This work focuses on the high voltage stress, radiation effects and low frequency noise of commercial and research grade GaN-based HEMTs. We test two commercial AlGaN/GaN HEMTs from Cree/Wolfspeed and one research-grade InAlN/GaN HEMTs under three bias conditions: ON, semi-ON and OFF state. 10-keV X-ray and 1.8 MeV proton irradiation response of GaN-based HEMTs is investigated. Low frequency noise was employed as a diagnostic tool to understand the nature of the defects responsible for the degradation.
Effects of hot-carrier stress at temperatures up to 125 oC are evaluated for Cree/Wolfspeed CGH40010F GaN-based HEMTs. Both donor-like and acceptor-like defects can play significant roles in the device degradation, with densities depending on stress time, temperature, and bias condition. During stepped drain-bias stress test, Vth shift changes from positive to negative under OFF-state stress with increasing drain bias, which indicate that multiple kinds of defects are responsible for high-field and/or high current stress induced degradation. Unlike many previous studies, the worst case for GM degradation of these devices is ON bias condition at elevated temperatures. These results confirm that a single worst-case bias condition for voltage-stress cannot be defined for all varieties of GaN HEMTs, and that each technology must be characterized in detail. Temperature dependent low- frequency noise measurements identify prominent traps at ∼ 0.7 eV as NGa anti-site defects, which are acceptor-like defects. Traps at ∼ 0.2 eV to ∼ 0.4 eV are identified as ON-related defects, which are donor-like. ON-related donors evidently are the dominant reliability- limiting defect in these devices. Their densities can be significantly increased by the
dehydrogenation of ON-H complexes during ON-bias stress, which evidently is the reliability- limiting mechanism in these devices.
Two commercial AlGaN/GaN HEMTs from Cree/Wolfspeed show similar responses to ~10-keV X-ray irradiation and 1.8-MeV proton irradiation. Devices show negative threshold voltage shifts during 10-keV X-ray irradiation, and during proton irradiation at low fluences. These negative Vth shifts are due most likely to the activation of ON defects, which are donor-like. Positive Vth shifts at higher fluences are due most likely to the generation of VN-related defects, which are acceptor-like. The ionization-equivalent dose for 1.8 MeV protons at a fluence of 1013/cm2 is much larger, ~ 20 Mrad(SiO2). This indicates that either the rate of donor-like defect activation during the proton irradiation is lower than during ~10- keV X-ray irradiation, or that compensating acceptor-like defects are also generated during 1.8-MeV. We have investigated the combined effects of X-ray irradiation and hot carrier stress on research-grade InAlN/GaN HEMTs. Both the bias during X-ray irradiation and the application of high-field stress before X-ray exposure can significantly increase the sensitivity of InAlN/GaN HEMTs. The positive Vth shifts are due most likely to the activation of NGa
anti-site defects, which are acceptor-like.
References
[1] B. J. Baliga, “Semiconductors for high-voltage, vertical channel field-effect transistors,” J. Appl. Phys., vol. 53, no. 3, pp. 1759–1764, 1982.
[2] M. Bhatnagar, P. K. McLarty, and B. J. Baliga, “Silicon-carbide high-voltage (400 V) Schottky barrier diodes,” IEEE Electron Device Lett., vol. 13, no. 10, pp. 501–503, Oct. 1992.
[3] D. Alok, B. Baliga, and P. McLarty, “A simple edge termination for silicon carbide devices with nearly ideal breakdown voltage,” IEEE Electron Device Lett., vol. 15, no. 10, pp. 394-395, 1994.
[4] B. J. Baliga, “Critical nature of oxide/interface quality for SiC power devices,”
Microelect. Eng., vol. 28, pp. 177-184, 1995.
[5] A. K. Agarwal, J. B. Casady, L. B. Rowland, W. F. Valek, M. H. White, and C. D.
Brandt, “1.1 kV 4H–SiC power UMOSFETs,” IEEE Electron Device Lett., vol. 18, pp. 586–588, Dec. 1997.
[6] B. J. Baliga, “Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications,” The Netherlands: Elsevier, 2019.
[7] B. J. Baliga, “Power semiconductor devices having improved high frequency switching and breakdown characteristics,” U.S. Patent 5998833, Dec. 7, 1999.
[8] D. B. Holt and B. G. Yacobi, “Extended defects in semiconductors: electronic properties, device effects and structures,” Cambridge University Press, 2007.
