• Tidak ada hasil yang ditemukan

Adaptive OFDM waveform design for spatio-temporal-sparsity exploited STAP radar

2.6 Conclusions

decorrelation effect, we observed almost 5.5 dB improvement in detection perfor- mance forzðIÞT and approximately 6 dB forzðIIÞT whenPD ¼0:5. On the other hand, when temporal decorrelation was present, the detection performance was improved by approximately 3 dB for both the targets atPD ¼0:5.

References

[1] L. E. Brennan and I. S. Reed, ‘Theory of adaptive radar,’ IEEE Trans.

Aerosp. Electron. Syst., vol. AES-9, no. Mar. (2), pp. 237–252, 1973.

[2] J. Ward, ‘Space–time adaptive processing for airborne radar,’ Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, Tech.

Rep. 1015, Dec. 1994.

[3] V. Cavo, ‘MCARM/STAP data analysis,’ Air Force Research Laboratory, Rome, NY, Tech. Rep. AFRL-SN-RS-TR-1999-48, Vol I, May 1999.

[4] B. Himed, ‘MCARM/STAP data analysis,’ Air Force Research Laboratory, Rome, NY, Tech. Rep. AFRL-SN-RS-TR-1999-48, Vol II, May 1999.

[5] R. Klemm,Principles of Space–Time Adaptive Processing. London, United Kingdom: IET, 2002.

[6] J. R. Guerci,Space–Time Adaptive Processing for Radar. Norwood, MA:

Artech House, 2003.

[7] J. R. Guerci, J. S. Goldstein, and I. S. Reed, ‘Optimal and adaptive reduced- rank STAP,’ IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. Apr. (2), pp. 647–663, 2000.

[8] W. L. Melvin, ‘A STAP overview,’ IEEE Aerosp. Electron. Syst. Mag., vol. 19, no. 1, pp. 19–35, 2004.

[9] M. C. Wicks, M. Rangaswamy, R. Adve, and T. B. Hale, ‘Space–time adaptive processing: A knowledge-based perspective for airborne radar,’

IEEE Signal Process. Mag., vol. 23, no. 1, pp. 51–65, 2006.

[10] I. S. Reed, J. D. Mallett, and L. E. Brennan, ‘Rapid convergence rate in adaptive arrays,’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-10, no.

Nov. (6), pp. 853–863, 1974.

[11] D. W. Tufts, I. Kirsteins, and R. Kumaresan, ‘Data-adaptive detection of a weak signal,’ IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no.

Mar. (2), pp. 313–316, 1983.

[12] A. M. Haimovich and Y. Bar-Ness, ‘An eigenanalysis interference canceler,’

IEEE Trans. Signal Process., vol. 39, no. 1, pp. 76–84, 1991.

[13] A. Haimovich, ‘The eigencanceler: Adaptive radar by eigenanalysis meth- ods,’IEEE Trans. Aerosp. Electron. Syst.,vol. 32, no. Apr. (2), pp. 532–542, 1996.

[14] R. Kumaresan and D. W. Tufts, ‘Data-adaptive principal component signal processing,’ inProc. 19th IEEE Conf. Decision and Control Including Symp.

on Adaptive Processes, Albuquerque, NM, Dec. 10–12, 1980, pp. 949–954.

[15] L. Chang and C.-C. Yeh, ‘Performance of DMI and eigenspace-based beamformers,’ IEEE Trans. Antennas Propag., vol. 40, no. 11, pp. 1336–

1347, 1992.

[16] J. S. Goldstein and I. S. Reed, ‘Reduced-rank adaptive filtering,’ IEEE Trans. Signal Process., vol. 45, no. 2, pp. 492–496, 1997.

[17] J. R. Roman, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, and J. H. Michels, ‘Parametric adaptive matched filter for airborne radar

applications,’ IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. Apr. (2), pp. 677–692, 2000.

[18] C. Jiang, H. Li, and M. Rangaswamy, ‘Conjugate gradient parametric adaptive matched filter,’ inProc. IEEE Radar Conf., Washington, DC, May 10–14, 2010, pp. 740–745.

[19] J. S. Goldstein, I. S. Reed, and L. L. Scharf, ‘A multistage representation of the Wiener filter based on orthogonal projections,’IEEE Trans. Inf. Theory, vol. 44, no. Nov. (7), pp. 2943–2959, 1998.

[20] C. D. Peckham, A. M. Haimovich, T. F. Ayoub, J. S. Goldstein, and I. S.

Reed, ‘Reduced-rank STAP performance analysis,’ IEEE Trans. Aerosp.

Electron. Syst., vol. 36, no. Apr. (2), pp. 664–676, 2000.

