• Tidak ada hasil yang ditemukan

CONCLUSIONS AND OUTLOOKS

4.4. Theoretical Investigations: An Essential Tool for Polymerization Catalysis

Theoretical methods are nowadays, mainly due to the efficiency of the new com- puters and the so-called DFT revolution, able to tackle problems as complicated as catalytic reactions such as polymerizations as well as stereoselectivity (in par- ticular, the tacticity of polymers). Thus,in silicomethods recently became an important and essential tool in polymerization catalysis. Indeed, understanding the key factors that govern the polymerization is crucial to design the best catalyst for a given polymerization, and DFT methods can provide accurate reaction path- ways in agreement with experimental findings. For instance, in the specific case of borohydride catalysts, it was unambiguously theoretically demonstrated that the key issue, in order to be able to target well-defined polymers, is the trapping of the formed BH3molecule. If the BH3moiety is trapped by the carbonyl group, then onlya,o-dihydroxytelechelic polymers are obtained in the case of cyclic monomers, while a poor activity is obtained with MMA. On the other hand, if the BH3molecule can be efficiently trapped either by the solvent, the ancillary ligand or the surface, then one can access a greater diversity of polymers and sub- sequently, of polymer properties. In the same way, theoretical methods are able to accurately account for the tacticity of the polymer and the steric and electronic effects that control the selectivity. In that sense, theoretical investigations, when carried out in close combination with experimental studies, can be considered as an essential tool to understand and foresee the polymerization mechanism.

lactones still remain a largely unexplored domain. Similarly, the efficiency of chiral rare-earth complexes in selectively controlling polymerizations remains an open field of research. Factors governing the stereoselectivity of the poly- merization of polar monomers still remain to be better understood so as to enable access to better controlled polymerization processes and in turn to more original polymers. The access to well-defined copolymers of controlled chemical structure from rare-earth borohydride catalysts has been demon- strated as feasible; yet it is hardly exploited and much remains to be studied especially regarding simultaneous copolymerization. Such fundamental exper- imental (synthetic organometallic and polymer chemistries) and theoretical investigations are thus a prerequisite for developing controlled polymerization processes and subsequently for allowing access to tailored functional (co) polymer materials.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the coworkers whose names appear in the following references for their contribution to this research. S. M. G. most gratefully acknowledges Miche`le Schappacher for her significant contribution to the pioneering investigations on the use of rare-earth borohydride catalysts in the ROP of cyclic esters. The authors are thankful to the Centre National de la Recherche Scientifique (CNRS) (S. M. G.), the Deutsche Forschungsgemeinschaft (DFG) (P. W. R.), and the Institut Universitaire de France (L. M.) for their continuous support.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ALA L-alanineN-carboxyanhydride

Ap*H (2,6-diisopropyl-phenyl)-[6-(2,4,6-triisopropyl- phenyl)-pyridin-2-yl]-amine

Ar (C6H2tBu3-2,4,6)

Benz benzene

rac-BL racemic-b-butyrolactone, (S,S/R,R)-b-butyrolactone BLL e-carboxbenzoxy-L-lysineN-carboxyanhydride BLG g-benzylL-glutamateN-carboxyanhydride

CL e-caprolactone

COT Z8-cyclooctatetraenyl (Z8-C8H8) Cp Z5-cyclopentadienyl (Z5-C5H5)

CpiPr4 tetra-iso-propylcyclopentadienyl (C5HiPr4) CpPh3 1,2,4-triphenylcyclopentadienyl (C5H2Ph3-1,2,4) Cp* Z5-pentamethylcyclopentadienyl (Z5-C5Me5) Cp*Pr tetramethyl-n-propylcyclopentadienyl (C5Me4nPr)

Cy cyclohexyl (C6H11)

DAB2 ((2,6-C6H3i

Pr2)NC(Me)]C(Me)N(2,6-C6H3i

Pr2))2 DCM dichloromethane (CH2Cl2)