[9] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe,” John Wiley & Sons, 2001.
[10] J. Wu, W. Walukiewicz, W. Shan, K. Yu, J. Ager Iii, S. Li, E. Haller, H. Lu, and W.
J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl.
Phys., vol. 94, no. 7, pp. 4457-4460, 2003.
[11] Y. Hao, J. F. Zhang, and J. C. Zhang, “Nitride wide bandgap semiconductor material and electronic devices,” CRC Press, 2016.
[12] S. Dhar, and S. Ghosh, “Low field electron mobility in GaN,” J. Appl. Phys., vol. 86, no. 5, pp. 2668-2676, 1999.
[13] J. Kolnik, İ. H. Oğuzman, K. F. Brennan, R. Wang, P. P. Ruden, and Y. Wang,
“Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo calculation including a full zone band structure,” J. Appl.
Phys., vol. 78, no. 2, pp. 1033-1038, 1995.
[14] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaff, L.
Eastman, R. Dimitrov, and L. Wittmer, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
[15] M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Lima Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P. Schuck, and R. Grober, “Playing with polarity,” Phys.
Statist. Solidi (b), vol. 228, no. 2, pp. 505-512, 2001.
[16] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy,” Appl. Phys. Lett., vol. 68, no. 18, pp. 2541-2543, 1996.
[17] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Physical Review B, vol. 56, no. 16, pp.
R10024, 1997.
[18] E. F. Schubert, T. Gessmann, and J. K. Kim, “Light emitting diodes,” Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
[19] R. Dingle, H. Störmer, A. Gossard, and W. Wiegmann, “Electron mobilities in modulation‐doped semiconductor heterojunction superlattices,” Appl. Phys. Lett., vol.
33, no. 7, pp. 665-667, 1978.
[20] T. Mimura, K. Joshin, S. Hiyamizu, K. Hikosaka, and M. Abe, “High electron mobility transistor logic,” Jpn. J. Appl. Phys., vol. 20, no. 8, pp. L598, 1981.
[21] T. Mimura, “The early history of the high electron mobility transistor (HEMT),” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 780-782, 2002.
[22] T. Mimura, “Development of high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 44, no. 12R, pp. 8263, 2005.
[23] M. A. Khan, A. Bhattarai, J. Kuznia, and D. Olson, “High electron mobility transistor based on a GaN-AlxGa1− xN heterojunction,” Appl. Phys. Lett., vol. 63, no. 9, pp. 1214- 1215, 1993.
[24] H. Xing, S. Keller, Y. Wu, L. McCarthy, I. Smorchkova, D. Buttari, R. Coffie, D.
Green, G. Parish, and S. Heikman, “Gallium nitride based transistors,” J. Appl. Phys.:
Condensed Matter, vol. 13, no. 32, pp. 7139, 2001.
[25] D. Nirmal and J. Ajayan, “Handbook for III-V High Electron Mobility Transistor Technologies, ” CRC Press, 2019.
[26] I. Smorchkova, C. Elsass, J. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S.
DenBaars, J. Speck, and U. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, no. 8, pp. 4520-4526, 1999.
[27] G. Koley, and M. Spencer, “Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy,” J. Appl. Phys, vol. 90, no. 1, pp. 337-344, 2001.
[28] O. Katz, D. Mistele, B. Meyler, G. Bahir, and J. Salzman, “InAlN/GaN heterostructure field-effect transistor DC and small-signal characteristics,” Electron.
Lett., vol. 40, no. 20, pp. 1304-1305, 2004.
[29] M. Gonschorek, J. F. Carlin, E. Feltin, M. Py, and N. Grandjean, “High electron mobility lattice-matched AIInN/GaN field-effect transistor heterostructures,” Appl.
Phys. Lett., vol. 89, no. 6, pp. 062106, 2006.
[30] K. Jeganathan, M. Shimizu, H. Okumura, Y. Yano, and N. Akutsu, “Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth, vol. 304, no. 2, pp.
342-345, 2007.
[31] C. Gaquiere, F. Medjdoub, J. F. Carlin, S. Vandenbrouck, E. Delos, E. Feltin, N.
Grandjean, and E. Kohn, “AlInN/GaN a suitable HEMT device for extremely high power high frequency applications,” in Proc. IEEE/MTT-S Int. Microw. Symp., pp.