[21] R. Fa and R. C. de Lamare, ‘Reduced-rank STAP algorithms using joint iterative optimization of filters,’ IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. Jul. (3), pp. 1668–1684, 2011.

[22] K. Gerlach and M. Picciolo, ‘Airborne/spacebased radar STAP using a structured covariance matrix,’IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 1, pp. 269–281, 2003.

[23] J. S. Bergin, C. M. Teixeira, P. M. Techau, and J. R. Guerci, ‘Improved clutter mitigation performance using knowledge-aided space–time adaptive processing,’ IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. Jul. (3), pp. 997–1009, 2006.

[24] W. L. Melvin and G. A. Showman, ‘An approach to knowledge-aided covariance estimation,’IEEE Trans. Aerosp. Electron. Syst.,vol. 42, no. Jul.

(3), pp. 1021–1042, 2006.

[25] O. Besson, S. Bidon, and J.-Y. Tourneret, ‘Covariance matrix estimation with heterogeneous samples,’IEEE Trans. Signal Process., vol. 56, no. 3, pp. 909–920, 2008.

[26] P. Stoica, J. Li, X. Zhu, and J. R. Guerci, ‘On using a priori knowledge in space–time adaptive processing,’ IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2598–2602, 2008.

[27] X. Zhu, J. Li, and P. Stoica, ‘Knowledge-aided space–time adaptive pro- cessing,’ IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. Apr. (2), pp. 1325–1336, 2011.

[28] M. C. Wicks, ‘A brief history of waveform diversity,’ inProc. IEEE Radar Conf., Pasadena, CA, May 4–8, 2009, pp. 1–6.

[29] A. Nehorai, F. Gini, M. S. Greco, A. P. Suppappola, and M. Rangaswamy,

‘Introduction to the issue on adaptive waveform design for agile sensing and communication,’ IEEE J. Sel. Top. Signal Process., vol. 1, no. Jun. (1), pp. 2–5, 2007.

[30] R. Calderbank, S. Howard, and B. Moran, ‘Waveform diversity in radar signal processing,’IEEE Signal Process. Mag., vol. 26, no. 1, pp. 32–41, 2009.

[31] M. C. Wicks, E. Mokole, S. Blunt, R. Schneible, and V. Amuso, Eds.,Principles of Waveform Diversity and Design.Raleigh, NC: SciTech Pub., Aug. 2010.

[32] F. Gini, A. De Maio, and L. K. Patton,Waveform Design and Diversity for Advanced Radar Systems. London, UK: Inst of Engineering & Technology, Jun. 2011.

[33] D. Garmatyuk, ‘Ultrawideband imaging radar based on OFDM: System simulation analysis,’ in Proc. SPIE, vol. 6210, no. 1, Orlando, FL, May 2006, paper 621007.

[34] G. Franken, H. Nikookar, and P. van Genderen, ‘Doppler tolerance of OFDM-coded radar signals,’ inProc. 3rd European Radar Conf. (EuRAD), Manchester, UK, Sep. 13–15, 2006, pp. 108–111.

[35] S. Sen and A. Nehorai, ‘OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking,’ IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3152–3162, 2010.

[36] S. Sen and A. Nehorai, ‘Adaptive OFDM radar for target detection in multipath scenarios,’IEEE Trans. Signal Process., vol. 59, no. 1, pp. 78–90, 2011.

[37] S. Sen, ‘OFDM radar space–time adaptive processing by exploiting spatio- temporal sparsity,’IEEE Trans. Signal Process., vol. 61, no. 1, pp. 118–130, 2013.

[38] S. Sen, ‘PAPR-constrained Pareto-optimal waveform design for OFDM-STAP radar,’IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3658–3669, 2014.

[39] E. F. Knott, ‘Radar cross section,’ in Radar Handbook, 2nd ed., M. I.

Skolnik, Ed. Boston, MA: McGraw-Hill, Inc., Jan. 1990, ch. 11.

[40] F. Weinmann, ‘Frequency dependent RCS of a generic airborne target,’ in URSI Int. Symp. Electromagnetic Theory (EMTS), Berlin, Germany, Aug. 16–19, 2010, pp. 977–980.

[41] S. Maria and J.-J. Fuchs, ‘Application of the global matched filter to STAP data an efficient algorithmic approach,’ in Proc. 31st Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, May 14–19, 2006, pp. 1013–1016.

[42] H. Zhang, G. Li, and H. Meng, ‘A class of novel STAP algorithms using sparse recovery technique,’ Apr. 2009. [Online]. Available: http://arxiv.org/

abs/0904.1313.

[43] K. Sun, H. Zhang, G. Li, H. Meng, and X. Wang, ‘A novel STAP algorithm using sparse recovery technique,’ inProc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), vol. 5, Cape Town, South Africa, Jul. 12–17, 2009, pp. 336–339.