Handbook on the Physics and Chemistry of Rare Earths 80

DFT density functional theory

ÐM dispersity (molar mass distribution; Mw/Mn) DME 1,2-dimethoxyethane (MeO(CH2)2OMe) DSC differential scanning calorimetry FTIR Fourier transform infrared spectroscopy HO-polymer-OH a,o-hydroxytelechelic polymer

D-LA D-lactide, (R,R)-lactide LLA L-lactide, (S,S)-lactide

rac-LA racemic-lactide, (D,L)-lactide, (R,R/S,S)-lactide MALDI-ToF matrix-assisted laser desorption/ionization- time-of-

flight

Mes mesityl (C6H2Me3-2,4,6) mm % isotactic triad content

MMA methyl methacrylate

Mn number average molar mass

mr % atactic triad content

MS mass spectrometry

Mw weight average molar mass

Mw/Mn dispersity (ÐM; molar mass distribution)

NCA N-carboxyanhydride

nd not determined

N2NN0 (2-C5H4N)CH2N(CH2-CH2NMe)2

N2NNMes (2-C5H4N)CH2N(CH2CH2N(C6H2Me3-2,4,6))2 N2NNTMS (2-C5H4N)CH2N(CH2CH2N(SiMe3))2

O2NL RCH2N(CH2-2-O-3,5-C6H2tBu2)2where R¼CH2OMe, CH2NMe2, (2-C5H4N), or Et for L¼OMe, NMe2, py, or nPr, respectively

(O2N2)1 {CH2N(Me)CH2-3,5-Me,tBu-C6H2O}2 (O2N2)2 C5H4NCH2Nd{CH2-3,5-Me,tBu-C6H2O}2 PBLG poly(g-benzylL-glutamateN-carboxyanhydride)

PCL poly(e-caprolactone)

PCL-b-PTMC poly(e-caprolactone)-b-poly(trimethylene carbonate) PCL-co-PTMC poly(e-caprolactone)-co-poly(trimethylene carbonate)

PDL o-pentadecalactone

PHB poly(3-hydroxybutyrate)

PLA poly(lactic acid), poly(lactide) PLLA poly(L-lactic acid), poly(L-lactide)

Pm probability ofmesolinkages between monomer units PMMA poly(methyl methacrylate)

Pr probability ofracemic linkages between monomer units

PTMC poly(trimethylene carbonate)

py pyridine (C5H5N)

ROP ring-opening polymerization

rr % syndiotactic triad content

RT room temperature

SEC size exclusion chromatography

@SiO silica grafted

Sn(Oct)2 stannous(2-ethylhexanoate) tetrahydrosalen [(2-OHdC6H2t

Bu2-3,5)CH2N(CH3)CH2]2

Tg glass transition temperature

THF tetrahydrofuran

Tm melting temperature

TMC trimethylene carbonate (3-dioxan-2-one) TMS trimethylsilyl (SiMe3)

TOF turn over frequency, activity p-Tol para-tolyl (p-CH3]C6H4) (p-Tol)NN [(p-CH3C6H4)N(CH3)C]2CH

TptBu,Me tris(2-t-butyl-4-methyl)pyrazolylborate

VL d-valerolactone

REFERENCES

Agarwal, S., Greiner, A., 2002. J. Chem. Soc Perkin Trans. 1, 2033–2042.

Agarwal, S., Mast, C., Dehnicke, K., Greiner, A., 2000. Macromol. Rapid Commun. 21, 195–212.

Ajellal, N., Carpentier, J.-F., Guillaume, C., Guillaume, S.M., Helou, M., Poirier, V., Sarazin, Y., Trifonov, A., 2010a. Dalton Trans. 39, 8363–8376.

Ajellal, N., Durieux, G., Delevoye, L., Tricot, G., Dujardin, C., Thomas, C.T., Gauvin, R.M., 2010b. Chem. Commun. 46, 1032–1034.