2145–2148, 2007.
[32] D. S. Lee, B. Lu, M. Azize, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, “Impact of GaN channel scaling in InAlN/GaN HEMTs,” in IEDM Tech. Dig., pp. 457–460, Dec. 2011.
[33] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, F. Faria, T. Fang, B.
Song, and X. Gao, “InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 988-990, 2012.
[34] R. J. Trew, Y. Liu, W. W. Kuang, and G. L. Bilbro, “The physics of reliability for high voltage AlGaN/GaN HFETs,” in Proc. IEEE Compound Semicond. Integr.
Circuit Symp., pp. 103–106, 2006.
[35] J. Joh, L. Xia, and J. A. del Alamo, “Gate current degradation mechanisms of GaN high electron mobility transistors,” in IEDM Tech. Dig., pp. 385–388, 2007.
[36] J. L Jimenez and U. Chowdhury, “X-band GaN FET reliability,” IEEE Int. Reliability Phys. Symp. Dig., pp. 429-435, 2008.
[37] J. L. Barth, C. Dyer, and E. Stassinopoulos, “Space, atmospheric, and terrestrial radiation environments,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 466-482, 2003.
[38] J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1833-1853, 2008.
[39] D. M. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 1706-1730, 2013.
[40] D. M. Fleetwood, “Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 1465-1481, 2017.
[41] C. W. Wang, B. S. Soong, J. Y. Chen, C. L. Chen, and Y. K. Su, “Effects of gamma- ray irradiation on the microstructural and luminescent properties of radio-frequency magnetron-sputtered GaN thin films,” J. Appl. Phys., vol. 88, no. 11, pp. 6355-6358, 2000.
[42] B. Luo, J. Johnson, F. Ren, K. Allums, C. Abernathy, S. Pearton, A. Dabiran, A.
Wowchack, C. Polley, and P. Chow, “Influence of 60Co γ-rays on dc performance of AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 80, no. 4, pp.
604-606, 2002.
[43] X. Hu, B. K. Choi, H. J. Barnaby, D. M. Fleetwood, R. D. Schrimpf, S. Lee, S. Shojah- Ardalan, R. Wilkins, U. K. Mishra, and R. W. Dettmer, “The energy dependence of proton-induced degradation in AlGaN/GaN high electron mobility transistors,” IEEE Trans. Nucl. Sci., vol. 51, no. 2, pp. 293-297, 2004.
[44] N. E. Ives, J. Chen, A. F. Witulski, R. D. Schrimpf, D. M. Fleetwood, R. W. Bruce, M. W. McCurdy, E. X. Zhang, and L. W. Massengill, “Effects of proton-induced displacement damage on gallium nitride HEMTs in RF power amplifier applications,”
IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2417-2422, 2015.
[45] X. Sun, O. I. Saadat, J. Chen, E. X. Zhang, S. Cui, T. Palacios, D. M. Fleetwood, and T. P. Ma, “Total-ionizing-dose radiation effects in AlGaN/GaN HEMTs and MOS- HEMTs,” IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4074-4079, 2013.
[46] S. Wood, N. Doyle, J. Spitznagel, W. Choyke, R. More, J. McGruer, and R. Irwin,
“Simulation of radiation damage in solids,” IEEE Trans. Nucl. Sci., vol. 28, no. 6, pp.
4107-4112, 1981.
[47] J. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 653-670, 2003.
[48] P. Wang, C. J. Perini, A. O’Hara, H. Gong, P. Wang, E. X. Zhang, M. W. McCurdy, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides, “Total Ionizing Dose Effects and Proton-Induced Displacement Damage on MoS2-Interlayer-MoS2 Tunneling Junctions,” IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 420-427, 2018.
[49] H. Gong, W. Liao, E. X. Zhang, A. L. Sternberg, M. W. McCurdy, J. L. Davidson, R. A. Reed, D. M. Fleetwood, R. D. Schrimpf, and P. D. Shuvra, “Proton-induced displacement damage and total-ionizing-dose effects on silicon-based MEMS resonators,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 34-38, 2017.
[50] P. F. Wang, E. X. Zhang, K. H. Chuang, W. Liao, H. Gong, P. Wang, C. N. Arutt, K. Ni, M. McCurdy, and I. Verbauwhede, E. Bury, D. Linten, D. M. Fleetwood, R.
