63
64
on LET and bias. However, this new model assumes that the localized critical power necessary to produce SELC does not occur along the entire strike path in the epitaxy but instead in only a portion of the epitaxy. This new model is shown to fit the entire dataset of diode SELC boundary points well.
After defining a threshold for SELC in SiC diodes, the next step is to analyze the total variability in SELC step probability and magnitude. A method is presented for isolating SELC steps from leakage current against time measurements of SiC devices during broad beam irradiation. To accurately assess the variability of SELC, the impact of both irradiation bias and particle LET needs to be separated for each distribution of leakage steps, requiring an extensive dataset. Using data collected over two years and constituting 198 test runs using 44 parts, a dataset containing a detailed span of bias-LET combinations is compiled for analysis. When comparing SELC cross-sections across both bias and LET for a single device, it is shown that increases in LET increase both SELC frequency and worst-case SELC magnitude. However, increases in irradiation bias do not always increase SELC frequency significantly, and for low LET strikes there is no bias where SELC can be guaranteed with every ion strike. This result is the first purely experimental confirmation of earlier simulation work that hypothesizes that SELC is due to a localized power within a SiC device exceeding a critical power [10]. Using this assumption, the probability decreases more significantly with decreases in ion LET than decreases in bias, and with sufficient LET the sensitive area saturates the die area and SELC is guaranteed over a range of biases.
Finally, in order to account for SELC in radiation environments, three methods of addressing SELC significance are presented. The first method is similar to what is commonly used for SEB, where SiC devices are derated to where SELC is not expected to occur. This method is the most conservative and depending on the device used could result in a derating to 5-10% of the rated
65 breakdown voltage.
The second method is slightly less conservative, but still assumes a single particle strike that causes SELC results in failure. By accounting for environmental variability and only allowing for a single damaging strike, the analysis of Austin et al. [12] , which is for SEB in SiC MOSFETs, can be directly applied to SELC in SiC devices as well. Using the PSYCHIC model to provide fluence spectra for a range of confidence levels in conjunction with the threshold for SELC model, for any bias the number of ions over a mission that could cause SELC and will strike a device can be found.
From this, the probability of device failure due to one of those ions striking at an angle close enough to normal to cause SELC and during the off-portion of the duty cycle where the device is holding voltage across it can be derived for any environmental confidence level. In predicting reliability using this method, there is more flexibility for designers to assume more device risk and operate at higher biases than the first model. However, SELC is not inherently fatal, and therefore while this model does not allow for multiple ion strikes to cause SELC, its conservativism may be acceptable for a mission.
The third model is the least conservative but the most accurate. By combining environmental variability using the PSYCHIC model with SELC step variability found earlier, distributions of estimated cumulative SELC are found for the 1200 V SiC JBS diodes. These distributions give the likelihood of leakage current exceeding a circuit-dependent critical value of the designer’s choosing, though additional work should be completed to assess the probability of localized thermal runaway after SELC to ensure device reliability is adequately understood. The impact of reverse bias voltage, shielding, and mission length on cumulative SELC in a GEO orbit are presented. Of these three, reverse bias appears to have the most significant influence on worst-case SELC and will likely be the first variable essential to change for high-reliability applications of SiC devices. However, both
66
mission length and shielding alter the distribution of SELC, such that decreased mission length and increased shielding lessen the probability of observing high SELC over a mission and increase the probability of observing no SELC.
67 REFERENCES
[1] A. Baez, “Design Considerations for High Power Spacecraft Electrical Systems,” NASA Space Power Workshop, 2012. [Online]. Available:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150010178.pdf.
[2] “TA 3: Space Power and Energy Storage,” NASA Technology Roadmaps. pp. 1–97, 2015.
[3] “TA 2: In-Space Propulsion Technologies,” NASA Technology Roadmaps. pp. 1–90, 2015.
[4] M. Kim, J. J. Forbes, E. A. Hirsch, J. Schrock, S. Lacouture, A. Bilbao, S. B. Bayne, H. K.