Albertsson, A.-C., Varma, I.K., 2003. Biomacromolecules 4, 1466–1486.

Arndt, S., Okuda, J., 2002. Chem. Rev. 102, 1953–1976.

Arndt, S., Beckerle, K., Hultzsch, K.C., Sinnema, P.-J., Voth, P., Spaniol, T.P., Okuda, J., 2002. J.

Mol. Catal. A Chem. 190, 215–223.

Barbier-Baudry, D., Bouyer, F., Madureira, B.A.S., Visseaux, M., 2006. Appl. Organomet. Chem.

20, 24–31.

Barros, N., Mountford, P., Guillaume, S.M., Maron, L., 2008a. Chem. Eur. J. 14, 5507–5518.

Barros, N., Schappacher, M., Dessuge, P., Maron, L., Guillaume, S.M., 2008b. Chem. Eur. J. 14, 1881–1890.

Bonnet, F., Visseaux, M., Barbier-Baudry, D., Hafid, A., Vigier, E., Kubicki, M.M., 2004a. Inorg.

Chem. 43, 3682–3690.

Bonnet, F., Visseaux, M., Barbier-Baudry, D., Vigier, E., Kubicki, M.M., 2004b. Chem. Eur. J.

10, 2428–2434.

Bonnet, F., Cowley, A.R., Mountford, P., 2005a. Inorg. Chem. 44, 9046–9055.

Bonnet, F., Hillier, A.C., Collins, A., Dubberley, S.R., Mountford, P., 2005b. Dalton Trans. 421–423.

Cendrowski-Guillaume, S.M., Nierlich, M., Lance, M., Ephritikhine, M., 1998. Organometallics 17, 786–788.

Cendrowski-Guillaume, S.M., Le Gland, G., Nierlich, M., Ephritikhine, M., 2000. Organometal- lics 19, 5654–5660.

Cendrowski-Guillaume, S.M., Le Gland, G., Lance, M., Nierlich, M., Ephritikhine, M., 2002.

C. R. Chim. 5, 73–80.

Handbook on the Physics and Chemistry of Rare Earths 82

Cendrowski-Guillaume, S.M., Le Gland, G., Nierlich, M., Ephritikhine, M., 2003. Eur. J. Inorg.

Chem. 1388–1393.

Del Rosa, I., Poteau, R., Maron, L., 2011a. Dalton Trans. 40, 11211–11227.

Del Rosa, I., Poteau, R., Maron, L., 2011b. Dalton Trans. 40, 11228–11240.

Del Rosa, I., Tschan, M.J.-L., Gauvin, R.M., Maron, L., Thomas, C.M., 2012. Polym. Chem. 3, 1730–1739.

Dyer, H.E., Huijser, S., Susperregui, N., Bonnet, F., Schwarz, A.D., Duchateau, R., Maron, L., Mountford, P., 2010. Organometallics 29, 3602–3621.

Edelmann, F.T., 2009. Chem. Soc. Rev. 38, 2253–2268.

Edelmann, F.T., 2010. Struct. Bond. 137, 109–163.

Edelmann, F.T., 2011. Coord. Chem. Rev. 255, 1834–1920.

Edelmann, F.T., Freckmann, D.M.M., Schumann, H., 2002. Chem. Rev. 102, 1851–1896.

Ephritikhine, M., 1997. Chem. Rev. 97, 2193–2242.

Evans, W.J., Bloom, I., Hunter, W.E., Atwood, J.L., 1983. J. Am. Chem. Soc. 105, 1401–1403.

Evans, W.J., Dominguez, R., Hanusa, T.P., 1986. Organometallics 5, 263–270.

Evans, W.J., Chamberlain, L.R., Ulibarri, T.A., Ziller, J.W., 1998. J. Am. Chem. Soc. 110, 6423–6432.

Gamer, M.T., Rasta¨tter, M., Roesky, P.W., Steffens, A., Glanz, M., 2005. Chem. Eur. J. 11, 3165–3172.