D. Schrimpf, and R. A. Reed, “X-ray and proton radiation effects on 40 nm CMOS physically unclonable function devices,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp.
1519-1524, 2018.
[51] B. D. White, M. Bataiev, S. H. Goss, X. Hu, A. Karmarkar, D. M. Fleetwood, R. D.
Schrimpf, W. J. Schaff, and L. J. Brillson, “Electrical, spectral, and chemical
properties of 1.8 MeV proton irradiated AlGaN/GaN HEMT structures as a function of proton fluence,” IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 1934-1941, 2003.
[52] J. F. Ziegler, “The stopping and ranges of ions in matter, ” Elsevier, 2013.
[53] H. D. Xiong, “Low frequency noise and charge trapping in MOSFETs,” PhD.
dissertation, Vanderbilt University, Nashville, TN, 2004.
[54] J. H. Scofield, T. P. Doerr, and D. M. Fleetwood, “Correlation between preirradiation 1/f noise and postirradiation oxide-trapped charge in MOS transistors,” IEEE Trans. Nucl. Sci., vol. 36, no. 6, pp. 1946-1953, 1989.
[55] T. L. Meisenheimer, and D. M. Fleetwood, “Effect of radiation-induced charge on 1/f noise in MOS devices,” IEEE Trans. Nucl. Sci., vol. 37, no. 6, pp. 1696-1702, 1990.
[56] D. M. Fleetwood, T. L. Meisenheimer, and J. H. Scofield, “1/f noise and radiation effects in MOS devices,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 1953-1964, 1994.
[57] P. Dutta, and P. M. Horn, “Low-frequency fluctuations in solids: 1/f noise,” Reviews of Modern physics, vol. 53, no. 3, pp. 497, 1981.
[58] H. Kim et al., “Reliability evaluation of high power AlGaN/GaN HEMTs on SiC substrate,” Phys. Stat. Sol. A, vol. 188, no. 1, pp. 203–206, Nov. 2001.
[59] T. Palacios et al., “High-power AlGaN/GaN HEMTs for Ka-band applications,”
IEEE Trans. Electron Devices, vol. 26, pp. 781–783, 2005.
[60] Y. Ohno and M. Kuzuhara, “Application of GaN-based heterojunction FETs for advanced wireless communication,” IEEE Trans. Electron Devices, vol. 48, pp.
517–523, Mar. 2001.
[61] F. Husna, M. Lachab, M. Sultana, V. Adivarahan, Q. Fareed, and A. Khan, “High- temperature performance of AlGaN/GaN MOSHEMT with SiO2 gate insulator fabricated on Si (111) substrate,” IEEE Trans. Electron Devices, vol. 59, no. 9, pp.
2424–2429, Sept 2012.
[62] J. Joh and J. A. Del Alamo, “Mechanisms for electrical degradation of GaN high- electron mobility transistors,” IEDM Tech Dig., pp. 148–151, 2006.
[63] G. Meneghesso et al., “Reliability of GaN high-electron-mobility transistors: State of the art and perspectives,” IEEE Trans. Device Mater. Reliab., vol. 8, pp. 332–
343, 2008.
[64] T. Roy et al., “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett., vol. 99, no. 20, 2011, Art. no. 203501.
[65] R. Jiang et al., “Multiple defects cause degradation after high field stress in
AlGaN/GaN HEMTs,” IEEE Trans. Device Mater. Rel., vol. 18, no. 3, pp. 364–376, Sep. 2018.
[66] J. Chen et al., “Effects of applied bias and high field stress on the radiation response of GaN/AlGaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2423–2430, Dec. 2015.
[67] J. Chen et al., “High-field stress, low-frequency noise, and long-term reliability of AlGaN/GaN HEMTs,” IEEE Trans. Device Mater. Rel., vol. 16, no. 3, pp. 282–289, Sep. 2016.
[68] Y. S. Puzyrev et al., “Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors,” J. Appl. Phys., vol. 109, no. 3, 2011, Art.
no. 034501.
[69] S. Mukherjee, Y. Puzyrev, J. Chen , D. M. Fleetwood, R. D. Schrimpf, and S. T.
Pantelides, “Hot-carrier degradation in GaN HEMTs due to substitutional iron and its complexes,” IEEE Trans. Electron Devices, vol. 63, no. 4, pp. 1486-1494, Apr.