O’Brien, and A. A. Ogunniyi, “Evaluation of long-term reliability and overcurrent
capabilities of 15-kV SiC MOSFETs and 20-kV SiC IGBTs during narrow current pulsed conditions,” IEEE Trans. Plasma Sci., vol. 48, no. 11, pp. 3962–3967, 2020, doi:
10.1109/TPS.2020.3030295.
[5] K. F. Galloway, A. F. Witulski, R. D. Schrimpf, A. L. Sternberg, D. R. Ball, A.
Javanainen, R. A. Reed, B. D. Sierawski, and J. M. Lauenstein, “Failure estimates for SiC power MOSFETs in space electronics,” Aerospace, vol. 5, no. 3, pp. 1–7, 2018, doi:
10.3390/aerospace5030067.
[6] A. F. Witulski, R. Arslanbekov, A. Raman, R. D. Schrimpf, A. L. Sternberg, K. F.
Galloway, A. Javanainen, D. Grider, D. J. Lichtenwalner, and B. Hull, “Single-Event Burnout of SiC Junction Barrier Schottky Diode High-Voltage Power Devices,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 256–261, Jan. 2018, doi: 10.1109/TNS.2017.2782227.
[7] S. Cao, Q. Yu, G. Du, J. Guo, H. Wang, H. Zhang, and Y. Sun, “Leakage current
degradation in sic junction barrier schottky diodes under heavy ion microbeam,” Proc. Int.
Symp. Phys. Fail. Anal. Integr. Circuits, IPFA, 2019, doi:
10.1109/IPFA47161.2019.8984872.
[8] C. Martinella, T. Ziemann, R. Stark, A. Tsibizov, K. O. Voss, R. G. Alia, Y. Kadi, U.
Grossner, and A. Javanainen, “Heavy-Ion Microbeam Studies of Single Event Leakage Current Mechanism in SiC VD-MOSFETs,” IEEE Trans. Nucl. Sci., vol. 67, no. 7, pp.
1381–1389, 2020, doi: 10.1109/tns.2020.3002729.
[9] S. Kuboyama, C. Kamezawa, N. Ikeda, T. Hirao, and H. Ohyama, “Anomalous charge collection in silicon carbide schottky barrier diodes and resulting permanent damage and single-event burnout,” IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3343–3348, 2006, doi:
10.1109/TNS.2006.885165.
[10] A. Javanainen, K. F. Galloway, C. Nicklaw, A. L. Bosser, V. Ferlet-Cavrois, J. M.
68
Lauenstein, F. Pintacuda, R. A. Reed, R. D. Schrimpf, R. A. Weller, et al., “Heavy ion induced degradation in SiC schottky diodes: Bias and energy deposition dependence,”
IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 415–420, 2017, doi:
10.1109/TNS.2016.2616921.
[11] C. Poivey, “Radiation Hardness Assurance (RHA) for Space Systems,” EPFL Sp. Cent., no. July 2002, pp. 1–58, 2009.
[12] R. A. Austin, B. D. Sierawski, R. A. Reed, R. D. Schrimpf, K. F. Galloway, D. R. Ball, and A. F. Witulski, “Inclusion of Radiation Environment Variability for Reliability Estimates for SiC Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 353–357, 2020, doi: 10.1109/TNS.2019.2957979.
[13] M. Hasanuzzaman, “4H- and 6H- Silicon Carbide in Power MOSFET Design.”
Department of Electrical & Computer Engineering, The University of Tennessee, Knoxville, pp. 1–36, 2004.
[14] M. Bauer, “Raman spectroscopy of laser induced material alterations,” Univ. Munich, pp.
1–128, 2010.
[15] J.-M. Lauenstein, “Wide-Bandgap Semiconductors in Space : Appreciating the Benefits but Understanding the Risks,” 2018 Eur. Conf. Radiat. Its Eff. Components Syst., pp. 1–
53, 2018.
[16] “Fundamentals of Power Electronics: Chapter 15 - Transformer Design,” University of Colorado ECEN 5797. pp. 1–6, doi: 10.1201/9781003088578-1.
