y s i c s and P r o j e c t P r e s s P r o g r a m s . Semmiannual Technical S u m m a r y Report to the Advanced R e s e a r c h P r o j e c t s Agency (U), pp. 11-11 to 11-17, Lincoln Laboratory, M a s s a c h u s e t t s Institute of Technology, 30 June 1962.
61. Ince, E. L. : O r d i n a r y Differential Equations. Dover Publications, Inc., 1956.
62. Benney, D. J. : A Non- L i n e a r T h e o r y f o r Oscillations i n a P a r a l l e l Flow. J o u r n a l of F l u i d Mechanics, Vol. 10, No. 2, pp. 209-236, M a r c h , 1961.
APPENDIX A
BOUNDARY CONDITIONS F O R THE AXI-SYMMETRIC PROBLEM
F o r the axi- symmetric wake the boundary conditions on the a x i s a r e d e r i v e d f r o m the p u r e l y kinematic condition that all d i s t u r b a n c e a m p l i t u d e s a n d the v o r t i c i t y d i s t u r b a n c e m u s t be finite t h e r e , r e g a r d l e s s of the viscosity o r the c o m p r e s s i b i l i t y of the fluid. The t h r e e components of v o r t i c i t y fluctuation a r e
F o r n = 0, the continuity equation [Eq. (2. 38)] shows that q r
-
r a s r --a 0 i f q and S a r e to be finite on the a x i s and qz
(b- '
if
r
is to be finite on the a x i s Eq. (A. 3)].
T h e r e f o r e , q c ( o ) = %(ul =o;X
?*c.),
T r ( o 1,
s L d a n deCOj
a r e a r i b t r a r y .F o r n
#
0, l e t qr + r €A
a s r --r 0.
Then f r o m Eq. ( 2 . 38),Substituting Eq. (A. 4) into Eq. (A. 3 ) one obtains
Then € = n
-
1 and f o rF r o m the (#)-momentum equation, n ( 0 )
=
0 when n#
0,
and f r o m Eq. (A. l ) , qx- r ( n#
0) o r qx(0) = 0. Therefore, s ( 0 ) = e(0) = 0 when n#
0. In addition, Eq. (2. 40) shows that ~ ' ( 0 )=
0 when n>
1.APPENDIX B
TWO- DIMENSIONAL WAKE MODEL
The m e a n flow quantities a r e a s s u m e d to satisfy the boundary l a y e r equations. Using Kubota's f o r a z e r o external p r e s s u r e gradient, the following s e t of equations a r e obtained for the c o m p r e s s i b l e wake behind a flat plat'e o r hypersonic vehicle:
Continuity
Momentum
E n e r g y
with the boundary conditions
where
'T = P r a n d t l number
=
constant d* = c h a r a c t e r i s t i c body dimensionTY/*: fey:
= constant:
Chapman-Rubesin r e l a t i o nhi , G'
= constantThe above equations a r e l i n e a r i z e d by using Oseen type v a r i a b l e s
W : I - U
< (I
Retaining the lowest o r d e r t e r m s , the following equations a r e obtained
with the boundary conditions
W(O,Y)
=By using Laplace t r a n s f o r m s , the solutions of Eqs. (B. 4) subject to the boundary conditions, Eqs. (B. 5) a r e obtained, a s folldws:
Drag The m o m e n t u m t h i c k n e s s ( o r d r a g coefficient,
'D
='
3 ~ u e s x ~ ~a e i s given by
r; u;
0
and the net h e a t t r a n s f e r r e d to the body by
-m
= constant
where H* = stagnation enthalpy.
L e t
Then f r o m Eqs. (B. 7) and (B. 8 )
If the initial conditions a r e assumed to be point s o u r c e s (delta functions), i. e.
