• Tidak ada hasil yang ditemukan

Nanoparticles for the Degradation of Water Pollutants

3.4 Conclusions

Gold particles have been used as surface modifiers because they possibly inhibit charge recombination by accelerating transfer of photoexcited electrons from titania to substrates. Another advantage of materials containing gold is their absorption to induce photocatalytic reactions under visible light irradiation [74]. Nevertheless, the results obtained for the Au photocatalysts suggest the existence of different activation mechanisms depending on the type of carbon material and on the irradiation wavelength used [75].

photocatalytic reactions under visible light irradiation. Nevertheless, the results obtained for the Au photocatalysts suggest the existence of different activation mechanisms depending on the type of carbon material and on the irradiation wavelength used. Moreover, the gold nanoparticle size has no influence in the catalytic activity, since the sample with the largest size (Au/GO–TiO2, 23.7 nm) is the most active, but the trend is not followed when the other samples are compared.

Acknowledgements

Financial support for this work was provided by FCT/MEC and FEDER under Programme PT2020 (Project UID/EQU/50020/2013), NORTE-07–

0162-FEDER-000050 and NORTE-07–0124-FEDER-000015 co-financed by FEDER through ON2 and QREN. LMPM, SACC and AMTS acknowledge Investigador FCT (IF/01248/2014, IF/01381/2013/CP1160/CT0007 and IF/01501/2013, respectively), with financing from the European Social Fund and the Human Potential Operational Program. Authors are thankful to Dr Carlos M. Sá (CEMUP) for assistance with SEM analyses.

References

1. M.A. Fox, and M.T. Dulay, Heterogeneous photocatalysis. Chemical Reviews, 93, 341–357, 1993.

2. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69–96, 1995.

3. A. Mills, and S. Le Hunte, An overview of semiconductor photocatalysis.

Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35, 1997.

4. J.M. Herrmann, Heterogeneous photocatalysis: State of the art and present applications. Topics in Catalysis, 34, 49–65, 2005.

5. A. Fujishima, X. Zhang, and D.A. Tryk, Heterogeneous photocatalysis:

From water photolysis to applications in environmental cleanup.

International Journal of Hydrogen Energy, 32, 2664–2672, 2007.

6. C.G. Silva, Synthesis, Spectroscopy and Characterization of Titanium Dioxide Based Photocatalysts for the Degradative Oxidation of Organic Pollutants, Ph.D. Thesis, University of Porto, 2008.

7. A.L. Linsebigler, G. Lu, and J.T. Yates, Photo catalysis on TiO2 Surfaces:

Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735–

758, 1995.

8. U. Diebold, The surface science of titanium dioxide. Surface Science Reports, 48, 53–229, 2003.

9. O. Carp, C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32, 33–177, 2004.

10. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo, Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A:

General, 325, 1–14, 2007.

11. K.-J. Hwang, J.-W. Lee, W.-G. Shim, H.D. Jang, S.-I. Lee, and S.-J. Yoo, Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol-gel method for methylene blue degradation. Advanced Powder Technology, 23, 414–418, 2012.

12. V.C. Fuertes, C.F.A. Negre, M.B. Oviedo, F.P. Bonafé, F.Y. Oliva, and C.G. Sánchez, A theoretical study of the optical properties of nanostructured TiO2. Journal of Physics: Condensed Matter, 25, 115304–115307, 2013.

13. M. Comotti, C. Weidenthaler, W.C. Li, and F. Schuth, Comparison of gold supported catalysts obtained by using different allotropic forms of titanium dioxide. Topics in Catalysis, 44, 275–284, 2007.

14. M. Moran-Pineda, S. Castillo, and R. Gomez, Low temperature CO oxidation on Au/TiO2 sol-gel catalysts. Reaction Kinetics and Catalysis Letters, 76, 375–381, 2002.

15. B. Guo, Z. Liu, L. Hong, and H. Jiang, Sol gel derived photocatalytic porous TiO2 thin films. Surface and Coatings Technology, 198, 24–29, 2005.

16. K.K. Latt, and T. Kobayashi, TiO2 nanosized powders controlling by ultrasound sol–gel reaction. Ultrasonics Sonochemistry, 15, 484–491, 2008.

17. A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M.

Ischia, R. Ceccato, and L. Palmisano, Photocatalytic activity of nano

crystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 366–376, 2008.

18. C.G. Silva, and J.L. Faria, Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation. Photochemical & Photobiological Sciences, 8, 705–711, 2009.