[17] M. Bhatnagar and B. J. Baliga, “Comparison of SiC and Si for Power Devices,” IEEE Trans. Electron Devices, vol. 40, no. 3, 1993.
[18] B. J. Baliga, “The Pinch Rectifier: A Low-Forward-Drop High-Speed Power Diode,”
IEEE Electron Device Lett., vol. 5, no. 6, pp. 194–196, 1984, doi:
10.1109/EDL.1984.25884.
[19] A. Akturk, J. M. McGarrity, S. Potbhare, and N. Goldsman, “Radiation effects in
commercial 1200 v 24 A silicon carbide power MOSFETs,” IEEE Trans. Nucl. Sci., vol.
59, no. 6, pp. 3258–3264, 2012, doi: 10.1109/TNS.2012.2223763.
[20] M. Steffens, S. K. Hoffgen, and M. Poizat, “Total ionizing dose tests of Power Bipolar Transistors and SiC power devices for JUICE,” 2017 17th Eur. Conf. Radiat. Its Eff.
Components Syst. RADECS 2017, pp. 1–5, 2017, doi: 10.1109/RADECS.2017.8696193.
69
[21] K. P. Cheung, “SiC power MOSFET gate oxide breakdown reliability-Current status,”
IEEE Int. Reliab. Phys. Symp. Proc., vol. 2018-March, pp. 2B.31-2B.35, 2018, doi:
10.1109/IRPS.2018.8353545.
[22] D. P. Ettisserry, N. Goldsman, A. Akturk, and A. J. Lelis, “Effects of carbon-related oxide defects on the reliability of 4H-SiC MOSFETs,” Int. Conf. Simul. Semicond. Process.
Devices, SISPAD, pp. 61–64, 2014, doi: 10.1109/SISPAD.2014.6931563.
[23] R. D. Harris, A. J. Frasca, and M. O. Patton, “Displacement damage effects on the forward bias characteristics of SiC schottky barrier power diodes,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2408–2412, 2005, doi: 10.1109/TNS.2005.860730.
[24] P. Hazdra, P. Smrkovský, J. Vobecký, and A. Mihaila, “Radiation Resistance of High- Voltage Silicon and 4H-SiC Power p-i-n Diodes,” IEEE Trans. Electron Devices, vol. 68, no. 1, pp. 202–207, 2021.
[25] M. Allenspach, C. Dachs, G. H. Johnson, R. D. Schrimpf, E. Lorfevre, J. M. Palau, J. R.
Brews, K. F. Galloway, J. L. Titus, and C. F. Wheatley, “SEGR and SEB in n-channel power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 6, pp. 2927–2931, Dec. 1996, doi:
10.1109/23.556887.
[26] C. F. Wheatley, J. L. Titus, and D. I. Burton, “Single-Event Gate Rupture in Vertical Power MOSFETs; An Original Empirical Expression,” IEEE Trans. Nucl. Sci., vol. 41, no. 6, pp. 2152–2159, Dec. 1994, doi: 10.1109/23.340556.
[27] C. Abbate, G. Busatto, D. Tedesco, A. Sanseverino, F. Velardi, and J. Wyss, “Gate damages induced in SiC power MOSFETs during heavy-ion irradiation-Part II,” IEEE Trans. Electron Devices, vol. 66, no. 10, pp. 4243–4250, 2019, doi:
10.1109/TED.2019.2931078.
[28] M. C. Casey, J. Lauenstein, A. D. Topper, E. P. Wilcox, H. Kim, A. M. Phan, and K. A.
Label, “Single-Event Effects in Silicon and Silicon Carbide Power Devices,” NEPP Electronic Technology Workshop, 2014. [Online]. Available:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150017740.pdf.
[29] “Environmental Test Methods for Semiconductor Devices Part 1 : Test Methods 1000 Through 1999,” Dep. Def. Test Method Stand., no. July, 2012.