,
3 ) =
R s(9)
then f r o m Eqs. (B. 10) and (B. 11)
The solutions then become
(B. 11)
(B. 12)
Let the c h a r a c t e r i s t i c length scale, L*, of the mean flow field be defined a s
F o r a flat plate incompressible wake,
F o r convenience, the following notation i s adopted:
so that
(B. 14)
(B. 15)
(B. 1 6 )
(B. 17)
V* i s the velocity defect of the wake and L* i s the Y position a t which
The Reynolds number of the wake i s
APPENDIX C
METHOD O F SOLUTION O F TATSUMI AND KAKUTANI~' FOR SMALL a R The O r r - S o m m e r f e l d equation c a n be e x p r e s s e d i n the following f o r m ~ q .
[
(3.211 :subject to the boundary conditions, Eqs. (3. 3) a n d (3. 7),
- J L m
y - A -f9 - "
JC
'f4a,- T < a + d L - c 4 R c ) L W Anti- s y m m e t r i c Disturbances
S y m m e t r i c D i s t u r b a n c e s
Tatsurni a n d ~ a k u t a n i ~ expand the solution i n p o w e r s of a R a s follows:
w
w h e r e
Substituting Eq. (C. 5) into Eq. (C. l ) , and matching powers of i a R, the following equations r e l a t i n g the (b(n)ls
,
a r e obtainedThe solutions of Eq. (C. 6) a r e
The solutions of Eq. (C. 7) can be found by the method of variation of p a r a m e t e r s and a r e
f o r n >/ 1
,
j = 1 , 2 , 3, 4 . The general solution of Eq.(C.
1) iswhere the C . ' s a r e a r b i t r a r y constants.
J
Since the solution Eq.
(C.
8) m u s t satisfy the outer(C. 10)
boundary condition Eq.
[
(C. 2 )I , C,
=C4 = O
and for a non-trivial solution,$bl
and$b3
m u s t s a t i s f y the following eigenvalue equations:Anti- s y m m e t r i c disturbances [Eq. (C. 3)]
Symmetric disturbances [Eq. (C. 44
(C. 11)
(C. 12)
F o r convenience, l e t A($:,:") ), B($'*' )
c ( @ ~
'n' ) and D($ 'n) )J
be the t e r m s i n the b r b t s of the solution $I,'*'
[
Eq. (C. 9)],
respectively, where the lower l i m i t is taken t o be infinity, s o that
and f u r t h e r introduce the notation
(C. 13)
*
This definition d i f f e r s f r o m that of Eq. (6. 3), Reference 31, by the factor ( l / i a ~ c ) .Then
(C. 15)
Substituting Eq. (C. 5) into Eqs. (C. 11) and (C. 12) and using
Eq. (C. 15), the eigenvalue relations can be reduced to the following f o r m
Symmetric Disturbances
rD
Anti- s y m m e t r i c Disturbances
~0 (C. 17)
- 1
+f ( i * a I n I"'
n = I
n 21
-
In)-
c i *QJ"J (+,I I +y)LA~~n~"' (031
*I
la = I
Eqs. (C. 16) and (C. 17) a r e then expanded and only t e r m s of the third and lower o r d e r i n
i
a R a r e retained. The quantities i n Eq. (C. 14)2 w e r e evaluated using Eq. (C. 9) with w =
+
e - YSince the complex wave speed i s of o r d e r unity, o r l e s s , then
p -
a will be of the o r d e r of a R. In o r d e r to be consistent with the approximations used, the coefficients in the eigenvaluk equations wereexpanded i n powers of
P -
a = a Q ( d complex) and t e r m s of the o r d e r G 3 and higher w e r e neglected. The complex eigenvalue equations thenr O (C. 16)
become
Anti- Symmetric Disturbances
Svmmetric Disturbances
& ( z + G ) ~ ( L A R )
I
+ + A ( ~ + G )
(c.