[44] I. W. Selesnick, S. U. Pillai, K. Y. Li, and B. Himed, ‘Angle-Doppler pro- cessing using sparse regularization,’ in Proc. 35th Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, TX, Mar. 14–19, 2010, pp. 2750–2753.

[45] J. T. Parker and L. C. Potter, ‘A Bayesian perspective on sparse regulariza- tion for STAP post-processing,’ in Proc. IEEE Radar Conf., Washington, DC, May 10–14, 2010, pp. 1471–1475.

[46] K. Sun, H. Zhang, G. Li, H. Meng, and X. Wang, ‘Airborne radar STAP using sparse recovery of clutter spectrum,’ Aug. 2010. [Online]. Available:

http://arxiv.org/abs/1008.4185.

[47] K. Sun, H. Meng, Y. Wang, and X. Wang, ‘Direct data domain STAP using sparse representation of clutter spectrum,’ Signal Process., vol. 91, no. 9, pp. 2222–2236, 2011.

[48] S. Sen and C. Glover, ‘Frequency adaptability and waveform design for OFDM radar space–time adaptive processing,’ inProc. IEEE Radar Conf., Atlanta, GA, May 7–11, 2012, pp. 230–235.

[49] Z. Yang, Z. Liu, X. Li, and L. Nie, ‘Performance analysis of STAP algo- rithms based on fast sparse recovery techniques,’Prog. Electromagnet. Res.

B, vol. 41, pp. 251–268, 2012.

[50] Z. Yang, X. Li, and H. Wang, ‘Space–time adaptive processing based on weighted regularized sparse recovery,’Prog. Electromagnet. Res. B, vol. 42, pp. 245–262, 2012.

[51] S. Sen, ‘OFDM radar space–time adaptive processing by exploiting spatio- temporal sparsity,’IEEE Trans. Signal Process., vol. 61, no. 1, pp. 118–130, 2013.

[52] Z. Yang, X. Li, H. Wang, and W. Jiang, ‘On clutter sparsity analysis in space–time adaptive processing airborne radar,’IEEE Geosci. Remote Sens.

Lett., vol. 10, no. Sep. (5), pp. 1214–1218, 2013.

[53] Z. Yang, X. Li, H. Wang, and L. Nie, ‘Sparsity-based space–time adaptive processing using complex-valued Homotopy technique for airborne radar,’

IET Signal Process., vol. 8, no. Jul., pp. 552–564, 2014.

[54] S. Sen, ‘Low-rank matrix decomposition and spatio-temporal sparse recov- ery for STAP radar,’ IEEE J. Sel. Top. Signal Process., vol. 9, no. 8, pp.

1510–1523, Dec. 2015.

[55] A. Steinhardt and N. Pulsone, ‘Subband STAP processing, the fifth genera- tion,’ in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Cambridge, MA, Mar. 16–17, 2000, pp. 1–6.

[56] A. Hoffman and S. M. Kogon, ‘Subband STAP in wideband radar systems,’

inProc. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Cambridge, MA, Mar. 16–17, 2000, pp. 256–260.

[57] G. Tang, B. N. Bhaskar, and B. Recht, ‘Sparse recovery over continuous dictionaries – Just discretize,’ inProc. 38th Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Pacific Grove, CA, Nov. 3–6, 2013, pp. 1043–1047.

[58] R. Tibshirani, ‘Regression shrinkage and selection via the lasso,’J. R. Stat.

Soc.. Ser. B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[59] D. L. Donoho and X. Huo, ‘Uncertainty principles and ideal atomic decompositions,’IEEE Trans. Inf. Theory, vol. 47, no. Nov. (7), pp. 2845–

2862, 2001.

[60] M. Elad and A. M. Bruckstein, ‘A generalized uncertainty principle and sparse representation in pairs of bases,’ IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2558–2567, 2002.

[61] J. Tropp, ‘Greed is good: Algorithmic results for sparse approximation,’

IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[62] J. R. Guerci and J. S. Bergin, ‘Principal components, covariance matrix tapers, and the subspace leakage problem,’ IEEE Trans. Aerosp. Electron.

Syst., vol. 38, no. 1, pp. 152–162, 2002.

[63] B. D. Carlson, ‘Covariance matrix estimation errors and diagonal loading in adaptive arrays,’IEEE Trans. Aerosp. Electron. Syst.,vol. 24, no. Jul. (4), pp. 397–401, 1988.

[64] M. Grant and S. Boyd, ‘CVX: Matlab software for disciplined convex pro- gramming, version 2.1,’ Mar. 2014. http://cvxr.com/cvx.

Cognitive waveform design for