• Tidak ada hasil yang ditemukan

Contact between Framed Rectifying Curves

Dalam dokumen Differential Geometry - UILIS Unsyiah (Halaman 130-134)

Generic Properties of Framed Rectifying Curves

7. Contact between Framed Rectifying Curves

In this section, the contact between framed rectifying curves is considered. We now introduce the notion of circular rectifying curves as follows.

Definition 5. Letγ(s)be a framed rectifying curve and:

γ(s) =ρ(tan2( |g(s)|ds+C) +1)12g(s),

whereρis a positive number and C is a constant. We callγa circular rectifying curve ifg(s)is a circle on S2. Let(γ,μ1,μ2):I→S2×Δ2be a framed spherical curve. We chooseμ1=γ, thenν=γ×μ2and γ(s) =α(s)ν(s). We show that the spherical Frenet–Serret formula ofγis as follows:

⎧⎪

⎪⎩

γ(s) =α(s)ν(s) μ2(s) =l(s)ν(s)

ν(s) =−α(s)γ(s)−l(s)μ2(s),

whereμ2(s),ν(s)=l(s). By the curvature functionsα(s)andl(s), we show the following proposition for framed spherical curves:

Mathematics2019,7, 37

Proposition 2. Let(γ,γ,μ2): I→S2×Δ2be a framed spherical curve, thenγis a circle if and only if α(s) =0and l(s)/α(s) =constant.

Proof. Ifα(s) =0 and(l/α)(s) =k, wherekis a constant, then we consider a normal vector field N(s) =k2k+12 γ(s)k2k+1μ2(s). By taking the derivative ofN(s), we haveN(s) = k2k+12 (α(s)ν(s) α(s)ν(s)) =0. This means thatN(s)is a constant vector. Moreover, we have:

N(s),γ(s)N(s)= k2

k2+1γ(s) k

k2+1μ2(s), 1

k2+1γ(s) + k

k2+1μ2(s)=0.

This means thatγis the intersection of a plane andS2, soγis a circle.

Letγbe a circle onS2. Obviously,γis a plane curve andα(s) =0, so thatγ(s),γ(s)×γ(s)= 0. Then, we can calculate thatγ(s),γ(s)×γ(s)=α4(s)l(s)−α3(s)α(s)l(s). Sinceα(s) =0, we haveα(s)l(s)−α(s)l(s) =0. This is equivalent to(l/α)(s) =0. Thus,l(s)/α(s) =constant.

As a corollary of Proposition2, we have the following result:

Corollary 1. Let(γ,γ,μ2):I→S2×Δ2be a framed spherical curve, thenγis a great circle on S2if and only ifα(s) =0and l(s) =0.

Now, we review the notions of contact between framed curves [14]. Let(γ,μ1,μ2):I→R3×Δ2; s→(γ(s),μ1(s),μ2(s))and(γ,1μ11,1μ2): 1I R3×Δ2;u→(γ(u),1 μ11(u),1μ2(u))be framed curves.

We say that(γ,μ1,μ2)and(1γ,μ11,1μ2)havekthorder contact ats=s0,u=u0if:

(γ,μ1,μ2)(s0) = (1γ,1μ1,μ12)(u0), d

ds(γ,μ1,μ2)(s0) = d

du(1γ,μ11,μ12)(u0), . . . , dk−1

dsk−1(γ,μ1,μ2)(s0) = dk−1

duk−1(γ,11μ1,μ12)(u0), dk

dsk(γ,μ1,μ2)(s0) = dk

duk(1γ,μ11,1μ2)(u0).

In addition, we say that(γ,μ1,μ2)and(1γ,1μ1,μ12)have at leastkthorder contact ats=s0,u=u0 if:

(γ,μ1,μ2)(s0) = (1γ,1μ1,μ12)(u0), d

ds(γ,μ1,μ2)(s0) = d

du(1γ,μ11,μ12)(u0), . . . , dk−1

dsk−1(γ,μ1,μ2)(s0) = dk−1

duk−1(1γ,1μ1,μ12)(u0).

We generally say that(γ,μ1,μ2)and(1γ,1μ1,μ12)have at least first order contact at any points=s0, u=u0, up to congruence as framed curves. As a conclusion of Theorem 3.7 in [14], we show the following proposition:

Proposition 3. Let(γ,γ,μ2) : I S2×Δ2, s (γ(s),γ(s),μ2(s))and(1γ,γ,1μ12) : 1I S2×Δ2, u→(γ(u),1 γ(u),1 μ12(u))be framed spherical curves. If(γ,γ,μ2)and(1γ,γ,1μ12)have at least(k+1)thorder contact at s=s0, u=u0, we have:

α(s0) =1α(u0), d

dsα(s0) = d

du1α(u0), . . . , dk−1

dsk−1α(s0) = dk−1

duk−11α(u0), (14)

l(s0) =1l(u0), d

dsl(s0) = d

du1l(u0), . . . , dk−1

dsk−1l(s0) = dk−1

duk−11l(u0). (15) Conversely, if the conditions (14) and (15) hold, then(γ,γ,μ2)and(γ,1γ,1μ12)have at least(k+1)thorder contact at s=s0, u=u0, up to congruence as framed spherical curves.