19)where
The asymptotic behavior of Eqs. (C. 18) and (C. 19) was determined by a t r i a l and e r r o r method. The c o r r e c t limiting p r o c e s s e s and
reduced equations a r e a s follows f o r c
I
= 0 :- -
3 3 (C. 20)F
2 4 8magin nary part:
-
Gr+ [
-L-
L A ]R - ~ G R ~
Symmetric d i s t u r b a n c e s Ci; -, - 0
,
GR- -
CT,
CK -L oR e o l p a r t CR + 2 3 - - d 5 ~ [ - 3 -
8
41 p 2 = Q
3 2
I r n a g i n a r y p a r t
GI c [ f i - $ * t P ] R -
d Z r x 8~ (C. 21)The equations a r e solved simultaneously and the r e s u l t s a r e given in Table 3. 2.
*
Since the coefficient of (iaR) i n Eq. (C. 3 19) i s r e a l , the coefficient of R 3 i n Eq. (C. 21) Real part] i s z e r o to the o r d e r of the approximation used.Eq. (C. 18) w a s solved graphically and a minimum c r i t i c a l Reynolds number was found
a able
3.1] .
*
Since the profile w=
e-Y w a s used in these calculations, the L sign of c a s computed f r o m Eqs. (C. 20) and (C. 21) m u s t be changedR
to conform to the notation i n the r e s t of the text. T h i s was done i n these tables.
APPENDIX D
SOLUTION O F THE INVISCID EQUATIONS FOR AMPLIFIED DISTURBANCES
F o r amplified subsonic disturbances, the solution of Eq. (4. 14) and Eq. (4. 17) i s r e g u l a r everywhere on the r e a l axis. Since G i s
singular a t the a x i s [ G - ( l / a )
1,
i t is convenient to m a k e the following transformationEq. (4. 7) then becomes
Eq. (D. 2) i s a complex equation. I t s r e a l and imaginary p a r t s a r e
The boundary conditions a s
)7
---, rn a r eI
IC
[/ -
M'( CnZ-: ] ) : c
(D. 4)Using a power s e r i e s expansion about the axis, and satisfying the con- dition n(0) = G
,
where
(D. 5)*
*
P r i m e s (') indicate differentiation with r e s p e c t to4
2 w*" C Z
c, =
(I 4- cRIZ ,- CTZ
T h e r e a r e only two i n t e g r a l c u r v e s that will simultaneously s a t i s f y the boundary conditions a t the a x i s and a t infinity f o r a given s e t of eigen values; a
,
c R and cI.
These a r e sketched below.Sketch D. 1
If the given s e t i s not consistent, the boundary conditions will not be satisfied and the i n t e g r a l c u r v e s oscillate v e r y rapidly n e a r the axis.
F o r t h i s reason, the integrations w e r e s t a r t e d f r o m the a x i s and infinity and the values of H and H w e r e compared a t a point within
R I
the domain. The matching point was taken to be the point a t which
The calculation procedure used to obtain the inviscid amplified solution for the given profiles w ( q ) and T(
9
), the relative Mach number, M, and the wave speed,C~
'
i s a s follows:Integration f r o m Infinity to the C r i t i c a l Point and f r o m the Axis to the Critical Point
(1) A s s u m e a value of a and c and evaluate the boundary con- I
dition a t infinity f r o m Eq. (D. 4) and the boundary condition for a s m a l l positive value of f r o m Eq. (D. 5).
( 2 ) Continue the calculation of H and H by the simultaneous
R I
integration of Eq. (D. 3 ) to the c r i t i c a l point,
C
( 3 ) Compare the values of H and HI a t
q c
obtained f r o m the Rinner and outer integrations.