Gamer, M.T., Roesky, P.W., Palard, I., Le Hellaye, M., Guillaume, S.M., 2007. Organometallics 26, 651–657.

Gmelin Handbook, 1991. In: Gmelin Handbook of Inorganic and Organometallic Chemistry, RE Main vol. C 11 b. Springer-Verlag, Berlin, pp. 480–487.

Guerin, W., Helou, M., Carpentier, J.-F., Slawinski, M., Brusson, J.-M., Guillaume, S.M., 2013.

Polym. Chem. 4, 1095–1106.

Guillaume, S.M., 2013. Eur. Polym. J. 49, 768–779.

Guillaume, S.M., Carpentier, J.F., 2012. Catal. Sci. Perspect. 2, 898–906.

Guillaume, S.M., Schappacher, M., Soum, A., 2003. Macromolecules 36, 54–60.

Guillaume, S.M., Schappacher, M., Scott, N.M., Kempe, R., 2007. J. Polym. Sci. A Polym. Chem.

45, 3611–3619.

Guillaume, S.M., Brignou, P., Susperregui, N., Maron, L., Kuzdrowska, M., Roesky, P.W., 2011.

Polym. Chem. 2, 1728–1736.

Guillaume, S.M., Brignou, P., Susperregui, N., Maron, L., Kuzdrowska, M., Kratsch, J., Roesky, P.W., 2012. Polym. Chem. 3, 429–435.

Guillaume, S.M., Annunziata, L., Maron, L., Roesky, P.W., Schmid, M., 2013. Polym. Chem. 4, 3077–3087.http://dx.doi.org/10.1039/c3py00056g.

Helou, M., Miserque, O., Brusson, J.-M., Carpentier, J.-F., Guillaume, S.M., 2009. Macromol.

Rapid. Commun. 30, 2128–2135.

Helou, M., Carpentier, J.-F., Guillaume, S.M., 2011. Green Chem. 13, 266–271.

Hiorns, R.C., Boucher, R.J., Duhlev, R., Hellwich, K.-H., Hodge, P., Jenkins, A.D., Jones, R.G., Kahovec, J., Moad, G., Ober, C.K., Smith, D.W., Stepto, R.F.T., Vairon, J.-P., Vohidal, J., 2012. Pure Appl. Chem. 84, 2167–2169.

Hou, Z., Nishiura, M., 2010. Bull. Chem. Soc. Jpn. 6, 595–608.

Hou, Z., Wakatsuki, Y., 2002. Coord. Chem. Rev. 231, 1–22.

Hou, Z., Luo, Y., Li, X., 2006. J. Organomet. Chem. 691, 314–3121.

Iftner, C., Bonnet, F., Nief, F., Visseaux, M., Maron, L., 2011. Organometallics 30, 4482–4485.

Ihara, E., Morimoto, M., Yasuda, H., 1995. Macromolecules 28, 7886–7892.

Jaroschik, F., Bonnet, F., Le Goff, X.-F., Ricard, L., Nief, F., Visseaux, M., 2010. Dalton Trans.

39, 6761–6766.

Jenter, J., Roesky, P.W., Ajellal, N., Guillaume, S.M., Susperregui, N., Maron, L., 2010. Chem.

Eur. J. 16, 4629–4638.

Jeske, G., Lauke, H., Mauermann, H., Swepston, P.N., Schumann, H., Marks, T.J., 1985. J. Am.

Chem. Soc. 107, 8091–8103.

Jian, Z., Zhao, W., Liu, X., Chen, X., Tang, T., Cui, D., 2010. Dalton Trans. 39, 6871–6876.

Kasperczyk, J.E., 1995. Macromolecules 30, 3937–3939.

Kerton, F.M., Witwood, A.C., Williams, C.K., 2004. Dalton Trans. 2237–2244.

Khvostov, A.V., Belsky, V.K., Sizov, A.I., Bulychev, B.M., Ivchenko, N.B., 1998. J. Organomet.