19. B.F. Machado, Novel Catalytic Systems for the Selective Hydrogenation of alpha-beta Unsaturated Aldehydes, Ph.D. Thesis, University of Porto, 2009.

20. H.T. Gomes, B.F. Machado, A.M.T. Silva, G. Drazic, and J.L. Faria, Photodeposition of Pt nanoparticles on TiO2-carbon xerogel composites. Materials Letters, 65, 966–969, 2011.

21. A.M.T. Silva, N.R. Zilhão, R.A. Segundo, M. Azenha, F. Fidalgo, A.F.

Silva, J.L. Faria, and J. Teixeira, Photo-Fenton plus Solanum nigrum L. weed plants integrated process for the abatement of highly concentrated metalaxyl on waste waters. Chemical Engineering Journal, 184, 213–220, 2012.

22. M. Landmann, E. Rauls, and W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics:

Condensed Matter, 24, 195503–195506, 2012.

23. B.Z. Tian, J.L. Zhang, T.Z. Tong, and F. Chen, Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Applied Catalysis B:

Environmental, 79, 394–401, 2008.

24. M.A. Centeno, M.C. Hidalgo, M.I. Dominguez, J.A. Navio, and J.A.

Odriozola, Titania-supported gold catalysts: Comparison between the photochemical phenol oxidation and gaseous CO oxidation performances.

Catalysis Letters, 123, 198–206, 2008.

25. H.F. Lu, Y. Zhou, B.Q. Xu, Y.F. Chen, and H.Z. Liu, Effect of gold doping on the photocatalytic activity of the anatase TiO2. Acta Physico- Chimica Sinica, 24, 459–464, 2008.

26. T. Suprabha, H.G. Roy, and S. Mathew, Gold Loaded Titania Nanostructures-Synthesis, Characterization and Morphology Dependence on

Photocatalysis. Science of Advanced Materials, 2, 107–114, 2010.

27. D. Yang, and S.-W. Lee, Pohotocatalytic activity of Ag, Au-deposited TiO2 nanoparticles prepared by sonochemical reduction method. Surface Review and Letters, 17, 21–26, 2010.

28. X. Wang, and R.A. Caruso, Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles.

Journal of Materials Chemistry, 21, 20–28, 2011.

29. A. Primo, A. Corma, and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 13, 886–910, 2011.

30. J.T. Carneiro, T.J. Savenije, J.A. Moulijn, and G. Mul, The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane. Journal of Photochemistry and Photobiology A-Chemistry, 217, 326–332, 2011.

31. S. Chusaksri, J. Lomda, T. Saleepochn, and P. Sutthivaiyakit, Photocatalytic degradation of 3,4-dichlorophenylurea in aqueous gold nanoparticles-modified titanium dioxide suspension under simulated solar light. Journal of Hazardous Materials, 190, 930–937, 2011.

32. P. Fu, and P. Zhang, Enhanced photoelectrochemical properties and photocatalytic activity of porous TiO2 films with highly dispersed small Au nanoparticles. Thin Solid Films, 519, 3480–3486, 2011.

33. M.C. Hidalgo, J.J. Murcia, J.A. Navio, and G. Colon, Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation. Applied Catalysis A: General, 397, 112–120, 2011.

34. S. Oros-Ruiz, J.A. Pedraza-Avella, C. Guzman, M. Quintana, E.

Moctezuma, G. del Angel, R. Gomez, and E. Perez, Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2. Topics in Catalysis, 54, 519–526, 2011.

35. N. Wang, T. Tachikawa, and T. Majima, Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science, 2, 891–900, 2011.

36. S.A.C. Carabineiro, A.M.T. Silva, C.G. Silva, R.A. Segundo, G. Dražić, J.L. Figueiredo, and J.L. Faria, Titanium dioxide nanoparticle based materials for photocatalytic conversion of water pollutants, in A.K. Mishra (Ed.) in

Nanocomposites for Waste Water Treatment, Pan Stanford Publishing, Singapore, pp. 247–269, 2014.

37. C.G. Silva, S.A.C. Carabineiro, M.J. Lima, G. Dražić, J.L. Figueiredo, and J.L. Faria, Titanium dioxide-based photocatalysts for the conversion of water pollutants, in J. Brown (Ed.) Titanium Dioxide: Chemical Properties, Applications and Environmental Effects, Nova Science Pub Inc., New York, pp. 49–64, 2014.