(4) Repeat steps (1) through ( 3 ) until the values of H and H
R I
a r e simultaneously matched a t
q c
APPENDIX E
EXPANSION ABOUT CRITICAL POINT
-
AXI- SYMMETRIC CASEThe solution of the inviscid equation [ E ~ . (5. 9 ) ] in the neighborhood of the "singular point" i n the complex r-plane (w
=
c ) is obtained by a Taylor S e r i e s expansion (method of Frobenius). Eq. (5. 9) can be r e w r i t t e n in the following f o r mwhere
Let
#
= r-
r and a s s u m e a s e r i e s solution of the f o r mC
Since (w-c) and T a r e analytic functions of r everywhere i n the finite region of the complex r plane the coefficients of Eq. (E. 1) c a n be expanded i n a Taylor S e r i e s about the point r = r c (w = c):
Y -
I- . - [Y, +PC'- x *''I 1
w - c 2 w,'
+I
Eqs. (E. 3 ) and (E. 4) a r e substituted into Eq. (E. 1 ) and the coefficient of each power of f i s s e t equal to zero. The two linearly independent solutions, and
9 ,
valid in the neighborhood of the c r i t i c a l point1
along the r e a l a x i s a r e a s follows:
where
The coefficient b i s not determined in this method. The proper path 1
f o r analytical continuation of
,
i n passing f r o m7 >
O to# <
0,
l i e s below the point r = r c for wct
>
0 [ ~ ~ ~ e n d i x GI .
The other disturbance amplitudes can be found i n the neighborhood of the c r i t i c a l point by using Eqs. (5. ll), (E. 5) and (E. 6) :
Note that f o r
7
' O 1-7 -
\ -7
7
L oI n r \ h l ) ! l -
il-ri n Eq. (E. 8).
1 3 3
APPENDIX F
EXTREMUM O F DENSITY -VORTICITY PRODUCT
F o r the c a s e of n e u t r a l disturbances,
( 2 ~ ' )
m u s t have a t r u e e x t r e m u m a t r = r and not a point of inflection. T h i s c a n be shownC
i n exactly the s a m e way a s i n the i n c o m p r e s s i b l e c a s e 36 i n the following way. Add the complex conjugate equations, i n s t e a d of subtracting t h e m ( i n d e r i v a t i o n of Eq. (5. 32) ) to obtain
0
F o r m o s t p r o b l e m s of i n t e r e s t ,
gR
0,
s o thatand
A n e c e s s a r y and sufficient condition f o r the e x i s t e n c e of n e u t r a l d i s - t u r b a n c e s i s that
and c R = w = c a t t h i s point.
S
L e t
47
=dr/g,
so that
F o r m o s t profiles, (
7
r ~ ' ) ' and hence d 7% changes sign only once i n the infinite interval and f r o m Eq. (F. 7)) (w-
cR) and 4' w/d7'm u s t have opposite signs. Therefore, for neutral disturbances, Idw/471 m u s t have a maximum with r e s p e c t to r, i. e., C
I I
(
d 3 W/d'3)F=%: and consequently,( f
w'),=,~ it 0This r e s u l t cannot be shown f o r amplified disturbances except i n the 3 6
limiting c a s e of incompressible flow
.
135 APPENDIX G
VISCOUS CORRECTIONS IN THE CRITICAL LAYER
In considering inviscid n e u t r a l disturbances, a c r i t i c a l point
o c c u r s in the flow field, a c r o s s which some of the disturbance amplitudes a r e singular Section V. 3
I .
In a r e a l fluid these singularities m u s t be smoothed out by the action of viscosity and conductivity i n theneighborhood of this c r i t i c a l point. These viscous c o r r e c t i o n s a r e im- portant for the amplitude distributions but they do not affect the eigen- value problem f o r a R
> >
1. However, if aR i s not v e r y much g r e a t e r than unity, the viscous c o r r e c t i o n s around the c r i t i c a l layer m a yextend to the a x i s and the splitting of the solutions into inviscid and viscous types is not valid. In addition, the t e m p e r a t u r e and density fluctuations a r e singular a t t h i s point, and the t h e r m a l conductivity of the fluid m u s t be included i n the vicinity of t h i s point to smooth out t h e s e discontinuities. It i s to be expected that the viscous solutions for the axi- s y m m e t r i c c a s e a r e s i m i l a r to those for the two-dimensional c a s e except f o r the new element associated with the singularity i n q since
3 the c u r v a t u r e effects i n a thin annulus i n the neighborhood of the c r i t i c a l point a r e unimportant. The incompressible c a s e will be the only one considered here. The compressible problem i s the s a m e a s the incompressible one i n the Tollmien variable59 and will not be discussed.