Chem. 564, 5–12.

Konkol, M., Okuda, J., 2008. Coord. Chem. Rev. 252, 1577–1591.

Kramer, M.U., Robert, D., Arndt, S., Zeimentz, P.M., Spaniol, T.P., Yahia, A., Maron, L., Eisenstein, O., Okuda, J., 2008. Inorg. Chem. 47, 9265–9278.

Kritikos, M., Moustiakimov, M., Wijk, M., Westin, G., 2001. J. Chem. Soc. Dalton Trans. 1931–1938.

Lappert, M.F., Singh, A., Atwood, J.L., Hunter, W.E., 1983. J. Chem. Soc. Chem. Commun.

206–207.

Lobkovski, E.B., Kravchenko, S.E., Semenenko, K.N., 1977. Zh. Strukt. Khim. 18, 389–391.

Loh, X.J., Guerin, W., Guillaume, S.M., 2012. J. Mater. Chem. 22, 21249–21256.

Lyubov, D.M., Bubnov, A.M., Fukin, G.K., Dolgushin, F.M., Antipin, M.Y., Pelce´, O., Schappacher, M., Guillaume, S.M., Trifonov, A.A., 2008. Eur. J. Inorg. Chem. 2090–2098.

Mahrova, T.V., Fukin, G.K., Cherkasov, A.V., Trifonov, A.A., Ajellal, N., Carpentier, J.-F., 2009.

Inorg. Chem. 48, 4258–4266.

Makhaev, V.D., 2000. Russ. Chem. Rev. 69, 727–746.

Makhaev, V.D., Borisov, A.P., 1999. Zh. Neorg. Khim. 44, 1489–1491.

Marks, T.J., Kolb, J.R., 1977. Chem. Rev. 77, 263–293.

Marks, T.J., Kolb, J.R., 1981. Inorg. Chem. 20, 297–299.

Marks, S., Heck, J.G., Habicht, M.H., On˜a-Burgos, P., Feldmann, C., Roesky, P.W., 2012. J. Am.

Chem. Soc. 134, 16983–16986.

McLain, S.J., Drysdale, N.E., 1991. (E.I. du Pont de Nemours and Co.). U. S. Patent 5028667.

McLain, S.J., Drysdale, N.E., 1992. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 33, 174–175.

McLain, S.J., Ford, T.M., Drysdale, N.E., 1992. Polym. Prepr. (Am. Chem. Soc. Div. Polym.

Chem.) 33, 463–464.

McLain, S.J., Ford, T.M., Drysdale, N.E., Shreeve, J.L., Evans, W.J., 1994. Polym. Prepr. (Am.

Chem. Soc. Div. Polym. Chem.) 35, 534–535.

Mirsaidov, U., Kurbonbekov, A., 1985. Dokl. Akad. Nauk Tadzh. SSR 28, 219–220.

Mirsaidov, U., Rakhimova, A.Z., 1978. Izv. Akad. Nauk Tadzh. SSR Otd. Fiz.-Mat. Geol.-Khim.

Nauk 121.

Mirsaidov, U., Rotenberg, T.G., Dymova, T.N., 1976. Dokl. Akad. Nauk Tadzh. SSR 19, 30–33.

Mirsaidov, U., Kurbonbekov, A., Rotenberg, T.G., Dzhuraev, K., 1978. Izv. Akad. Nauk SSSR Neorg. Mater. 14, 1722–1725.

Mirsaidov, U., Kurbonbekov, A., Khikmatov, M., 1982. Zh. Neorg. Khim. 27, 2436–2439.

Mirsaidov, U., Boiko, G.N., Kurbonbekov, A., Rakhimova, A., 1986a. Dokl. Akad. Nauk Tadzh.

SSR 29, 608–611.

Mirsaidov, U., Shaimuradov, I.B., Khikmatov, M., 1986b. Zh. Neorg. Khim. 31, 1321–1323 Russ.