2016.
[70] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates,” Appl. Phys. Lett., vol. 80, pp. 2186–2188, Mar. 2002.
[71] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-heating in high-power AlGaN-GaN HFETs,” IEEE Electron Device Lett., vol. 19, no. 3, pp. 89–91, Mar.
1998.
[72] K. S. Yuk, G. R. Branner, and D. J. McQuate, “A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge-trapping effects,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp.
3322–3332, Dec. 2009.
[73] S. Martin-Horcajo et al., “Impact of device geometry at different ambient
temperatures on the self-heating of GaN-based HEMTs,” Semicond. Sci. Technol., vol. 29, no. 11, article no. 115013, Nov. 2014.
[74] D. A. Gajewski et al.,“Reliability comparison of 28 V-50 V GaN-on-SiC S-band and X-band technologies,” Microelectron. Reliab., vol. 84, no. 5, pp. 1-6, May 2018.
[75] F. Al-Neama, N. Kapur, J. Summers, and H. M. Thompson, “Thermal management of GaN HEMT devices using serpentine minichannel heat sinks,” Applied Thermal Engineering, vol. 140, pp. 622-636, July 2018.
[76] J. Chen et al., “Proton-induced dehydrogenation of defects in AlGaN/GaN HEMTs,”
IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4080–4086, Dec. 2013.
[77] Z. Q. Fang, D. C. Look, J. Jasinski, M. Benamara, Z. Liliental-Weber, and R. J.
Molnar, “Evolution of deep centers in GaN grown by hydride vapor phase epitaxy,”
Appl. Phys. Lett., vol. 78, pp. 332–334, 2001.
[78] G. Meneghesso, F. Rampazzo, P. Kordos, G. Verzellesi, and E. Zanoni, “Current collapse and high-electric-field reliability of unpassivated GaN/AlGaN/GaN
HEMTs,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2932–2941, Dec. 2006.
[79] Y. Puzyrev et al., “Gate bias dependence of defect-mediated hot-carrier degradation in GaN HEMTs,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1316–1320, May 2014.
[80] J. Joh and J. A. del Alamo, “Critical voltage for electrical degradation of GaN high- electron mobility transistors,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 287–
289, Apr. 2008.
[81] P. F. Wang, X. Li, E. X. Zhang, R. Jiang, M. W. McCurdy, B. S. Poling, E. R.
Heller, R. D. Schrimpf, and D. M. Fleetwood, “Worst-case bias for high voltage, elevated-temperature stress of AlGaN/GaN HEMTs,” IEEE Trans. Device Mater.
Rel., vol. 20, no. 2, pp. 420-428, Jun. 2020.
[82] A. Kalavagunta et al., “Electrostatic mechanisms responsible for device degradation in proton irradiated AlGaN/AlN/GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 55, no.
4, pp. 2106–2112, Aug. 2008.
[83] A. Ortiz-Conde, F. J. García Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y.
Yue, “A review of recent MOSFET threshold voltage extraction methods,”
Microelectron. Reliab., vol. 42, no. 4/5, pp. 583–596, Apr. 2002.
[84] A. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, “Radiation effects in GaN materials and devices,” J. Mater. Chem. C, vol. 1, p. 877, Sep. 2013.
[85] L. Liu et al., “Dependence on proton energy of degradation of AlGaN/GaN high electron mobility transistors,” J. Vac. Sci. Technol. B, vol. 31, no. 2, p. 022201, Mar.
2013.
[86] A. P. Karmarkar et al., “Proton irradiation effects on GaN-based high electron mobility transistors with Si-doped AlxGa1−xN and thick GaN cap layers,” IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3801–3806, Dec. 2004.
[87] Y. S. Puzyrev, T. Roy, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, and S. T.
Pantelides, “Radiation-induced defect evolution and electrical degradation of
AlGaN/GaN high-electron-mobility transistors,” IEEE Trans. Nucl. Sci., vol. 58, no.
6, pp. 2918–2924, Dec. 2011.
[88] R. Jiang et al., “Worst-case bias for proton and 10-keV X-ray irradiation of
AlGaN/GaN high electron mobility transistors,” IEEE Trans. Nucl. Sci., vol. 64, no.
1, pp. 218–225, Jan. 2017.