[30] S. Kuboyama, E. Mizuta, Y. Nakada, and H. Shindou, “Physical Analysis of Damage Sites Introduced by SEGR in Silicon Vertical Power MOSFETs and Implications for Postirradiation Gate-Stress Test,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1710–1714, 2019, doi: 10.1109/TNS.2019.2902871.
70
[31] X. Zhou, H. Pang, Y. Jia, D. Hu, Y. Wu, and S. Zhang, “Gate Oxide Damage of SiC MOSFETs Induced by Heavy-Ion Strike,” IEEE Trans. Electron Devices, pp. 1–6, 2021.
[32] J.-M. Lauenstein, M. C. Casey, A. D. Topper, E. P. Wilcox, A. M. Phan, and K. A. LaBel,
“Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation,” IEEE Nuclear and Space Radiation Effects Conference (NSREC). 2015.
[33] C. Martinella, R. G. Alia, R. Stark, A. Coronetti, C. Cazzaniga, M. Kastriotou, Y. Kadi, R.
Gaillard, U. Grossner, and A. Javanainen, “Impact of Terrestrial Neutrons on the
Reliability of SiC VD-MOSFET Technologies,” IEEE Trans. Nucl. Sci., vol. 68, no. 5, pp.
634–641, 2021, doi: 10.1109/TNS.2021.3065122.
[34] A. E. Waskiewicz, J. W. Groninger, V. H. Strehan, and D. M. Long, “Burnout of Power MOS Transistors with Heavy Ions of Californium-252,” IEEE Trans. Nucl. Sci., no. 6, pp.
1710–1713, 1986.
[35] D. R. Ball, J. M. Hutson, A. Javanainen, J. M. Lauenstein, K. F. Galloway, R. A. Johnson, M. L. Alles, A. L. Sternberg, B. D. Sierawski, A. F. Witulski, et al., “Ion-Induced Energy Pulse Mechanism for Single-Event Burnout in High-Voltage SiC Power MOSFETs and Junction Barrier Schottky Diodes,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 22–28, 2020, doi: 10.1109/TNS.2019.2955922.
[36] R. A. Johnson, A. F. Witulski, D. R. Ball, K. F. Galloway, A. L. Sternberg, E. Zhang, L.
D. Ryder, R. A. Reed, R. D. Schrimpf, J. A. Kozub, et al., “Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments,” IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1694–1701, 2019, doi:
10.1109/tns.2019.2922883.
[37] A. F. Witulski, D. R. Ball, K. F. Galloway, A. Javanainen, J. M. Lauenstein, A. L.
Sternberg, and R. D. Schrimpf, “Single-Event Burnout Mechanisms in SiC Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 1951–1955, Jun. 2018, doi:
10.1109/TNS.2018.2849405.
[38] E. Mizuta, S. Kuboyama, H. Abe, Y. Iwata, and T. Tamura, “Investigation of single-event damages on silicon carbide (SiC) power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 61, no.
4, pp. 1924–1928, Jul. 2014, doi: 10.1109/TNS.2014.2336911.
[39] D. R. Ball, K. F. Galloway, R. A. Johnson, M. L. Alles, A. L. Sternberg, A. F. Witulski, R. A. Reed, R. D. Schrimpf, J. M. Hutson, and J. M. Lauenstein, “Effects of Breakdown Voltage on Single Event Burnout Tolerance of High-Voltage SiC Power MOSFETs,”
IEEE Trans. Nucl. Sci., vol. 9499, no. c, 2021, doi: 10.1109/TNS.2021.3079846.
[40] S. Kuboyama, E. Mizuta, Y. Nakada, H. Shindou, A. Michez, J. Boch, F. Saigne, and A.
71
Touboul, “Thermal Runaway in SiC Schottky Barrier Diodes Caused by Heavy Ions,”
IEEE Trans. Nucl. Sci., vol. 66, no. 7, pp. 1688–1693, 2019, doi:
10.1109/TNS.2019.2914494.