38. C.G. Silva, and J.L. Faria, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Applied Catalysis B: Environmental, 101, 81–89, 2010.

39. C.G. Silva, and J.L. Faria, Photocatalytic Oxidation of Phenolic Compounds by Using a Carbon Nanotube-Titanium Dioxide Composite Catalyst. ChemSusChem, 3, 609–618, 2010.

40. C.G. Silva, W.D. Wang, and J.L. Faria, Nanocrystalline CNT-TiO2 Composites Produced by an Acid Catalyzed Sol-gel Method, in A.T.

Marques, A.F. Silva, A.P.M. Baptista, C. Sa, F. Alves, L.F. Malheiros, and M. Vieira (Eds.) Advanced Materials Forum Iv, Trans Tech Publications Ltd, Stafa-Zurich, pp. 849–853, 2008.

41. W.D. Wang, P. Serp, P. Kalck, C.G. Silva, and J.L. Faria, Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater. Res. Bull., 43, 958–967, 2008.

42. W.D. Wang, C.G. Silva, and J.L. Faria, Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Applied Catalysis B: Environmental, 70, 470–478, 2007.

43. S.M. Miranda, G.E. Romanos, V. Likodimos, R.R.N. Marques, E.P.

Favvas, F. K. Katsaros, K.L. Stefanopoulos, V.J.P. Vilar, J.L. Faria, P.

Falaras, and A.M.T. Silva, Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites. Applied Catalysis B-Environmental, 147, 65–81, 2014.

44. S. Morales-Torres, L.M. Pastrana-Martinez, J.L. Figueiredo, J.L. Faria, and A.M.T. Silva, Graphene oxide-P25 photocatalysts for degradation of

diphenhydramine pharmaceutical and methyl orange dye. Applied Surface Science, 275, 361–368, 2013.

45. L.M. Pastrana-Martinez, S. Morales-Torres, S.A.C. Carabineiro, J.G.

Buijnsters, J.L. Faria, J.L. Figueiredo, and A.M.T. Silva, Nanodiamond-TiO2 Composites for Heterogeneous Photocatalysis. Chempluschem, 78, 801–807, 2013.

46. L.M. Pastrana-Martinez, S. Morales-Torres, V. Likodimos, P. Falaras, J.L. Figueiredo, J.L. Faria, and A.M.T. Silva, Role of oxygen functionalities on the synthesis of photocatalytically active graphene-TiO2 composites.

Applied Catalysis B: Environmental, 158, 329–340, 2014.

47. L.M. Pastrana-Martinez, S. Morales-Torres, S.K. Papageorgiou, F.K.

Katsaros, G. E. Romanos, J.L. Figueiredo, J.L. Faria, P. Falaras, and A.M.T.

Silva, Photocatalytic behaviour of nanocarbon-TiO2 composites and immobilization into hollow fibres. Applied Catalysis B: Environmental, 142, 101–111, 2013.

48. M.J. Sampaio, C.G. Silva, A.M.T. Silva, L.M. Pastrana-Martinez, C. Han, S. Morales-Torres, J.L. Figueiredo, D.D. Dionysiou, and J.L. Faria, Carbon- based TiO2 materials for the degradation of Microcystin-LA. Applied Catalysis B: Environmental, 170, 74–82, 2015.

49. S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, and A.M.T. Silva, Design of graphene-based TiO2 photocatalysts–A review.

Environmental Science and Pollution Research, 19, 3676–3687, 2012.

50. L.M. Pastrana-Martínez, J.L. Faria, J.M. Doña-Rodríguez, C. Fernández- Rodríguez, and A.M.T. Silva, Degradation of diphenhydramine pharmaceutical in aqueous solutions by using two highly active TiO2 photocatalysts: Operating parameters and photocatalytic mechanism. Applied Catalysis B: Environmental, 113–114, 221–227, 2012.

51. C.A. Kinney, E.T. Furlong, S.L. Werner, and J.D. Cahill, Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry Letters, 25, 317–

326, 2006.

52. W.S. Hummers, and R.E. Offeman, Preparation of Graphitic Oxide.

Journal of the American Chemical Society, 80, 1339–1339, 1958.

53. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565, 2007.

54. L.M. Pastrana-Martinez, S. Morales-Torres, V. Likodimos, J.L.

Figueiredo, J.L. Faria, P. Falaras, and A.M.T. Silva, Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 123, 241–256, 2012.