[89] K. Mukherjee, F. Darracq, A. Curutchet, N. Malbert, and N. Labat, “TCAD simulation capabilities towards gate leakage current analysis of advanced
AlGaN/GaN HEMT devices,” Microelectron. Rel., vols. 76–77, pp. 350–356, Sep.
2017.
[90] Y. Gao, W. A. Sasangka, C. V. Thompson, and C. L. Gan, “Effects of forward gate bias stressing on the leakage current of AlGaN/GaN high electron mobility
transistors,” Microelectron. Rel., vols. 100-101, 113432, Sep. 2019.
[91] M. Ruzzarin et al., “Degradation mechanisms of GaN HEMTs with p-type gate under forward gate bias overstress,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2778–2783, Jul. 2018.
[92] D. Marcon et al., “Reliability analysis of permanent degradations on AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3132–3141, Oct. 2013.
[93] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N.
DasGupta, “Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs:
Comparison and modeling,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp.
3157–3165, Oct. 2013.
[94] J. Kotani, A. Yamada, T. Ishiguro, S. Tomabechi, and N. Nakamura, “Direct observation of nanometer-scale gate leakage paths in AlGaN/ GaN and
InAlN/AlN/GaN HEMT structures,” Phys. Status Solidi A, vol. 213, no. 4, pp. 883–
888, 2016.
[95] J. Ren et al., “Hot electrons induced degradation in lattice-matched InAlN/GaN high electron mobility transistors,” Microelectron. Rel., vol. 56, pp. 34–36, Jan. 2016.
[96] D. Yan, J. Ren, G. Yang, S. Xiao, X. Gu, and H. Lu, “Surface acceptor-like trap model for gate leakage current degradation in lattice-matched InAlN/GaN HEMTs,”
IEEE Electron Device Lett., vol. 36, no. 12, pp. 1281–1283, Dec. 2015.
[97] J. Kuzmik, “Power electronics on InAlN/(In) GaN: Prospect for a record
performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–512, Nov. 2001.
[98] Y. Wu and J. A. del Alamo, “Electrical degradation of InAlN/GaN HEMTs operating under on conditions,” IEEE Trans. Electron Devices, vol. 63, no. 9, pp.
3487–3492, Sep. 2016.
[99] J. Kuzmik, A. Kostopoulos, G. Konstantinidis, J. F. Carlin, A. Georgakilas, and D.
Pogany, “InAlN/GaN HEMTs: A first insight into technological optimization,”
IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 422–426, Mar. 2006.
[100] S. Petitdidier, Y. Guhel, J. L. Trolet, P. Mary, C. Gaquière, and B. Boudart,
“Neutron Irradiation Effects on the Electrical Properties of Previously Electrically Stressed AlInN/GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 66, no. 5, pp. 810-819, May. 2019.
[101] S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov, and J. Kim, “Review of radiation damage in GaN-based materials and devices,” J. Vac. Sci. Technol. A., vol.
31, no. 5, pp. 050801 1–050801 16, 2013.
[102] H. Y. Kim, C. F. Lo, L. Liu, F. Ren, J. Kim, and S. J. Pearton, “Proton-irradiated InAlN/GaN high electron mobility transistors at 5, 10, and 15 MeV energies,” Appl.
Phys. Lett., vol. 100, no. 1, pp. 012107-1–012107-3, Jan. 2012.
[103] A. Ionascat-Nedelcescu, C. Carlone, A. Houdayer, H. J. von Bardeleben, J. L.
Cantin, and S. Raymond, “Radiation hardness of gallium nitride,” IEEE Trans. Nucl.
Sci., vol. 46, no. 6, pp. 2733-2738, Dec. 2002.
[104] X. Hu et al., “Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors,” IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 1791–1796, Dec. 2003.
[105] T. Roy, E. X. Zhang, Y. S. Puzyrev, D. M. Fleetwood, R. D. Schrimpf, B. K. Choi, A. B. Hmelo, and S. T. Pantelides, “Process dependence of proton-induced
degradation in GaN HEMTs,” IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3060-3065, 2010.
[106] T.Roy et al.,“Process dependence of proton-induced degradation in GaN HEMTs,”
IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3060–3065, Dec. 2010.
[107] D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,”
IEEE Trans. Nucl. Sci., 62, no. 4, pp. 1462–1486, Aug. 2015.
