The Newton polygon approach is a very powerful method of determining
the points in the parameter space at which steady-state bifurcation occurs. It is an extremely simple method in the case of two algebraic equations, since on1)' a simple geometrical construction h required. The method as presented
Is general and applies for any number of steady-state equations. If the systerr cannot be reduced to less than four algebraic equations, there are practical
limitations since it is hard to visualize a Newton polyhedron in four or higher dimensions. Still, In such a case, methods of algebraic geometry may be used.
Keller's approach[J3] is 1ike1y the method of choice for suc:h problems.
For systems that can be reduc:ed to two or three equations, the Newton diagram analysis has another major advantage. Steady-state multiplicity depends only on the supports on the Newton frontier, that is, on certain 1eading order monomials in the steady-state equations. Unless degeneracy occurs, the coefficients of the supports do not matter: only the structure of the equations, as represented by the Newton frontier supports, influence multipiicity. A11 systems that possess the same Newton frontiers have the same underlying structure. Differences ht 11higher order terms .. (I.e., in monomials corresponding to supports not in the Newton frontier) do not alter
the multiplicity properties of the singularity under study. ·Thus the Newton frontiers provide a normal form for a general class of algebraic systems.
76
In the Newton polygon approach, one does not need to choose a priori a bifurcation parameter since the conditions for bifurcation are written in terms of all system parameters, thus defining a hyperplane in the parameter space along which the bifurcation occurs. One can then easily see which indi- vidual parameter is a convenient choice for a bifurcation parameter for
computational studies or other analyses. This property is particularly importar for purposes of design as in the case of a system with feedback. The method should contribute significantly to analysis of steady-state multiplicity in chemical engineering systems.
NOMENCLATURE
A,B,AB
E . •
f.
I-
911
coefficient of monomials In Eqn. (2) chemical species in Application 1 chemical species In Application 2 feedback parameters in Eqn.
(46)
concentration of species l in Application 1 (mole/cm3) maximum possible concentration of adsorbed species in Application 1 (mo1e/cm3)
concentration of species i In Application 2 (mo1e/cm3) specific heat capacity in Application 2 '( ca 1 )
mo1e•cm3 sequence defined in Eqn. (18)
[)c)mkohler numbers .in Application 2
activation energies in Application 2 (cal/mole) functions defined in Eqn. (J}
defined in Eqn. (17) defined in Eqn.
(33}
defined in Eqn. (.34) defined in Eqn. (25) def lned in Eqn. (24)
u
enthalpy (ca1/mo1e} in Application 2; a
H ... -.. -
qPc p defined in Eqns. (40)
defined in the Appendix defined in Eqns. (50) defined in Eqns. (60)
l ml pi q
r,
r2
r3 Rn
s.
Is
s
S'
t
T
T •
m TO+ 1+H HTc::78
defined in the Appendix dimension
of
system (1)rate constants Jn Appiic::ation 1 (appropriate units) rate constants in Application 2 (appropriate units) orders of reaction tn Application 2
Lagrange function defined
in Eqn. (19)
defined in Eqn. {17)powers of monomia1s
flow rate in App1ication 2 (mole/sec) kl CA
<to· cA.s
1 -ces' ) -
k2tAs1k3CB
«=o -
CAS8 - Css' ) - k4CAS1k5CAS CBS
(Appl. 1)(App 1. 1) (Appl. 1)
n-dimensiona1 space of real numbers defined in Eqn. (12)
dimension (a)
areas under Newton polygon catalytic site In Appl. 1 time (sec)
temperature in Appl. 2
(Oc)
reference temperature in app1.
2 (Oc)
mixed Hinkowski volume defined in Eqn. (12) dimensionless concentrations in Appl. 2
steady-state dimensionless concentrations tn Appl. 2 feed concentrations (dimensionless)
tn Appl. 1;
"A "'B
U1 •tQ
» U2 '"'t()
k.
(T)79
heat transfer coefficient in Application 2 (cal/mole
Oc)
volume of subdomain of positive orthantdefined tn Eqn. (8) defined in Eqn.
(8)
reactor volume in Application 2 (cm3) monomial In Eqn. (2)
deviation variables in Eqn. (2)
-
dimensionless concentrations in Appl. 1; xi
I (1 - -) 1
x. ""-·--
a e Y· I y dimensionless rate constants in Appl. 20
zk
z.
Ik.
(T )I m
Greek Symbols
a,a
1.s
2eA.aB.BE
- r_
-
r
dimensionless temperature in Appl. 2 k dimensionai set of integers
monomials in Eqn. (19)
dimensionless rate constants In Appl. 1: a
-
1 • k 1C0T
powers of monomials xk
(-t1H.)C.