The solutions c o r r e c t e d for viscosity a r e given by
[ c o r r e c t e d solutions
1
= [ + ~ v i s c o u s r e p ~ a ~ e m e n t t e r ~ ] inviscid solutionI -
singular t e r m s=
[regular inviscid solution]I
+
[viscous replacement t e r m j a136
where the viscous replacement function i s obtained by solving the full viscous disturbance equations i n the vicinity of the c r i t i c a l point, i. e., retaining only the leading viscous t e r m s i n t h i s region. This function m u s t be such that i t approaches the singular t e r m s in the inviscid
solution "far away" f r o m the c r i t i c a l layer. The viscous replacement 2 2
t e r m s a r e found using the convergent s e r i e s method Introduce the p a r a m e t e r
E = l/(a~) 1/3 ,
a s i n the two dimensional case, and the new independent variable
The m e a n flow quantities a r e expanded in a Taylor s e r i e s about the c r i t i c a l point
Eqs. ( 2 . 3 2 )
-
( 2 . , 3 5 ) then take the following f o r m sw h e r e TO,
= ,/a2
+ "%/rCxIn o r d e r f o r Eqs. (Go 4)
-
(G. 7) to be consistent, the d i s t u r b a n c e a m p l i t u d e s m u s t be of the foLLowing f o r mSubstituting Eq. (G. 8 ) into Eq. (G. 4 )
-
(G. 7) and eliminating the p r e s s u r e , t h e following z e r o e t h o r d e r equations a r e obtained:The solutions of Eq. (G. 10) a r e
a
(G. c)a)
(G.9b)
(G. 10)
(G. 11)
w h e r e
'1'3 y3
3
= ( w c l )=
( A P N C ' ) (r-rc)(G. 12)
( 1 )
and
//,,3
a n d)-Iy3
(21[ f
f i Z)~''J a r e Hankelfunctions of o r d e r (1/3) and the f i r s t and second kind respectively. The a s y m p t o t i c expansions of the Hankel functions of o r d e r (1/3) a r e valid
2 2 i n the following r e g i o n ( L i n ).
The solutions obtained by m e a n s of a n asymptotic s e r i e s (of the full viscous equations) c a n be f o r m a l l y r e l a t e d t o the asymptotic
expansions of the four solutions obtained by the method of convergent 2 2
s e r i e s ( L i n ) The solutions of the inviscid equations a r e two of the asymptotic solutions of the f u l l viscous equations. T h e r e f o r e i n o r d e r that the inviscid solutions r e p r e s e n t valid a s y m p t o t i c solutions of the full viscous equations, the c o r r e c t path of integration around the
singular point should follow the s a m e c r i t e r i o n as Eq. (G. 13), and should l i e below the singular point f o r w C
' >
0 and above f o r wc'<
0.
If c
>
0, t h e singular point of the inviscid equation l i e s above Ithe r e a l a x i s , and the effect of v i s c o s i t y c a n be neglected inside the fluid f o r sufficiently l a r g e Reynolds numbers. If c = 0, the two l i n e s
I
i n t e r s e c t a t a single point on the r e a l axis, and the inviscid solutions can never hold along the e n t i r e r e a l axis. Viscosity cannot be
neglected a t the singular point no m a t t e r how l a r g e the Reynolds
number m a y be. F o r c
<
0 the two l i n e s i n t e r s e c t the r e a l a x i s a t twoI
points and viscosity is important a l l along the r e a l a x i s between the two inter sections.
( 6 )
yv
c a n be determined d i r e c t l y f r o m Eq. (G. 9) and Eq. (G. 11)(G. 14)
; Yn,
4:;
=- -
d, cw: )"3
t
The solutions Eqs. ( G. 11) and ( G.14) a r e identical t o those f o r the two dimensional case.