[108] L. K. J. Vandamme, “Noise as a diagnostic tool for quality and reliability of electronic devices,” IEEE Trans. Electron Dev., vol. 41, no. 11, pp. 2176–2187, Nov. 1994.
[109] S. L. Rumyantsev et al., “Low-frequency noise in GaN/AlGaN heterostructure field- effect transistors at cryogenic temperatures,” J. Appl. Phys., vol. 92, no. 8, pp. 4726–
4730, 2002.
[110] M. E. Levinshtein, S. L. Rumyantsev, R. Gaska, J. W. Yang, and M. S. Shur,
“AlGaN/GaN high electron mobility field effect transistors with low 1/f noise,”
Appl. Phys. Lett., vol. 73, no. 8, pp. 1089–1091, 1998.
[111] M. Gorchichko, Y. Cao, E. X. Zhang, D. Yan, H. Gong, S. E. Zhao, P. Wang, R.
Jiang, C. Liang, and D. M. Fleetwood, “Total-ionizing-dose effects and low- frequency noise in 30-nm gate-length bulk and SOI FinFETs with SiO2/HfO2 gate dielectrics,” IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 245-252, 2019.
[112] C. Liang, R. Ma, Y. Su, A. O’Hara, E. Zhang, M. Alles, P. Wang, S. Zhao, S.
Pantelides, and S. J. Koester, “Defects and low-frequency noise in irradiated black phosphorus MOSFETs with HfO2 gate dielectrics,” IEEE Trans. Nucl. Sci., vol. 65, no. 6, pp. 1227-1238, 2018.
[113] S. E. Zhao, R. Jiang, E. X. Zhang, W. Liao, C. Liang, D. M. Fleetwood, R. D.
Schrimpf, R. A. Reed, D. Linten, and J. Mitard, “Capacitance–frequency estimates of border-trap densities in multifin MOS capacitors,” IEEE Trans. Nucl. Sci., vol.
65, no. 1, pp. 175-183, 2017.
[114] P. Wang, C. Perini, A. O’Hara, B. R. Tuttle, E. Zhang, H. Gong, C. Liang, R. Jiang, W. Liao, and D. Fleetwood, “Radiation-induced charge trapping and low-frequency noise of graphene transistors,” IEEE Trans. Nucl. Sci., vol. 65, no. 1, pp. 156-163, 2017.
[115] G. X. Duan, J. A. Hachtel, E. X. Zhang, C. X. Zhang, D. M. Fleetwood, R. D.
Schrimpf, R. A. Reed, J. Mitard, D. Linten, and L. Witters, “Effects of negative- bias-temperature-instability on low-frequency noise in SiGe p MOSFETs,” IEEE Trans. Device Mater. Rel., vol. 16, no. 4, pp. 541-548, 2016.
[116] K. Li, E. X. Zhang, M. Gorchichko, P. F. Wang, M. Reaz, S. E. Zhao, G. Hiblot, S.
Van Huylenbroeck, A. Jourdain, and M. L. Alles, “Impacts of through-silicon vias on total-ionizing-dose effects and low-frequency noise in FinFETs,” IEEE Trans.
Nucl. Sci., 2021.
[117] S. Bonaldo, S. E. Zhao, A. O’Hara, M. Gorchichko, E. X. Zhang, S. Gerardin, A.
Paccagnella, N. Waldron, N. Collaert, and V. Putcha, “Total-ionizing-dose effects and low-frequency noise in 16-nm InGaAs FinFETs with HfO2/Al2O3 dielectrics,”
IEEE Trans. Nucl. Sci., vol. 67, no. 1, pp. 210-220, 2019.
[118] D. M. Fleetwood, S. Beyne, R. Jiang, S. E. Zhao, P. Wang, S. Bonaldo, M. W.
McCurdy, Z. Tõkei, I. De Wolf, K. Croes, E. X. Zhang, M. L. Alles, R. D. Schrimpf, R. A. Reed, and D. Linten, “Low-frequency noise and defects in copper and
ruthenium resistors,” Appl. Phys. Lett., vol. 114, no. 20, May 2019, Art. no. 203501.
[119] C. X. Zhang, S. A. Francis, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, K. F.
Galloway, E. Simoen, J. Mitard, and C. Claeys, “Effect of ionizing radiation on defects and 1/f noise in Ge pMOSFETs,” IEEE Trans. Nucl. Sci., vol. 58, no. 3, pp.
764-769, 2011.