J. Inorg. Chem. 31, 753–754.

Handbook on the Physics and Chemistry of Rare Earths 84

Momin, A., Bonnet, F., Visseaux, M., Maron, L., Takats, J., Ferguson, M.J., Le Goff, X.-F., Nief, F., 2011. Chem. Commun. 47, 12203–12205.

Nakayama, Y., Okuda, S., Yasuda, H., Shiono, T., 2007. React. Funct. Polym. 67, 798–806.

Nakayama, Y., Sasaki, K., Watanabe, N., Cai, Z., Shiono, T., 2009. Polymer 50, 4788–4793.

Nakayama, Y., Watanabe, N., Kusaba, K., Sasaki, K., Cai, Z., Shiono, T., Tsutsumi, C., 2011. J.

Appl. Polym. Sci. 121, 2098–2103.

Nomura, R., Endo, T., 1998. Chem. Eur. J. 4, 1605–1610.

Okuda, J., Arndt, S., Beckerle, K., Hultzsch, K.C., Voth, P., Spaniol, T.P., 2001. Pure Appl.

Chem. 73, 351–354.

Palard, I., Soum, A., Guillaume, S.M., 2004. Chem. Eur. J. 10, 4054–4062.

Palard, I., Soum, A., Guillaume, S.M., 2005. Macromolecules 38, 6888–6894.

Palard, I., Schappacher, M., Soum, A., Guillaume, S.M., 2006. Polym. Int. 55, 1132–1137.

Palard, I., Schappacher, M., Belloncle, B., Soum, A., Guillaume, S.M., 2007. Chem. Eur. J. 13, 1511–1521.

Parry, R.W., Kodama, G., 1993. Coord. Chem. Rev. 128, 245–260.

Penczek, S., Moad, G., 2008. Pure Appl. Chem. 80 (10), 2163–2193.

Peng, H., Ling, J., Shen, Z., 2012a. J. Polym Sci. Polym. Chem. 50, 1076–1085.

Peng, H., Ling, J., Zhu, Y., You, L., Shen, Z., 2012b. J. Polym Sci. Polym. Chem. 50, 3016–3029.

Poncelet, O., Sartain, W.J., Hubert-Pfalzgraf, L.G., Folting, K., Caulton, K.G., 1989. Inorg. Chem.

28, 263.

Richter, J., Edelmann, F.T., 1996. Eur. J. Solid State Inorg. Chem. 33, 1063–1069.

Robert, D., Kondracka, M., Okuda, J., 2008. Dalton Trans. 2667–2669.

Saiyasombat, W., Molloy, R., Nicholson, T.M., Johnson, A.F., Ward, I.M., Poshyachinda, S., 1998. Polymer 39, 5581–5585.

Save, M., Schappacher, M., Soum, A., 2002. Macromol. Chem. Phys. 203, 889–899.

Schappacher, M., Soum, A., Guillaume, S.M., 2006. Biomacromolecules 7, 1373–1379.

Schappacher, M., Fur, N., Guillaume, S.M., 2007. Macromolecules 40, 8887–8896.

Schappacher, M., Le Hellaye, M., Bareille, R., Durrieu, M.-C., Guillaume, S.M., 2010. Macromol.

Biosci. 10, 60–67.

Schumann, H., Meese-Marktscheffel, J.A., Esser, L., 1995. Chem. Rev. 95, 865–986.

Schumann, H., Keitsch, M.R., Demtschuk, J., Mu¨hle, S., 1998. Z. Anorg. Allg. Chem. 624, 1811–1818.

Scott, N.M., Kempe, R., 2005. Eur. J. Inorg. Chem. 1319–1324.

Shannon, R.D., 1976. Acta. Cryst. A32, 751–767.

Shen, Y., Shen, Z., Zhang, Y., Hang, Q., 1997. J. Polym. Sci. A 35, 1339–1352.