55. C. Moreno-Castilla, M.A. Ferro-Garcia, J.P. Joly, I. Bautista-Toledo, F.

Carrasco-Marin, and J. Rivera-Utrilla, Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 11, 4386–4392, 1995.

56. A.M. Schrand, S.A.C. Hens, and O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences, 34, 18–74, 2009.

57. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, and Y. Gogotsi, Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 128, 11635–11642, 2006.

58. O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin, P.

Detkov, S. Turner, and G. Van Tendeloo, Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds. The Journal of Physical Chemistry C, 115, 9827–9837, 2011.

59. M.J. Sampaio, L.M. Pastrana-Martínez, A.M.T. Silva, J.G. Buijnsters, C.

Han, C.G. Silva, S.A.C Carabineiro, D.D. Dionysiou, J.L. Faria, Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light, RSC Advances, 5, 58363–58370, 2015.

60. S.A.C. Carabineiro, N. Bogdanchikova, M. Avalos-Borja, A. Pestryakov, P.B. Tavares, and J.L. Figueiredo, Gold Supported on Metal Oxides for Carbon Monoxide Oxidation. Nano Research, 4, 180–193, 2011.

61. S.A.C. Carabineiro, N. Bogdanchikova, A. Pestryakov, P.B. Tavares,

L.S.G. Fernandes, and J.L. Figueiredo, Gold nanoparticles supported on magnesium oxide for CO oxidation. Nanoscale Research Letters, 6 (2011).

62. S.A.C. Carabineiro, N. Bogdanchikova, P.B. Tavares, and J.L.

Figueiredo, Nanostructured iron oxide catalysts with gold for the oxidation of carbon monoxide. Rsc Advances, 2, 2957–2965, 2012.

63. S.A.C. Carabineiro, A.M.T. Silva, G. Drazic, P.B. Tavares, and J.L.

Figueiredo, Effect of chloride on the sinterization of Au/CeO2 catalysts.

Catalysis Today, 154, 293–302, 2010.

64. V.P. Santos, S.A.C. Carabineiro, P.B. Tavares, M.F.R. Pereira, J.J.M.

Orfao, and J.L. Figueiredo, Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts, Applied Catalysis B: Environmental, 99, 198–205, 2010.

65. M.A. Soria, P. Perez, S.A.C. Carabineiro, F.J. Maldonado-Hodar, A.

Mendes, and L.M. Madeira, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction. Applied Catalysis A: General, 470, 45–55, 2014.

66. S.A.C. Carabineiro, and D.T. Thompson, Catalytic Applications for Gold Nanotechnology, In: E.U. Heiz, and U. Landman (Eds.), Nanocatalysis, Springer-Verlag, Berlin, Heidelberg, New York, pp. 377–489, 2007.

67. S.A.C. Carabineiro, and D.T. Thompson, Gold Catalysis, in: C. Corti, and R. Holliday (Eds.) Gold: Science and Applications, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, pp. 89–122, 2010.

68. S. Brunauer, P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309–

319, 1938.

69. M.J. Sampaio, C.G. Silva, R.R.N. Marques, A.M.T. Silva, and J.L. Faria, Carbon nanotube-TiO2 thin films for photocatalytic applications, Catalysis Today, 161, 91–96, 2011.

70. A.J. Maira, J.M. Coronado, V. Augugliaro, K.L. Yeung, J.C. Conesa, and J. Soria, Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis, 202, 413–420, 2001.

71. G. Martra, Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: Relationships between surface morphology and chemical behaviour. Applied Catalysis A: General, 200, 275–285, 2000.

72. R. Yudianti, H. Onggo, Sudirman, Y. Saito, T. Iwata, and J. Azuma, Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface.

The Open Materials Science Journal, 5, 242–247, 2011.

73. C.G. Silva, M.J. Sampaio, S.A.C. Carabineiro, J.W.L. Oliveira, D.L.

Baptista, R. Bacsa, B.F. Machado, P. Serp, J.L. Figueiredo, A.M.T. Silva, and J.L. Faria, Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 316, 182–190, 2014.

74. E. Kowalska, O.O.P. Mahaney, R. Abe, and B. Ohtani, Visible-light- induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Physical Chemistry Chemical Physics, 12, 2344–2355, 2010.

75. C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, and H. García, Influence of Excitation Wavelength (UV or Visible Light) on the Photo catalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133, 595–602, 2011.

Chapter 4

Carbon Nanomaterials for Chromium

Dalam dokumen Smart Materials for Waste Water Applications (Halaman 148-158)