0
I I
dimensionless heats of reaction in Appl. 2:
s
1 ""pc T (l +r pmdimensionless activation energies In Appl. 2;
convex envelope defined In text Newton frontier
parameter in Illustrative example (Eqn.
3)
e·- ,.
tt.
I80
face of Newton frontier
heats of reaction in Appl. 2 (cal/mole) deviation variables in Appl. 2
dimensionless time in Appl. 1
Lagrange multiplier
Mil nor number
Newton number
variables in Eqn. (1)
density in Appl. 2 (mo1e/cm3)
reactor residence time in Appl. 1 (sec) deviation variables in Appl. 1
81
REFERENCES
[1] Van Heerden C., Ind.
Eng. Chem.81953, !!f, 1242.
[2] Hlavacek V., Kublcek M. and Visnak K., Chem.
Eng. Scri..81972, 27, 719.
[3] Coh~n
D. S., Keener J. P •• Chem. Eng. Scri..
81976, 1!.• 115.
[4] Ptkios C. A., Luss D., Chem. Eng. Scri..
81979, 34, 919.
[SJ Luss D.,
"Steaily-State and Dynanic Be'haviou:r of a SingZe Catalytic Pellet,in
"ChemioaZ llecu:to:r Theory" edited by LLapidus, N. R. Amundson (Prentice-Hall, Englewood Cliffs, NJ., 1977)
pp.181-268.
[6] Luss D ••
"Steaily-State MultipZicri.tyand
Criteria for Chemically Reacting[7]
[8]
[9]
Systems",, In "Dynamics and HodeZZing of llecu:tive Systems",
edited
by·W. E. Stewart, W. H. Ray, C. C. Conley (Academrc Press, NY. 1980) PP· 131-159.
Luss D., Chen, G. T., Chem. Eng. Sci.,, 1975, 30, 148).
Viin den
Bosch 8., Luuo .•
Chem. Eng. Seri.., 1911._g. 203.
Van
den BoschB •• Luss
D., Chem. Eng. Sci.81977' ,E.. 566.
[10] Bilous O., Amundson N. R ••
A.IChE JOl.a"fUJZ81955, l• 513.
[11)
Bruns
D. D ••Bailey, J. [. •nd
LussD., Biotechnot. Bioeng-r., 1973, ,!i. 113 [12) Heinemann R. F., Overholser K. A., and
~eddienG. W., Chem. Eng. Seri..,
1979.
j!. 833.
[13] Ke
11er H. I.
In "Applications of Bifu:rr:ation Theory",, edited byP. H. Rabinowitz, (Academic Press, NY. 1980)
p.359.
[1~] Balakotai~h
v.
andLuss D.,,
Chemical lleacti..an Engi.:neering-Boston, Amer.Chem. Soc. Symposium Seriesa
1982, 196, 65.
[15) Go1ubitsky
H.
andKeyfltz I. L., SIAN J. Ma.th. Analysis,
1980 •.!.!.• 316.
[ 16]
Su c..hc.pteor- 2. .
82
[17] Kouchntrenko A. G.
8 Inventiones Math.81976, Jl• 1
(tnFrench).
[18)
Bernshtetn
D. N •• Fwik.. Anal. App.a1976.
~. 12 ..[19]
Arnold
V. I., "Supp"lementa:ry Chapters of the !'Mory of Ordi'YJtI!"l1 Differentic.Equa.ti.ona"a Nauka • Moscow (1378)
Un
Runfan).
[20] Kouchntrenko A. G.,
Uep. Math. Nau'k.81975, 30, 266
(inRussian).
.
-
[21] Arnold V. L, "Sin.gu~ty Theo:t"'J/'a
London Mathematrcal Society,
No.53, (Cambridge Untv. Press, 1981).
[22] Bernshtein D. N., KouchnJrenko A. G., Hovanski A. G.,
Usp. Hath. Nauk.81976 •
.!!.·
201.83 APPENDIX
11111 -u a
..
- 1 1h2z.
11111 a3a5><30h2s • -a3as • 2a3asi30
+2a3asi4o - as
• I
The hgj in Eqns. (60) are given by:
- m n(1 - uAS)
y;s,.o - uAs>
h11
...
-1 - +el·
UAS
The htj tn Eqns. (66) are given by: I
.. .
-1 .. n(1 - uAS) yl
SA ( 1 .. u AS)"'n
lilli uAS + J2.. D
Y1
8e (1 .. "'As>h . lilli
12 J2
.. D ylSE(1 - "'AS)
h13
•
J2
.. I Yi SA (1 - uss>
h21
•
J2
.. 8 m(1 .. ues> Yi 6
e<
1 - "'es)h22 11111 -1 - +