[41] C. Abbate, G. Busatto, P. Cova, N. Delmonte, F. Giuliani, F. Iannuzzo, A. Sanseverino, and F. Velardi, “Analysis of heavy ion irradiation induced thermal damage in SiC Schottky diodes,” IEEE Trans. Nucl. Sci., vol. 62, no. 1, pp. 202–209, 2015, doi:
10.1109/TNS.2014.2387014.
[42] L. Scheick, L. Selva, and H. Becker, “Displacement damage-induced catastrophic second breakdown in silicon carbide schottky power diodes,” IEEE Trans. Nucl. Sci., vol. 51, no.
6 II, pp. 3193–3200, Dec. 2004, doi: 10.1109/TNS.2004.839195.
[43] S. Kuboyama, C. Kamezawa, Y. Satoh, T. Hirao, and H. Ohyama, “Single-event burnout of silicon carbide schottky barrier diodes caused by high energy protons,” IEEE Trans.
Nucl. Sci., vol. 54, no. 6, pp. 2379–2383, Dec. 2007, doi: 10.1109/TNS.2007.910877.
[44] D. L. Oberg and J. L. Wert, “First nondestructive measurements of power MOFET single event burnout cross sections,” IEEE Trans. Nucl. Sci., vol. NS-34, no. 6, pp. 1736–1741, 1987.
[45] M. C. Casey, J. M. Lauenstein, R. L. Ladbury, E. P. Wilcox, A. D. Topper, and K. A.
LaBel, “Schottky Diode Derating for Survivability in a Heavy Ion Environment,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2482–2489, Dec. 2015, doi:
10.1109/TNS.2015.2498106.
[46] J. A. Felix, M. R. Shaneyfelt, J. R. Schwank, S. M. Dalton, P. E. Dodd, and J. B. Witcher,
“Enhanced degradation in power MOSFET devices due to heavy ion irradiation,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2181–2189, 2007, doi: 10.1109/TNS.2007.910873.
[47] L. Scheick, L. Edmonds, L. Selva, and Y. Chen, “Current leakage evolution in partially gate ruptured power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2366–2375, 2008, doi: 10.1109/TNS.2008.2001008.
[48] C. Martinella, R. Stark, T. Ziemann, R. G. Alia, Y. Kadi, U. Grossner, and A. Javanainen,
“Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs,” IEEE Trans.
Nucl. Sci., vol. 66, no. 7, pp. 1702–1709, 2019, doi: 10.1109/TNS.2019.2907669.
[49] A. Javanainen, K. F. Galloway, V. Ferlet-Cavrois, J. M. Lauenstein, F. Pintacuda, R. D.
Schrimpf, R. A. Reed, and A. Virtanen, “Charge Transport Mechanisms in Heavy-Ion Driven Leakage Current in Silicon Carbide Schottky Power Diodes,” IEEE Trans. Device Mater. Reliab., vol. 16, no. 2, pp. 208–212, Jun. 2016, doi:
10.1109/TDMR.2016.2557585.
72
[50] J. L. Barth, C. S. Dyer, and E. G. Stassinopoulos, “Space, atmospheric, and terrestrial radiation environments,” IEEE Trans. Nucl. Sci., vol. 50 III, no. 3, pp. 466–482, 2003, doi: 10.1109/TNS.2003.813131.
[51] M. a Xapsos, C. Stauffer, T. Jordan, J. L. Barth, and R. a Mewaldt, “Model for
Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra,” IEEE Trans.
Nucl. Sci., vol. 54, no. 6, pp. 1985–1989, 2007.
[52] M. A. Xapsos, J. L. Barth, E. G. Stassinopoulos, E. A. Burke, and G. B. Gee, “Space Environment Effects: Model for Emission of Solar Protons (ESP)--Cumulative and Worst- Case Event Fluences,” NASA Marshall Sp. Flight Cent., no. December, 1999.
[53] R. A. Nymmik, M. I. Panasyuk, T. I. Pervaja, and A. A. Suslov, “A Model of Galactic Cosmic Ray Fluxes,” Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat.
Meas., vol. 20, no. 3, pp. 427–429, 1992.
[54] B. Hyman, “Radiation Effects Facility,” Texas A&M University Cyclotron Institute, 2000.