120

Now, we consider the contact between circles and framed spherical curves. We have a corollary of Propositions2and3as follows:

Corollary 2. Let(γ,γ,μ2):I→S2×Δ2be a framed spherical curve.γand a circle have at least(k+1)th order contact at s=s0if and only if there exists a constantσsuch that:

l(s0) =σα(s0), d

dsl(s0) =σd

dsα(s0), . . . , dk−1

dsk−1l(s0) =σdk−1 dsk−1α(s0).

For the construction of the framed rectifying curve in Theorem4, we fix positive numberρand constantC. Letgi:I→S2(i=1, 2)be framed spherical curves. We knowγ1,γ2havekthorder contact ats0if and only ifg1,g2havekthorder contact ats0. By Corollary2, we have the following theorem, which can describe the contact between framed rectifying curves and circular rectifying curves.

Theorem 9. Letγbe a framed rectifying curve andα(s)and l(s)be curvature functions of the corresponding framed spherical curve. Then,γand a circular rectifying curve have at least kthorder(k≥2)contact at s0if and only if there exists a constantσsuch that:

l(s0) =σα(s0), d

dsl(s0) =σd

dsα(s0), . . . , dk−2

dsk−2l(s0) =σdk−2 dsk−2α(s0).

Author Contributions:Conceptualization, Y.W.; Writing—Original Draft Preparation, Y.W.; Calculations, D.P.;

Manuscript Correction, D.P.; Giving the Examples, R.G.; Drawing the Pictures, R.G.

Funding:This research was funded by National Natural Science Foundation of China grant numbers 11271063 and 11671070, the Fundamental Research Funds for the Central Universities grant number 3132018220, and the Project of Science and Technology of Jilin Provincial Education Department grant number JJKH2090547KJ.

Acknowledgments:This work was partially supported by the National Natural Science Foundation of China Nos. 11271063 and 11671070, the Fundamental Research Funds for the Central Universities No. 3132018220, and The Project of Science and Technology of Jilin Provincial Education Department No. JJKH2090547KJ.

Conflicts of Interest:The authors declare no conflict of interest.

References

1. Mikula, K.; Sevcovic, D. Evolution of curves on a surface driven by the geodesic curvature and external force.Appl. Anal.2006,85, 345–362. [CrossRef]

2. Izumiya, S.; Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom. 2002,74, 97–109.

[CrossRef]

3. Liu, Y.; Ru, M. Degeneracy of holomorphic curves in surfaces.Sci. China Ser. A2005,48, 156–167. [CrossRef]

4. Chen, B.Y. When does the position vector of a space curve always lie in its rectifying plane?Am. Math. Mon.

2003,110, 147–152. [CrossRef]

5. Chen, B.Y.; Dillen, F. Rectifying curves as centrodes and extremal curves.Bull. Inst. Math. Acad. Sin.2005,33, 77–90.

6. Yeh, H.; Abrams, J.I.Principles of Mechanics of Solids and Fluids; McGraw-Hill: New York, NY, USA, 1960;

Volume 1.

7. Ogston, N.; King, G.; Gertzbein, S.; Tile, M.; Kapasouri, A.; Rubenstein, J. Centrode patterns in the lumbar spine-base-line studies in normal subjects.Spine1986,11, 591–595. [CrossRef] [PubMed]

8. Weiler, P.J.; Bogoch, R.E. Kinematics of the distal radioulnar joint in rheumatoid-arthritis-an in-vivo study using centrode analysis.J. Hand Surg.1995,20, 937–943. [CrossRef]

9. Gertzbein, S.; Seligman, J.; Holtby, R.; Chan, K.; Ogston, N.; Kapasouri, A.; Tile, M.; Cruickshank, B. Centrode patterns and segmental instability in degenerative disk disease.Spine1985,10, 257–261. [CrossRef] [PubMed]

10. Πarslan, K.; Nesovic, E. On rectifying curves as centrodes and extremal curves in the Minkowski 3-space.

Novi Sad J. Math.2007,37, 53–64.

11. Πarslan, K.; Nesovic, E. Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time.Taiwan. J. Math.2008,12, 1035–1044.

Mathematics2019,7, 37

12. Πarslan, K.; Nesovic, E. Some characterizations of rectifying curves in the Euclidean space E4.Turk. J. Math.

2008,32, 21–30.

13. Grbovic, M.; Nesovic, E. Some relations between rectifying and normal curves in Minkowski 3-space.

Math. Commun.2012,17, 655–664.

14. Honda, S.; Takahashi, M. Framed curves in the Euclidean space.Adv. Geom.2016,16, 265–276. [CrossRef]

15. Chen, L.; Takahashi, M. Dualities and evolutes of fronts in hyperbolic and de Sitter space.J. Math. Anal. Appl.

2016,437, 133–159. [CrossRef]

16. Bishop, R.L. There is more than one way to frame a curve.Am. Math. Mon.1975,82, 246–251. [CrossRef]

c 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

122

Article

Dalam dokumen Differential Geometry - UILIS Unsyiah (Halaman 130-134)