Rewrite Eq. ( G.9b) in t e r m s of the independent variable
3
(G. 15)
By the method of variation of constants, the solution of Eq. (G. 15) i s
(G. 16)
h l ( z ) h2(z) i s the Wronskian of the functions h ( a ) and
I
1h Z ( z )
,
and -(2/3) n<
a r g (i z )<
(2/3) rr o r -(7n/6)<
a r g z<
(n/6).O - lo) (0)
F o r q. X
-
qr* = 1 , q , is a L o m m e l function, L ( Z ),
.
The r e a l p a r t of the L o m m e l function is even and the i m a g i n a r y p a r t i s a n odd function of z. The g r a p h s ofL,
(L't ) andL T
( i t ) a r e shown belowSketch G. 1
--
F o r l a r g e values of Z
The viscous c o r r e c t i o n s which apply f o r z = 0(1), r
-
r -- 0 (dR)-
'13C
will r e m o v e the singularity a t the singular point, and the d i s t u r b a n c e amplitude, q i n the vicinity of r = r will look like
3, ' C
Sketch G. 2
The discontinuity is s m e a r e d out by the a c t i o n of viscosity,
If the phase velocity is taken t o be equal to the velocity of the m e a n flow on the a x i s , then the solution is singular a t that point, and d o e s not s a t i s f y the boundary conditions. Again, a viscous r e p l a c e m e n t
3 7 t e r m m u s t be found. The r e a d e r is r e f e r r e d t o
in^'
and Gill f o r ad i s c u s s i o n of t h i s problem.
TABLE I
NEUTRAL, INVISCID STABILITY CHARACTERISTICS
TABLE I1
AMPLIFIED, INVISCID STABILITY CHARACTERISTICS
C a s e
C a s e 1 2 3 4 5
A U
0 . 6 9 2 0. 285 0 . 1 6 0 0. 083 0 . 0 4 9
A T - 0 0. 50 0. 38 0. 30 0. 20
M~
0 0. 42 0. 17 0. 07 0. 03
1 4 4
T A B L E I1 (CONTINUED)
d C,
- -
CR
0 0 . 0 4 0 . 1 1 0. 15 0.16 0. 15 0 . 1 1 0.05
0 0.08 0. 13 0.16
4 Cl
- -
=
20 0.05 0.11 0. 15 0.17 0. 15 0. 11 0. 05
0 0.08 0. 13 0.16 d c,
A- d 4
- 0 . 3 8 -0. 35 - 0 . 3 0 -0. 25 - 0 . 2 0 -0. 2 1 -0. 15 -0. 1 2
- 0 . 3 7 -0.32 -0. 28 - 0 - 2 3 -0.20
- a C~
1 . 4 4 1. 3 4 1. 1 6 0. 9 6 0. 77 0. 58 0. 39 0. 20
1. 59 1. 3 6 1. 17 0. 98
0. 46 0. 20 C a s e
4
5
-0, 19 -0.18 -0. 13 0.60
0 . 4 0 0.20 a
1 . 5 1 1 . 4 0 1 . 2 0 1.00 0.80 0 . 6 0 0 . 4 0 0.20
1.63 1 . 4 0 1. 20 1 . 0 0 0 . 8 0
I
C~
I
C~- 0 . 5 6 -0. 53 - 0 . 4 8 - 0 . 4 3 -0.38 - 0 . 3 3 -0. 25 - 0 . 1 6
-0.58 - 0 . 5 4 -0.48 -0.43 - 0 . 3 9
0 0. 03 0 . 0 9 0. 1 4 0.20 1 0. 2 4
0. 27 0. 25
0 0.06 0. 11 0.16 0.20 - 0 . 3 3
- 0 . 2 5 -0. 15
0. 25 0.28 0. 25
WAVE NUMBER
UNSTABLE DISTURBANCE, c l
> 0
I N V I S C I D LIMIT
- - - - _ . - - - _ . - - -
UTRAL DISTURBANCE, c(