[Online]. Available: https://cyclotron.tamu.edu/ref/heavy_ions.html.
[55] Wolfspeed, “CPW4-1200-S020B Silicon Carbide Schottky Diode Datasheet,” 2018.
[Online]. Available:
https://www.wolfspeed.com/downloads/dl/file/id/23/product/35/cpw4.
[56] Wolfspeed, “CPM2-1200-0080B Silicon Carbide Power MOSFET Datasheet,” 2015.
[Online]. Available: https://www.wolfspeed.com/media/downloads/157/CPM2-1200- 0080B.pdf.
[57] “Parylene Properties Chart for Parylene N, C, D,” Paratronix: Division of Kayaku Advanced Materials, 2021. [Online]. Available: https://paratronix.com/coatingsvcs- properties/.
[58] “Heavy Ion Beams,” Texas A&M University Cyclotron Institute, 2020. [Online].
Available: https://cyclotron.tamu.edu/ref/images/heavy_ion_beams.pdf.
[59] A. Javanainen, M. Turowski, K. F. Galloway, C. Nicklaw, V. Ferlet-Cavrois, A. Bosser, J.
M. Lauenstein, M. Muschitiello, F. Pintacuda, R. A. Reed, et al., “Heavy-ion-induced degradation in sic schottky diodes: Incident angle and energy deposition dependence,”
IEEE Trans. Nucl. Sci., vol. 64, no. 8, pp. 2031–2037, 2017, doi:
10.1109/TNS.2017.2717045.
[60] R. A. Johnson, A. Javanainen, A. Raman, P. S. Chakraborty, R. R. Arslanbekov, A. F.
Witulski, D. R. Ball, K. F. Galloway, A. L. Sternberg, R. A. Reed, et al., “Unifying
73
Concepts for Ion-Induced Leakage Current Degradation in Silicon Carbide Schottky Power Diodes,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 135–139, 2020, doi:
10.1109/TNS.2019.2947866.
[61] C. Bodeker, T. Vogt, and N. Kaminski, “Stability of silicon carbide Schottky diodes against leakage current thermal runaway,” Proc. Int. Symp. Power Semicond. Devices ICs, vol. 2015-June, pp. 245–248, 2015, doi: 10.1109/ISPSD.2015.7123435.
[62] G. Wang, J. Mookken, J. Rice, and M. Schupbach, “Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications,” Conf. Proc. - IEEE Appl.
Power Electron. Conf. Expo. - APEC, pp. 1478–1483, 2014, doi:
10.1109/APEC.2014.6803502.
[63] J. L. Shue and H. W. Leidecker, “Power MOSFET Thermal Instability Operation Characterization Support,” Nasa Goddard Sp. Flight Cent., no. April, 2010.
[64] ST, “Calculation of Reverse Losses in a Power Diode,” STMicroelectronics AN-4021, 2012. [Online]. Available:
https://www.st.com/content/ccc/resource/technical/document/application_note/50/99/75/c 8/f4/54/43/12/DM00044087.pdf/files/DM00044087.pdf/jcr:content/translations/en.DM00 044087.pdf.
[65] M. A. Xapsos, S. Member, C. Stauffer, A. Phan, S. S. Mcclure, R. L. Ladbury, J. A.
Pellish, M. J. Campola, and K. A. Label, “Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology,” vol. 64, no. 1, pp. 325–331, 2017.
[66] M. Berg, K. Label, M. Campola, and M. Xapsos, “Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data , Classical Reliability Models , and Space Environment Data,” Govenrment Microcircuit Applications and Critical
Technology Conference (GOMAC). pp. 1–31, 2017.
[67] A. J. Tylka, J. H. Adams Jr., P. R. Boberg, B. Brownstein, W. F. Dietrich, E. O.
Flueckiger, E. L. Petersen, M. A. Shea, D. F. Smart, and E. C. Smith, “CREME96: a Revision of the Cosmic Ray Effects on Micro-Electronics Code,” vol. 44, no. 6, pp. 2150–
2160, 1997.
74