Shen, X., Xue, M., Jiao, R., Ma, Y., Zhang, Y., Shen, Q., 2012. Organometallics 31, 6222–6230.

Sinenkov, M.A., Fukin, G.K., Cherkasov, A.V., Ajellal, N., Roisnel, T., Kerton, F.M., Carpentier, J.-F., Trifonov, A.A., 2011. New J. Chem. 35, 204–212.

Skvortsov, G.G., Yakovenko, M.V., Castro, P.M., Fukin, G.K., Cherkasov, A.V., Carpentier, J.-F., Trifonov, A.A., 2007a. Eur. J. Inorg. Chem. 3260–3267.

Skvortsov, G., Yakovenko, M., Fukin, G., Baranov, E., Kurskii, Y., Trifonov, A., 2007b. Russ.

Chem. Bull. 56, 456–460.

Skvortsov, G.G., Yakovenko, M.V., Fukin, G.K., Cherkasov, A.V., Trifonov, A.A., 2007c. Russ.

Chem. Bull. Int. Ed. 56, 1742–1748.

Susperregui, N., Kramer, M.U., Okuda, J., Maron, L., 2011. Organometallics 30, 1326–1333.

Tanabe, M., Sugimura, T., Yasuda, H., 2002. React. Funct. Polym. 52, 135–141.

Visseaux, M., Bonnet, F., 2011. Coord. Chem. Rev. 255, 374–420.

Visseaux, M., Terrier, M., Mortreux, A., Roussel, P., 2010. Eur. J. Inorg. Chem. 18, 2867–2876.

Watson, P., 1983. J. Chem. Soc. Chem. Commun. 276–277.

Wu, G., Sun, W., Shen, Z., 2008. React. Funct. Polym. 68, 822–830.

Wu, G., Sun, W., Shen, Z., 2009. J. Appl. Polym. Sci. 112, 557–562.

Xhu, Z., Lin, Z., 1996. Coord. Chem. Rev. 156, 139–162.

Yakovenko, M.V., Trifonov, A.T., Kirillov, E., Roisnel, T., Carpentier, J.-F., 2012. Inorg. Chim.

Acta 383, 137–142.

Yamashita, M., Takemoto, Y., Ihara, E., Yasuda, H., 1996. Macromolecules 29, 1798–1806.

Yasuda, H., Ihara, E., 1997. Adv. Polym. Sci. 133, 55–101.

Yasuda, H., Tamai, H., 1993. Prog. Polym. Sci. 18, 1097–1139.

Yasuda, H., Tamai, H., 2000. Prog. Polym. Sci. 25, 573–626.

Yasuda, H., Tamai, H., 2002. J. Organometallic. Chem. 647, 128–138.

Yasuda, H., Yamamoto, H., Yokota, K., Miyake, S., Nakamura, A., 1992. J. Am. Chem. Soc. 114, 4908–4910.

Yasuda, H., Yamamoto, H., Takemoto, Y., Miyake, S., Yamashita, M., Yokota, K., Miyake, S., Nakamura, A., 1993a. Makromol. Chem. Macromol. Symp. 67, 187–201.

Yasuda, H., Yamamoto, H., Yamashita, M., Yokota, K., Nakamura, A., Miyake, S., Kai, Y., Kanehisa, N., 1993b. Macromolecules 22, 7134–7143.

Yuan, F., Yang, J., Xiong, L., 2006a. J. Organomet. Chem. 691, 2534–2539.

Yuan, F., Zhu, Y., Xiong, L., 2006b. J. Organomet. Chem. 691, 3377–3382.

Zange, E., 1960. Chem. Ber. 93, 652–657.

Zhang, X., Wang, C., Xue, M., Zhang, Y., Yao, Y., Shen, Q., 2012. J. Organomet. Chem. 713, 182–188.

Handbook on the Physics and Chemistry of Rare Earths 86

Structures and Properties of Rare-Earth Molten Salts

Yasuhiko Iwadate

Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba, Japan

Chapter Outline